Skip to main content
Log in

Rigidity and a mesoscopic central limit theorem for Dyson Brownian motion for general \(\beta \) and potentials

  • Published:
Probability Theory and Related Fields Aims and scope Submit manuscript

Abstract

We study Dyson Brownian motion with general potential V and for general \(\beta \ge 1\). For short times \(t = o (1)\) and under suitable conditions on V we obtain a local law and corresponding rigidity estimates on the particle locations; that is, with overwhelming probability, the particles are close to their classical locations with an almost-optimal error estimate. Under the condition that the density of states of the initial data is bounded below and above down to the scale \(\eta _* \ll t \ll 1\), we prove a mesoscopic central limit theorem for linear statistics at all scales \(\eta \) with \(N^{-1}\ll \eta \ll t\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ajanki, O.H., Erdős, L., Krüger, T.: Universality for general Wigner-type matrices. Probab. Theory Relat. Fields 169(3–4), 667–727 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  2. Ajanki, O.H., Erdős, L., Krüger, T.: Stability of the matrix Dyson equation and random matrices with correlations. Probab. Theory Relat. Fields (2018). https://doi.org/10.1007s00440-018-0835-z

  3. Ajanki, O.H., Erdős, L., Schröder, D.: Random matrices with slow correlation decay. Preprint, arXiv:1801.02973 (2018)

  4. Anderson, G.W., Guionnet, A., Zeitouni, O.: An Introduction to Random Matrices. Cambridge Studies in Advanced Mathematics, vol. 118. Cambridge University Press, Cambridge (2010)

    MATH  Google Scholar 

  5. Bauerschmidt, R., Paul, B., Nikula, M., Horng-Tzer, Y.: Local density for two-dimensional one-component plasma. Preprint, arXiv:1510.02074 (2015)

  6. Bekerman, F., Lodhia, A.: Mesoscopic central limit theorem for general \(\beta \)-ensembles. Preprint, arXiv: 1605.05206 (2016)

  7. Bender, M.: Global fluctuations in general \(\beta \) Dyson’s Brownian motion. Stoch. Process. Appl. 118(6), 1022–1042 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bourgade, P.: Extreme gaps between eigenvalues of Wigner matrices. in preparation (2016)

  9. Bourgade, P., Erdős, L., Yau, H.-T.: Bulkuniversality of general \(\beta \)-ensembles with non-convexpotential. J. Math. Phys. 53(9), 095221, 19 (2012)

    Article  MATH  Google Scholar 

  10. Bourgade, P., Erdös, L., Yau, H.-T.: Edge universality of beta ensembles. Commun. Math. Phys. 332(1), 261–353 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  11. Bourgade, P., Erdős, L., Yau, H.-T.: Universality of general \(\beta \)-ensembles. Duke Math. J. 163(6), 1127–1190 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  12. Bourgade, P., Erdős, L., Yau, H.-T., Yin, J.: Fixed energy universality for generalized Wigner matrices. Commun. Pure Appl. Math. 69(10), 1815–1881 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  13. Boutet de Monvel, A., Khorunzhy, A.: Asymptotic distribution of smoothed eigenvalue density. I. Gaussian random matrices. Random Oper. Stoch. Equ. 7(1), 1–22 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  14. Boutet de Monvel, A., Khorunzhy, A.: Asymptotic distribution of smoothed eigenvalue density. II. Wigner random matrices. Random Oper. Stoch. Equ. 7(2), 149–168 (1999)

    MathSciNet  MATH  Google Scholar 

  15. Chan, T.: The Wigner semi-circle law and eigenvalues of matrix-valued diffusions. Probab. Theory Relat. Fields 93(2), 249–272 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  16. Duits, M., Johansson, K.: On mesoscopic equilibrium for linear statistics in Dyson’s Brownian motion. Mem. Amer. Math. Soc. 255(1222), v\(+\)118 (2018)

  17. Dyson, F.J.: A Brownian-motion model for the eigenvalues of a random matrix. J. Math. Phys. 3, 1191–1198 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  18. Dyson, F.J.: Statistical theory of the energy levels of complex systems. I. J. Math. Phys. 3, 140–156 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  19. Dyson, F.J.: Statistical theory of the energy levels of complex systems. II. J. Math. Phys. 3, 157–165 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  20. Dyson, F.J.: Statistical theory of the energy levels of complex systems. III. J. Math. Phys. 3, 166–175 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  21. Erdős, L., Knowles, A., Yau, H.-T., Yin, J.: Spectral statistics of Erdős-Rényi graphs I: local semicircle law. Ann. Probab. 41(3B), 2279–2375 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  22. Erdős, L., Péché, S., Ramirez, J.A., Schlein, B., Yau, H.-T.: Bulk universality for Wigner matrices. Commun. Pure Appl. Math. 63(7), 895–925 (2010)

    MathSciNet  MATH  Google Scholar 

  23. Erdős, L., Ramirez, J., Schlein, B., Tao, T., Van, V., Yau, H.-T.: Bulk universality for Wigner Hermitian matrices with subexponential decay. Math. Res. Lett. 17(4), 667–674 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  24. Erdős, L., Ramirez, J.A., Schlein, B., Yau, H.-T.: Universality of sine-kernel for Wigner matrices with a small Gaussian perturbation. Electron. J. Probab. 15(18), 526–603 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  25. Erdős, L., Schlein, B., Yau, H.-T.: Local semicircle law and complete delocalization for Wigner random matrices. Commun. Math. Phys. 287(2), 641–655 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  26. Erdős, L., Schlein, B., Yau, H.-T.: Semicircle law on short scales and delocalization of eigenvectors for Wigner random matrices. Ann. Probab. 37(3), 815–852 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  27. Erdős, L., Schlein, B., Yau, H.-T.: Universality of random matrices and local relaxation flow. Invent. Math. 185(1), 75–119 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  28. Erdős, L., Schnelli, K.: Universality for random matrix flows with time-dependent density. Ann. Inst. Henri Poincar Probab. Stat. 53(4), 1606–1656 (2017). https://doi.org/10.1214/16-AIHP765

  29. Erdős, L., Yau, H.-T.: Gap universality of generalized Wigner and \(\beta \)-ensembles. J. Eur. Math. Soc. (JEMS) 17(8), 1927–2036 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  30. Erdős, L., Yau, H.-T.: A Dynamical Approach to Random Matrix Theory, Volume 28 of Courant Lecture Notes in Mathematics. Courant Institute of Mathematical Sciences, New York (2017)

    Book  Google Scholar 

  31. Erdős, L., Yau, H.-T., Yin, J.: Bulk universality for generalized Wigner matrices. Probab. Theory Relat. Fields 154(1–2), 341–407 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  32. Erdős, L., Yau, H.-T., Yin, J.: Rigidity of eigenvalues of generalized Wigner matrices. Adv. Math. 229(3), 1435–1515 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  33. Fyodorov, Y.V., Khoruzhenko, B.A., Simm, N.J.: Fractional Brownian motion with Hurst index \(H=0\) and the Gaussian unitary ensemble. Ann. Probab. 44(4), 2980–3031 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  34. He, Y., Knowles, A.: Mesoscopic eigenvalue statistics of Wigner matrices. To appear in Ann. Appl. Probab. 27(3), 1510–1550 (2017). https://doi.org/10.1214/16-AAP1237

  35. He, Y., Knowles, A., Rosenthal, R.: Isotropic self-consistent equations for mean-field random matrices. Probab. Theory Relat. Fields 171(1–2), 203–249 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  36. Israelsson, S.: Asymptotic fluctuations of a particle system with singular interaction. Stoch. Process. Appl. 93(1), 25–56 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  37. Lambert, G.: Mesoscopic fluctuations for unitary invariant ensembles. Preprint, arXiv:1510.03641 (2015)

  38. Landon, B., Sosoe, P., Yau, H.-T.: Fixed energy universality of Dyson Brownian motion. Preprint, arXiv:1609.09011 (2016)

  39. Landon, B., Yau, H.-T.: Convergence of local statistics of Dyson Brownian motion. Commun. Math. Phys. 355(3), 949–1000 (2017). https://doi.org/10.1007/s00220-017-2955-1

  40. Leblé, T.: Local microscopic behavior for 2D coulomb gases. Probab. Theory Relat. Fields. 169(3–4), 931–976 (2017). https://doi.org/10.1007/s00440-016-0744-y

  41. Lee, J.O., Schnelli, K.: Local deformed semicircle law and complete delocalization for Wigner matrices with random potential. J. Math. Phys. 54(10), 103504 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  42. Lee, J.O., Schnelli, K., Stetler, B., Yau, H.-T.: Bulk universality for deformed Wigner matrices. Ann. Probab. 44(3), 2349–2425 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  43. Li, S., Li, X.-D., Xie, Y.-X.: Generalized Dyson Brownian motion, Mckean–Vlasov equation and eigenvalues of random matrices. Preprint, arXiv:1303.1240 (2013)

  44. Li, S., Li, X.-D., Xie, Y.-X.: On the law of large numbers for the empirical measure process of generalized Dyson Brownian motion. Preprint, arXiv:1407.7234 (2015)

  45. Li, Y.: Rigidity of eigenvalues for \(\beta \) ensemble in multi-cut regime. Preprint, arXiv:1611.06603 (2016)

  46. Lodhia, A., Simm, N.J.: Mesoscopic linear statistics of Wigner matrices. Preprint, arXiv:1503.03533 (2015)

  47. Maida, M., Maurel-Segala, É.: Free transport-entropy inequalities for non-convex potentials and application to concentration for random matrices. Probab. Theory Relat. Fields 159(1–2), 329–356 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  48. Rogers, L.C.G., Shi, Z.: Interacting Brownian particles and the Wigner law. Probab. Theory Relat. Fields 95(4), 555–570 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  49. Sosoe, P., Wong, P.: Regularity conditions in the CLT for linear eigenvalue statistics of Wigner matrices. Adv. Math. 249, 37–87 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  50. Tao, T., Van, V.: Random matrices: universality of local eigenvalue statistics. Acta Math. 206(1), 127–204 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  51. Tao, T., Van, V.: Random matrices: sharp concentration of eigenvalues. Random Matrices Theory Appl. 2(3): 1350007, 31 (2013)

    MathSciNet  MATH  Google Scholar 

  52. Unterberger, J.: Global fluctuations for log-gas dynamics. Stoch. Proc. Appl. 128(12), 4104–4153 (2018)

  53. Unterberger, J.: Global fluctuations for log-gas dynamics. (2) Covariance kernel and support. Preprint, arXiv:1801.02973 (2018)

  54. Wigner, E.P.: Characteristic vectors of bordered matrices with infinite dimensions. II. Ann. Math. 2(65), 203–207 (1957)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We thank Paul Bourgade, Philippe Sosoe and Horng-Tzer Yau for helpful discussions and useful comments on our preliminary draft.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiaoyang Huang.

Additional information

The work of B.L. is partially supported by NSERC.

A Universality

A Universality

In this appendix we roughly sketch the following universality theorem.

Theorem A.1

Suppose V satisfies Assumption 2.1. Fix \(N^{-1}\le \eta _*\ll r\le 1\), and assume that the initial data \({\varvec{}}\lambda (0)\) satisfies Assumption 4.1. For any time t with \(\eta _*\ll t\ll (\log N)^{-1}r\wedge (\log N)^{-2}\), and index k such that \(E-r/2\le \lambda _{k} (0) \le E+r/2\), there is a constant \({\mathfrak c}>0\) so that the following estimate holds for any smooth test function \(O: \mathbb {R}\rightarrow \mathbb {R}\) and N large enough,

$$\begin{aligned} \left| \mathbb {E} \left[ O ( \rho N ( \lambda _{k+1} ( t) - \lambda _{k} (t) ) )\right] - \mathbb {E}_\beta \left[ O ( N ( \lambda _{\ell +1} - \lambda _{\ell } )) \right] \right| \le N^{-{\mathfrak c}}, \end{aligned}$$
(A.1)

where the second expectation is with respect to the Gaussian \(\beta \)-ensemble, the index \(\ell \) satisfies \(\varepsilon N \le \ell \le (1- \varepsilon ) N\) for any \(\varepsilon >0\) and the scaling factor \(\rho \) is defined by

$$\begin{aligned} \rho := \frac{ \mu _t ( \gamma _{k} (t) )}{ \rho _{\mathrm {sc}} ( \gamma ^{\mathrm {sc}}_{\ell } )} \end{aligned}$$
(A.2)

where \(\mu _t\) is the limiting measure-valued process appearing earlier, \(\gamma _i (t)\) are its classical eigenvalue locations, \(\rho _{\mathrm {sc}}\) is the semicircle density and \(\gamma ^{\mathrm {sc}}_i\) are its classical eigenvalue locations.

The proof of this theorem is a modification of the proof of universality in [38]. In this work, the above theorem was proven in the case that \(\beta = 1, 2\) or 4 and V is quadratic. These assumptions ensured that the process \(\lambda _i (t)\) was equal in distribution to the eigenvalues of a random matrix ensemble evolving according to a matrix Brownian motion. The matrix structure was used to prove the rigidity estimates (3.4) in this special case. Therefore the proof given there carries over without change to the case that \(\beta \ge 1 \) is general and V is quadratic. In order to prove the above theorem we need only show how to deal with general V. The case of general V was carried out also in the work [38], but in the case of equilibrium initial data. This is the case when the DBM with general potential has initial data the equilibrium measure of the \(\beta \)-ensemble with the potential V. Short-time universality was proved, which then implied universality for the initial data as it is stationary. The approach to \(\beta \)-ensembles of [38] is somewhat different than the approach to matrix Brownian motion given in the same work. This is due to the fact that the matrix Brownian motion is handled using a certain family of interpolating ensembles for which the rigidity was not known in the case of general \(\beta \) (the matrix case being handled via matrix estimates). Therefore, the proof of the above theorem comes down to a modification of the methods in [38]. In the interest of brevity, we mention the important changes.

k be as above, and fix a time \(\eta _*\ll s\ll (\log N)^{-1}r \wedge (\log N)^{-2}\). Thanks to Theorem 3.1, the eigenvalue rigidity holds at time s. After appropriate re-scalings and translations of the initial data and the potential, let us assume that

$$\begin{aligned} \gamma _{k} (s) = \gamma _{k}^{\mathrm {sc}}, \qquad \mu _{t} (\gamma _{k} (s) ) = \rho _{\mathrm {sc}} ( \gamma _{k}^{\mathrm {sc}} ). \end{aligned}$$
(A.3)

Note that due to gap universality of the Gaussian \(\beta \)-ensemble [29], it suffices to assume \(k = \ell \). We use a coupling idea from [12] which was used again in [38]. For \(t \ge 0\), denote now

$$\begin{aligned} \mathrm {d}x_i (t) = \sqrt{\frac{2}{\beta N}}\mathrm{d}B_i(t) + \frac{1}{N} \sum _{j \ne i } \frac{1}{ x_j (t) - x_i (t) } \mathrm {d}t - \frac{1}{2} V (x_i (t) ) \mathrm {d}t, \qquad x_i (0) = \lambda _i (s) \end{aligned}$$
(A.4)

and

$$\begin{aligned} \mathrm {d}y_i (t) =\sqrt{\frac{2}{\beta N}}\mathrm{d}B_i(t) + \frac{1}{N} \sum _{j \ne i } \frac{1}{ y_j (t) - y_i (t) } \mathrm {d}t - \frac{y_i}{2} \mathrm {d}t \end{aligned}$$
(A.5)

where the initial data \(y_i (0)\) is an independent Gaussian \(\beta \)-ensemble. Above, the Brownian motion terms are identical. We define the following interpolating processes for \(0 \le \alpha \le 1\).

$$\begin{aligned} \mathrm{d}z_i (t, \alpha )= & {} \sqrt{\frac{2}{\beta N}} \mathrm{d}B_i(t) +\frac{1}{N}\sum _{j:j\ne i}\frac{\mathrm{d}t}{z_i (t, \alpha )-z_j (t, \alpha )}\nonumber \\&-\frac{1}{2}V_\alpha '(z_i (t, \alpha ))\mathrm{d}t,\quad i=1,2,\ldots , N, \end{aligned}$$
(A.6)

with the potential

$$\begin{aligned} V_\alpha =\alpha V +(1-\alpha )W, \end{aligned}$$
(A.7)

and the initial data

$$\begin{aligned} z_i (0, \alpha ):= \alpha x_i (0) + (1 - \alpha ) y_i (0), \end{aligned}$$
(A.8)

for \(i=1,2,\ldots ,N\). We can write the difference of the \(x_i(t)\) and \(y_i(t)\) as an integral in terms of the interpolating process \(z_i(t,\alpha )\),

$$\begin{aligned} x_i(t)-y_i(t)=\int _{0}^1 (\partial _\alpha z_i(t,\alpha ))\mathrm{d}\alpha . \end{aligned}$$
(A.9)

Thanks to the rigidity and the smoothness of the potential V, the contribution of the potential is to leading order deterministic in the vicinity of \(x_{k}(t)\) and contributes only a drift which is summarized by the movement of the classical eigenvalue location \(\gamma _{k} (t)\). The following “homogenization result” follows from a careful analysis of the differential equation of \(\partial _\alpha z_i(t,\alpha )\) essentially the same as in [38]. And the Gap universality Theorem A.1 is a direct consequence.

Lemma A.2

Let time s, index k, \(x_i(t)\) and \(y_i (t)\) be as above. There are small constants \({\mathfrak c},{\mathfrak e}>0\), For any time \(1/N\ll t\), such that \(t=(sN)^{{\mathfrak e}}/N\) the following estimate holds with overwhelming probability: for any indices \(|i-k| \le (sN)^{{\mathfrak e}}\)

$$\begin{aligned} ( x_i (t) - \gamma _{k} (t) ) -( y_i (t) - \gamma _{k}^{\mathrm {sc}} ) ) = \zeta (i)_x - \zeta (i)_y +{{\mathrm{O}}}\left( \frac{1}{N^{1+{\mathfrak c}}}\right) . \end{aligned}$$
(A.10)

The functions \(\zeta (i)_x\) and \(\zeta (i)_y\) are mesoscopic linear statistics of the initial data and satisfy the estimate \(| \zeta (i)_x - \zeta (i+1)_x | + | \zeta (i)_y - \zeta (i+1)_y | \le C / (N^2 t)\ll 1/N\), which proves gap universality.

The above lemma is the analogue of Theorem 3.1 of [38] in our setting which is proven using the modifications described above. The function \(\zeta (i)_x\) is the same as the one appearing in that theorem, and the required estimate follows from Proposition 3.2 of [38]. We remark that in the setting of the current work, we are unable to prove universality of the correlation functions at fixed energy and so the above theorem is stated in terms of the eigenvalue gaps. This is precisely due to the fact that the quantities \(\zeta \) appearing in the above lemma are mesoscopic linear statistics that are not compactly supported. The result proved in the present work does not apply to these statistics and so we cannot conclude fixed energy universality from the above homogenization result as in [38].

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, J., Landon, B. Rigidity and a mesoscopic central limit theorem for Dyson Brownian motion for general \(\beta \) and potentials. Probab. Theory Relat. Fields 175, 209–253 (2019). https://doi.org/10.1007/s00440-018-0889-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00440-018-0889-y

Mathematics Subject Classification

Navigation