Skip to main content
Log in

Heterogeneity of neuromuscular junctions in striated muscle of human esophagus demonstrated by triple staining for the vesicular acetylcholine transporter, α-bungarotoxin, and acetylcholinesterase

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

During studies on enteric co-innervation in the human esophagus, we found that not all acetylcholinesterase (AChE)-positive motor endplates stained for α-bungarotoxin (α-BT) and the vesicular acetylcholine transporter (VAChT), respectively. Therefore, we probed for differences in neuromuscular junctions in human esophagus by using triple staining for VAChT, α-BT, and AChE followed by qualitative and quantitative analysis. To exclude that the results were caused by processing artifacts, we additionally examined the influence of a number of factors including post-mortem changes and the type and duration of fixation on the staining results. Four types of neuromuscular junction could be distinguished in human esophagus: type I with VAChT-positive and type II with VAChT-negative nerve terminals on a α-BT-positive and AChE-positive endplate area, type III with VAChT-positive nerve terminals on a α-BT-negative but AChE-positive endplate area, and type IV with VAChT-negative nerve terminals on a α-BT-negative but AChE-positive endplate area. On average, 32% of evaluated AChE-positive motor endplates were type I, 6% type II, 24% type III, and 38% type IV. Based on these results, we suggest that, in human esophagus, (1) the most reliable method for staining motor endplates is presently AChE histochemistry, (2) α-BT-sensitive and α-BT-resistant nicotinic acetylcholine receptors exist in neuromuscular junctions, and (3) different types of VAChT or transport mechanisms for acetylcholine probably exist in neuromuscular junctions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Aldunate R, Casar JC, Brandan E, Inestrosa NC (2004) Structural and functional organization of synaptic acetylcholinesterase. Brain Res Brain Res Rev 47:96–104

    Article  PubMed  CAS  Google Scholar 

  • Arias HR (2000) Localization of agonist and competitive antagonist binding sites on nicotinic acetylcholine receptors. Neurochem Int 36:595–645

    Article  PubMed  CAS  Google Scholar 

  • Arvidsson U, Riedl M, Elde R, Meister B (1997) Vesicular acetylcholine transporter (VAChT) protein: a novel and unique marker for cholinergic neurons in the central and peripheral nervous systems. J Comp Neurol 378:454–467

    Article  PubMed  CAS  Google Scholar 

  • Assadi M, Müntener M (2005) Utrophin is lacking at the neuromuscular junctions in the extraocular muscles of normal cat: artefact or true? Histochem Cell Biol 123:189–194

    Article  PubMed  CAS  Google Scholar 

  • Barchan D, Kachalsky S, Neumann D, Vogel Z, Ovadia M, Kochva E, Fuchs S (1992) How the mongoose can fight the snake: the binding site of the mongoose acetylcholine receptor. Proc Natl Acad Sci USA 89:7717–7721

    Article  PubMed  CAS  Google Scholar 

  • Barchan D, Ovadia M, Kochva E, Fuchs S (1995) The binding site of the nicotinic acetylcholine receptor in animal species resistant to alpha-bungarotoxin. Biochemistry 34:9172–9176

    Article  PubMed  CAS  Google Scholar 

  • Bravo D, Parsons SM (2002) Microscopic kinetics and structure-function analysis in the vesicular acetylcholine transporter. Neurochem Int 41:285–289

    Article  PubMed  CAS  Google Scholar 

  • Breuer C, Neuhuber WL, Wörl J (2004) Development of neuromuscular junctions in the mouse esophagus: morphology suggests a role for enteric co-innervation during maturation of vagal myoneural contacts. J Comp Neurol 475:47–69

    Article  PubMed  Google Scholar 

  • Chang CC, Lee CY (1963) Isolation of neurotoxins from the venom of Bungarus multicinctus and their modes of neuromuscular blocking action. Arch Int Pharmacodyn Ther 144:241–257

    PubMed  CAS  Google Scholar 

  • Gasnier B (2000) The loading of neurotransmitters into synaptic vesicles. Biochimie 82:327–337

    Article  PubMed  CAS  Google Scholar 

  • Griesmann GE, McCormick DJ, De Aizpurua HJ, Lennon VA (1990) Alpha-bungarotoxin binds to human acetylcholine receptor alpha-subunit peptide 185–199 in solution and solid phase but not to peptides 125–147 and 389–409. J Neurochem 54:1541–1547

    Article  PubMed  CAS  Google Scholar 

  • Gruber H, Zenker W (1978) Acetylcholinesterase activity in motor nerve fibres in correlation to muscle fibre types in rat. Brain Res 141:325–334

    Article  PubMed  CAS  Google Scholar 

  • Ishikawa Y, Kano M, Tamiya N, Shimada Y (1985) Acetylcholine receptors of human skeletal muscle: a species difference detected by snake neurotoxins. Brain Res 346:82–88

    Article  PubMed  CAS  Google Scholar 

  • Kachalsky SG, Jensen BS, Barchan D, Fuchs S (1995) Two subsites in the binding domain of the acetylcholine receptor: an aromatic subsite and a proline subsite. Proc Natl Acad Sci USA 92:10801–10805

    Article  PubMed  CAS  Google Scholar 

  • Karlin A (2002) Emerging structure of the nicotinic acetylcholine receptors. Nat Rev Neurosci 3:102–114

    Article  PubMed  CAS  Google Scholar 

  • Karnovsky MJ, Roots L (1964) A “direct-coloring” thiocholine method for cholinesterases. J Histochem Cytochem 12:219–221

    PubMed  CAS  Google Scholar 

  • Kreienkamp HJ, Sine SM, Maeda RK, Taylor P (1994) Glycosylation sites selectively interfere with alpha-toxin binding to the nicotinic acetylcholine receptor. J Biol Chem 269:8108–8114

    PubMed  CAS  Google Scholar 

  • Le Novère N, Corringer P-J, Changeux J-P (2002) The diversity of subunit composition in nAChRs: evolutionary origins, physiologic and pharmacologic consequences. J Neurobiol 53:447–456

    Article  PubMed  CAS  Google Scholar 

  • Legay C (2000) Why so many forms of acetylcholinesterase? Microsc Res Tech 49:56–72

    Article  PubMed  CAS  Google Scholar 

  • Lindstrom JM (2003) Nicotinic acetylcholine receptors of muscles and nerves: comparison of their structures, functional roles, and vulnerability to pathology. Ann NY Acad Sci 998:41–52

    Article  PubMed  CAS  Google Scholar 

  • Lips KS, Pfeil U, Haberberger RV, Kummer W (2002) Localisation of the high-affinity choline transporter-1 in the rat skeletal motor unit. Cell Tissue Res 307:275–280

    Article  PubMed  CAS  Google Scholar 

  • Marshall IG, Parsons SM (1987) The vesicular acetylcholine transport system. Trends Neurosci 10:174–177

    Article  CAS  Google Scholar 

  • Neuhuber WL, Eichhorn U, Wörl J (2001) Enteric co-innervation of striated muscle fibers in the esophagus: just a “hangover”? Anat Rec 262:41–46

    Article  PubMed  CAS  Google Scholar 

  • Nguyen ML, Parsons SM (1995) Effects of internal pH on the acetylcholine transporter of synaptic vesicles. J Neurochem 64:1137–1142

    Article  PubMed  CAS  Google Scholar 

  • Nguyen ML, Parsons SM (1996) Interactions of protons with the acetylcholine transporter of synaptic vesicles. Prog Brain Res 109:97–103

    Article  PubMed  CAS  Google Scholar 

  • Nirthanan S, Gwee MCE (2004) Three-finger alpha-neurotoxins and the nicotinic acetylcholine receptor, forty years on. J Pharmacol Sci 94:1–17

    Article  PubMed  CAS  Google Scholar 

  • Prado MAM, Reis RAM, Prado VF, Mello MC de, Gomez MV, Mello FG de (2002) Regulation of acetylcholine synthesis and storage. Neurochem Int 41:291–299

    Article  PubMed  CAS  Google Scholar 

  • Prior C, Marshall IG, Parsons SM (1992) The pharmacology of vesamicol: an inhibitor of the vesicular acetylcholine transporter. Gen Pharmacol 23:1017–1022

    PubMed  CAS  Google Scholar 

  • Ravdin P, Axelrod D (1977) Fluorescent tetramethyl rhodamine derivatives of alpha-bungarotoxin: preparation, separation, and characterization. Anal Biochem 80:585–592

    Article  PubMed  CAS  Google Scholar 

  • Roghani A, Carroll PT (2002) Analysis of uptake and release of newly synthesized acetylcholine in PC12 cells overexpressing the rat vesicular acetylcholine transporter (VAChT). Brain Res Mol Brain Res 100:21–30

    Article  PubMed  CAS  Google Scholar 

  • Rotundo RL (2003) Expression and localization of acetylcholinesterase at the neuromuscular junction. J Neurocytol 32:743–766

    Article  PubMed  CAS  Google Scholar 

  • Sang Q, Young HM (1997) Development of nicotinic receptor clusters and innervation accompanying the change in muscle phenotype in the mouse esophagus. J Comp Neurol 386:119–136

    Article  PubMed  CAS  Google Scholar 

  • Sang Q, Ciampoli D, Greferath U, Sommer L, Young HM (1999) Innervation of the esophagus in mice that lack Mash-1. J Comp Neurol 408:1–10

    Article  PubMed  CAS  Google Scholar 

  • Schäfer MK-H, Weihe E, Erickson JD, Eiden LE (1995) Human and monkey cholinergic neurons visualized in paraffin-embedded tissues by immunoreactivity for VAChT, the vesicular acetylcholine transporter. J Mol Neurosci 6:225–235

    Article  PubMed  Google Scholar 

  • Schäfer MK, Eiden LE, Weihe E (1998) Cholinergic neurons and terminal fields revealed by immunohistochemistry for the vesicular acetylcholine transporter. I. Central nervous system. Neuroscience 84:331–359

    Article  PubMed  Google Scholar 

  • Searl T, Prior C, Marshall IG (1991) Acetylcholine recycling and release at rat motor nerve terminals studied using (−)-vesamicol and troxpyrrolium. J Physiol (Lond) 444:99–116

    CAS  Google Scholar 

  • Song HJ, Ming GL, Fon E, Bellocchio E, Edwards RH, Poo MM (1997) Expression of a putative vesicular acetylcholine transporter facilitates quantal transmitter packaging. Neuron 18:815–826

    Article  PubMed  CAS  Google Scholar 

  • Usdin TB, Eiden LE, Bonner TI, Erickson JD (1995) Molecular biology of the vesicular ACh transporter. Trends Neurosci 18:218–224

    Article  PubMed  CAS  Google Scholar 

  • Van der Kloot W (2003) Loading and recycling of synaptic vesicles in the Torpedo electric organ and the vertebrate neuromuscular junction. Prog Neurobiol 71:269–303

    Article  PubMed  CAS  Google Scholar 

  • Weihe E, Tao-Cheng JH, Schäfer MK, Erickson JD, Eiden LE (1996) Visualization of the vesicular acetylcholine transporter in cholinergic nerve terminals and its targeting to a specific population of small synaptic vesicles. Proc Natl Acad Sci USA 93:3547–3552

    Article  PubMed  CAS  Google Scholar 

  • Wörl J, Neuhuber WL (2005) Enteric co-innervation of motor endplates in the esophagus: state of the art ten years after. Histochem Cell Biol 123:117–130

    Article  PubMed  CAS  Google Scholar 

  • Wörl J, Dütsch F, Neuhuber WL (2002) Development of neuromuscular junctions in the mouse esophagus: focus on establishment and reduction of enteric co-innervation. Anat Embryol 205:141–152

    Article  PubMed  Google Scholar 

  • Wu M, Majewski M, Wojtkiewicz J, Vanderwinden JM, Adriaensen D, Timmermans JP (2003) Anatomical and neurochemical features of the extrinsic and intrinsic innervation of the striated muscle in the porcine esophagus: evidence for regional and species differences. Cell Tissue Res 311:289–297

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors are indebted to Anita Hecht and Karin Löschner for expert technical assistance and to Tony Simpson and Anne Stab for providing esophagi following autopsies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jürgen Wörl.

Additional information

This study was supported by the “Johannes und Frieda Marohn-Stiftung”, Erlangen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kallmünzer, B., Sörensen, B., Neuhuber, W.L. et al. Heterogeneity of neuromuscular junctions in striated muscle of human esophagus demonstrated by triple staining for the vesicular acetylcholine transporter, α-bungarotoxin, and acetylcholinesterase. Cell Tissue Res 324, 181–188 (2006). https://doi.org/10.1007/s00441-005-0154-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-005-0154-4

Keywords

Navigation