Strategy of the proof We will argue as in Theorem 1 and need thus to show both (P1) and (P2). While (P2) will follow almost in the same way as in the Gaussian case, (P1) will require a different approach. Firstly, we will need to remove constants in defining \(e_n\) so that we will end up working with a field depending only on linear combinations of \((\sigma (x))_{x\in {{\mathrm{\mathbb {Z}}}}_n^d}\). Secondly, we will show in Sect. 5.1 that, for \(\sigma \) bounded a. s., the convergence to the bilaplacian field is ensured via the moment method. Lastly, we will truncate the weights \(\sigma \) at a level \(\mathcal R>0\) and show that the truncated field approximates the original one.
Reduction to a bounded field We first recall some facts from Levine et al. [17]. Note that odometer \(e_n\) satisfies
$$\begin{aligned} {\left\{ \begin{array}{ll} \Delta _g e_n(x)= 1-s(x), \\ \min _{z\in {{\mathrm{\mathbb {Z}}}}_n^d} e_n(z)=0. \end{array}\right. } \end{aligned}$$
Also if one defines
$$\begin{aligned} v_n(y)=\frac{1}{2d} \sum _{x\in {{\mathrm{\mathbb {Z}}}}_n^d} g(x,y) (s(x)-1), \end{aligned}$$
(5.1)
then \(\Delta _g(e_n-v_n)(z)=0\). Since any harmonic function on a finite connected graph is constant, it follows from the proof of Proposition 1.3 of Levine et al. [17] that the odometer has the following representation also in the case where the weights are non-Gaussian:
$$\begin{aligned} e_n(x)= v_n(x)-\min _{z\in {{\mathrm{\mathbb {Z}}}}_n^d}v_n(z). \end{aligned}$$
(5.2)
Let us define the following functional: for any function \(h_n: {{\mathrm{\mathbb {Z}}}}_n^d\rightarrow {{\mathrm{\mathbb {R}}}}\) set
$$\begin{aligned} \Xi _{h_n}(x):=4\pi ^2\sum _{z\in \mathbb {T}^d_n}n^{\frac{d-4}{2}}h_n({nz}){{\mathrm{\mathbb {1}}}}_{B\left( z,\,\frac{1}{2n}\right) }(x),\quad x\in \mathbb {T}^d. \end{aligned}$$
Note that for \(u\in C^\infty (\mathbb {T}^d)\) such that \(\int _{\mathbb {T}^d} u(x){{\mathrm{d}}}x=0\) it follows immediately that
$$\begin{aligned} \left\langle \Xi _{e_n}, u\right\rangle = \left\langle \Xi _{v_n}, u\right\rangle . \end{aligned}$$
Observe that
$$\begin{aligned} s(x)-1= \sigma (x)-\frac{1}{n^d} \sum _{y\in {{\mathrm{\mathbb {Z}}}}_n^d} \sigma (y) \end{aligned}$$
and hence we have from (5.1)
$$\begin{aligned} v_n(y)=\frac{1}{2d}\sum _{x\in {{\mathrm{\mathbb {Z}}}}_n^d} g(x,y)\sigma (x)-\frac{1}{2d n^{d}} \sum _{x\in {{\mathrm{\mathbb {Z}}}}_n^d} g(x,y) \sum _{z\in {{\mathrm{\mathbb {Z}}}}_n^d} \sigma (z). \end{aligned}$$
By (3.2) it follows that \((2d)^{-1} \sum _{x\in {{\mathrm{\mathbb {Z}}}}_n^d} g(x,y)= (2d)^{-1}n^{-d}\sum _{w\in {{\mathrm{\mathbb {Z}}}}_n^d} \mathsf {E}_y[\tau _w]\) which is independent of y. We can then say that
$$\begin{aligned} v_n(y)= \frac{1}{2d}\sum _{x\in {{\mathrm{\mathbb {Z}}}}_n^d} g(x,y)\sigma (x)- Cn^{-d}\sum _{z\in {{\mathrm{\mathbb {Z}}}}_n^d} \sigma (z). \end{aligned}$$
If we call
$$\begin{aligned} w_n(y):=\left( 2d\right) ^{-1}\sum _{x\in {{\mathrm{\mathbb {Z}}}}_n^d} g(x,y)\sigma (x), \end{aligned}$$
by the mean-zero property of the test functions it follows that \(\left\langle \Xi _{v_n}, u\right\rangle = \left\langle \Xi _{w_n}, u \right\rangle .\) Therefore we shall reduce ourselves to study the convergence of the field \(\Xi _{w_n}.\) To determine its limit, we will first prove that all moments of \(\Xi _{w_n}\) converge to those of \(\Xi \); via characteristic functions, we will show that the limit is uniquely determined by moments.
Scaling limit with bounded weights
The goal of this Subsection is to determine the scaling limit for bounded weights, namely to prove
Theorem 11
(Scaling limit for bounded weights) Assume \((\sigma (x))_{x\in {{\mathrm{\mathbb {Z}}}}_n^d}\) is a collection of i.i.d. variables with \(\mathsf {E}\left[ \sigma \right] =0\) and \(\mathsf {E}\left[ \sigma ^2\right] =1\). Moreover assume there exists \(K<+\infty \) such that \(|\sigma |\le K\) almost surely. Let \(d\ge 1\) and \(e_n(\cdot )\) be the corresponding odometer. Then if we define the formal field \(\Xi _n\) as in (1.3) for such i.i.d. weights, then it converges in law as \(n\rightarrow +\infty \) to the bilaplacian field \(\Xi \) on \(\mathbb {T}^d\). The convergence holds in the same fashion of Theorem 1.
Before showing this result, we must prove an auxiliary Lemma. It gives us a uniform estimate in n on the Fourier series of the mean of u in a small ball.
Lemma 12
Fix \(u\in C^\infty (\mathbb {T}^d)\) with zero average. If we define
$$\begin{aligned} T_n:\mathbb {T}^d&\rightarrow {{\mathrm{\mathbb {R}}}}\\ z&\mapsto \int _{B(z,\,\frac{1}{2n})}u(y){{\mathrm{d}}}y \end{aligned}$$
and \({\mathcal {T}}_n:{{\mathrm{\mathbb {Z}}}}_n^d\rightarrow {{\mathrm{\mathbb {R}}}}\) is defined as \(\mathcal T_n(z):=T_n\left( \frac{z}{n}\right) ,\) then for n large enough we can find a constant \(\mathcal M:=\mathcal M(d,\,u)<+\infty \) such that
$$\begin{aligned} n^{d}\sum _{z\in {{\mathrm{\mathbb {Z}}}}_n^d} \left| \widehat{ {\mathcal {T}}_n}(z)\right| \le \mathcal M. \end{aligned}$$
Proof
For \(z\in {{\mathrm{\mathbb {Z}}}}_n^d\) we can write
$$\begin{aligned} \widehat{{\mathcal {T}}_n}(z)&= \left\langle {\mathcal {T}}_n, \,\psi _z\right\rangle = \frac{1}{n^d} \sum _{y\in {{\mathrm{\mathbb {Z}}}}_n^d} {\mathcal {T}}_n(y) \psi _{-z}(y)\nonumber \\&= \frac{1}{n^d} \sum _{y\in {{\mathrm{\mathbb {Z}}}}_n^d} T_n\left( \frac{y}{n}\right) \exp \left( -2\pi \iota z\cdot \frac{y}{n}\right) =\frac{1}{n^d} \sum _{y\in \mathbb {T}_n^d} T_n(y) \exp (-2\pi \iota z\cdot y).\nonumber \\ \end{aligned}$$
(5.3)
Since \(u\in C^\infty (\mathbb {T}^d)\), one can take derive under the integral sign and get that \(T_n\in C^\infty (\mathbb {T}^d)\), so \(\sum _{z\in {{\mathrm{\mathbb {Z}}}}^d} \left| \widehat{T_n}(z)\right| <+\infty \). Hence by the Fourier inversion theorem we have the following inversion formula to be valid for every \(y\in \mathbb {T}^d\):
$$\begin{aligned} T_n(y)=\sum _{w\in {{\mathrm{\mathbb {Z}}}}^d} \widehat{T_n}( w) \exp \left( 2\pi \iota y\cdot w\right) . \end{aligned}$$
First we split the sum above according to the norm of w and plug it in (5.3). Namely we get
$$\begin{aligned} \widehat{{\mathcal {T}}_n}(z)&= \frac{1}{n^d} \sum _{y\in \mathbb {T}_n^d} T_n(y) \exp (-2\pi \iota z\cdot y)\nonumber \\&= \frac{1}{n^d} \sum _{y\in \mathbb {T}_n^d} \sum _{ w\in {{\mathrm{\mathbb {Z}}}}_n^d} \widehat{T_n}(w) \exp (2\pi \iota w\cdot y)\exp (-2\pi \iota z\cdot y)\nonumber \\&\quad +\frac{1}{n^d} \sum _{y\in \mathbb {T}_n^d} \sum _{ w\in {{\mathrm{\mathbb {Z}}}}^d:\,\Vert w\Vert _\infty >n} \widehat{T_n}(w) \exp (2\pi \iota w\cdot y)\exp (-2\pi \iota z\cdot y). \end{aligned}$$
(5.4)
Let us look at the first summation: using the orthogonality of the characters of \(L^2({{\mathrm{\mathbb {Z}}}}^d_n)\) we can write
$$\begin{aligned}&\frac{1}{n^d} \sum _{y\in \mathbb {T}_n^d} \sum _{ w\in {{\mathrm{\mathbb {Z}}}}_n^d} \widehat{T_n}(w) \exp (2\pi \iota w\cdot y)\exp (-2\pi \iota z\cdot y)\\&\quad = \frac{1}{n^d} \sum _{ w\in {{\mathrm{\mathbb {Z}}}}_n^d} \widehat{T_n}(w) \sum _{y\in {{\mathrm{\mathbb {Z}}}}_n^d}\exp \left( 2\pi \iota w\cdot \frac{y}{n}\right) \exp \left( -2\pi \iota z\cdot \frac{y}{n}\right) \\&\quad = \frac{1}{n^d} \sum _{w\in {{\mathrm{\mathbb {Z}}}}_n^d} \widehat{T}_n(w) n^d{{\mathrm{\mathbb {1}}}}_{w=z}= \widehat{T_n}(z). \end{aligned}$$
Noting that
$$\begin{aligned} \widehat{{\mathcal {T}}_n}(0) =\frac{1}{n^d} \sum _{y\in \mathbb {T}_n^d} T_n(y)=\frac{1}{n^d}\sum _{y\in \mathbb {T}_n^d} \int _{B\left( y, \frac{1}{2n}\right) }u(x){{\mathrm{d}}}x=\frac{1}{n^d}\int _{\mathbb {T}^d} u(x){{\mathrm{d}}}x=0, \end{aligned}$$
this means we need to show that \(\sum _{z\in {{\mathrm{\mathbb {Z}}}}_n^d{\setminus } \{0\}} \left| \widehat{T_n}(z)\right| \le C(d)n^{-d}\). We follow the proof of Stein and Weiss [26, Corollary 1.9, Chapter VII]. For a multi-index \(\alpha =(\alpha _1,\,\ldots ,\,\alpha _d)\in {{\mathrm{\mathbb {N}}}}^d\) and a point \(x=(x_1,\,\ldots ,\,x_d)\in {{\mathrm{\mathbb {R}}}}^d\) we set
$$\begin{aligned} x^\alpha :=\prod _{j=1}^d x_j^{\alpha _j} \end{aligned}$$
and adopt the convention \(0^0=1\). We choose now a smoothness parameter \(k_0>d\). For any \(\alpha \) with \(|\alpha |:=\alpha _1+\cdots +\alpha _d\le k_0\) we can find a constant \(c=c(k_0,\,d)\) such that
$$\begin{aligned} \sum _{\alpha :\,|\alpha |=k_0}4\pi ^2z^{2\alpha }\ge c\Vert z\Vert ^{2k_0}. \end{aligned}$$
Note that
$$\begin{aligned}&\sum _{z\in {{\mathrm{\mathbb {Z}}}}_n^d{\setminus } \{0\}} \left| \widehat{T_n} (z)\right| \le \sum _{z\in {{\mathrm{\mathbb {Z}}}}_n^d{\setminus } \{0\}} \left| \widehat{T_n} (z)\right| \left( \sum _{\alpha :\,|\alpha |=k_0} 4\pi ^2 z^{2\alpha }\right) ^{\frac{1}{2}}\Vert z\Vert ^{-k_0}c^{-\frac{1}{2}}\\&\qquad \le \left( \sum _{z\in {{\mathrm{\mathbb {Z}}}}_n^d{\setminus } \{0\}} \left| \widehat{T_n} (z)\right| ^2 \sum _{\alpha :\,|\alpha |=k_0} 4\pi ^2 z^{2\alpha }\right) ^{\frac{1}{2}} \left( \sum _{z\in {{\mathrm{\mathbb {Z}}}}_n^d{\setminus } \{0\}} \Vert z\Vert ^{-2k_0}\right) ^{\frac{1}{2}}c^{-\frac{1}{2}}. \end{aligned}$$
Here we have used the Cauchy-Schwarz inequality in the last step. Now since \(\sum _{z\in {{\mathrm{\mathbb {Z}}}}_n^d{\setminus } \{0\}} \Vert z\Vert ^{-2k_0}<+\infty \) we can compute a constant C such that
$$\begin{aligned}&\sum _{z\in {{\mathrm{\mathbb {Z}}}}_n^d{\setminus } \{0\}} \left| \widehat{T_n} (z)\right| \le C \left( \sum _{z\in {{\mathrm{\mathbb {Z}}}}_n^d{\setminus } \{0\}} \left| \widehat{T_n} (z)\right| ^2 \sum _{\alpha :\,|\alpha |=k_0} 4\pi ^2 z^{2\alpha }\right) ^{\frac{1}{2}}\nonumber \\&\qquad \le C\left( \sum _{\alpha :\,|\alpha |=k_0} \sum _{z\in {{\mathrm{\mathbb {Z}}}}^d} \left| \widehat{T_n} (z)\right| ^2 4\pi ^2 z^{2\alpha }\right) ^{\frac{1}{2}}. \end{aligned}$$
(5.5)
Let us call \(D^\alpha \) the derivative with respect to \(\alpha \). Using the rule of derivation of Fourier transforms [26, Chapter I, Theorem 1.8] and Parseval we have that
$$\begin{aligned} \sum _{z\in {{\mathrm{\mathbb {Z}}}}^d} \left| \widehat{T_n} (z)\right| ^2 4\pi ^2 z^{2\alpha }= \int _{\mathbb {T}^d} \left| D^\alpha T_n(x)\right| ^2{{\mathrm{d}}}x. \end{aligned}$$
By the smoothness of u we deduce that
$$\begin{aligned} |D^\alpha T_n(x)| \le \Vert D^\alpha u\Vert _{L^\infty (\mathbb {T}^d)} \int _{B(0,\frac{1}{2n})} {{\mathrm{d}}}w= \Vert D^\alpha u\Vert _{L^\infty (\mathbb {T}^d)} (2n)^{-d}. \end{aligned}$$
(5.6)
Plugging this estimate in (5.5) we get that
$$\begin{aligned} \sum _{z\in {{\mathrm{\mathbb {Z}}}}_n^d{\setminus }\{0\}} \left| \widehat{T_n} (z)\right| ^2 \le C n^{-{d}} \left( \sum _{\alpha :\,|\alpha |=k_0}\Vert D^\alpha u\Vert _{L^\infty (\mathbb {T}^d)}^2 \right) ^{\frac{1}{2}}. \end{aligned}$$
This finally gives that
$$\begin{aligned} \sum _{z\in {{\mathrm{\mathbb {Z}}}}_n^d{\setminus } \{0\}} \left| \widehat{T_n} (z)\right| \le C(k_0,\,d,\,u) n^{-d}. \end{aligned}$$
For the second summand of (5.4) observe that
$$\begin{aligned} \int _{\mathbb {T}^d}{D^\alpha T_n}(w){{\mathrm{e}}}^{-2\pi \iota z\cdot w}{{\mathrm{d}}}w=(2\pi \iota z)^\alpha \widehat{T_n}(z),\quad \alpha \in {{\mathrm{\mathbb {N}}}}^d. \end{aligned}$$
The parameter \(\alpha \) will be chosen later so that the second summand is of lower order than the first. By (5.4) and (5.6)
$$\begin{aligned} \left| \widehat{T_n}(z)\right| \le \frac{2^{-d-1}\Vert D^\alpha u\Vert _{L^\infty (\mathbb {T}^d)}}{ \pi n^d\left| z^\alpha \right| }. \end{aligned}$$
We use this estimate to get
$$\begin{aligned}&\frac{1}{n^d} \sum _{y\in \mathbb {T}_n^d} \sum _{\Vert w\Vert _\infty> n} \widehat{T_n}(w) \exp (2\pi \iota w\cdot y)\exp (-2\pi \iota z\cdot y)\le \sum _{\Vert w\Vert _\infty > n} \left| \widehat{T_n}(w)\right| \\&\quad \le \frac{C(u,\,d,\,\alpha )}{ n^d}\sum _{\ell =n}^{+\infty }\frac{\ell ^{d-1}}{\ell ^{|\alpha |}}\le C(u,\,d,\,\alpha )n^{-|\alpha |}\left( 1+\mathrm {O}\left( n^{-1}\right) \right) . \end{aligned}$$
Thus choosing \(\alpha \) with \(|\alpha |>d\) we find a constant \(\mathcal M=\mathcal M(d,\,u)\) such that
$$\begin{aligned} \sum _{z\in {{\mathrm{\mathbb {Z}}}}_n^d} \left| \widehat{{\mathcal {T}}_n}(z)\right| \le \mathcal M n^{-d} \end{aligned}$$
as we wanted to show. \(\square \)
We can now start with the moment method, and we being with moment convergence.
Moment convergence We now show that all moments converge to those of the required limiting distribution. This is explained in the following Proposition.
Proposition 13
Assume \(\mathsf {E}\left[ \sigma \right] =0\), \(\mathsf {E}\left[ \sigma ^2\right] =1\) and that there exists \(K<+\infty \) such that \(|\sigma |\le K\) almost surely. Then for all \(m\ge 1\) and all \(u\in C^\infty (\mathbb {T}^d)\) with zero average, the following limits hold:
$$\begin{aligned} \lim _{n\rightarrow +\infty }\mathsf {E}\left[ \left\langle \Xi _{w_n}, u\right\rangle ^{m}\right] ={\left\{ \begin{array}{ll} (2m-1)!! \Vert u\Vert _{-1}^{m},&{}m\in 2{{\mathrm{\mathbb {N}}}}\\ 0,&{}m\in 2{{\mathrm{\mathbb {N}}}}+1. \end{array}\right. } \end{aligned}$$
(5.7)
Proof
We will first show that the \(m=2\) case satisfies the claim.
Case
\(m=2\) We have the equality
$$\begin{aligned} \mathsf {E}\left[ w_n(y)w_n(y')\right]&=(2d)^{-2} \sum _{x\in {{\mathrm{\mathbb {Z}}}}_n^d} g(x,y)\sum _{x'\in {{\mathrm{\mathbb {Z}}}}_n^d} g(x',y') \mathsf {E}[\sigma (x)\sigma (x')]. \end{aligned}$$
The independence of the weights gives
$$\begin{aligned} \mathsf {E}\left[ \left\langle \Xi _{w_n}, u\right\rangle ^2\right] =16\pi ^4 \frac{n^{d-4}}{4 d^2} \sum _{x\in {{\mathrm{\mathbb {Z}}}}_n^d}\left( \sum _{z\in \mathbb {T}_n^d}g(x,\,nz)T_n(z)\right) ^2. \end{aligned}$$
With the same argument of the proof of Proposition 4 one has
$$\begin{aligned} (2d)^{-2} \sum _{x\in {{\mathrm{\mathbb {Z}}}}_n^d} g(x,y)g(x,y')= n^d L^2+ H(y,y') \end{aligned}$$
(5.8)
so that, using that test functions have zero average,
$$\begin{aligned} \mathsf {E}\left[ \left\langle \Xi _{w_n}, u\right\rangle ^2\right]&=\,16\pi ^4 \frac{n^{d-4}}{4 d^2} \sum _{x\in {{\mathrm{\mathbb {Z}}}}_n^d}\left( \sum _{z\in \mathbb {T}_n^d}g(x,\,nz)T_n(z)\right) ^2\\&=16\pi ^4 {n^{d-4}} \sum _{z,\,z'\in \mathbb {T}_n^d} H(nz, nz')T_n(z)T_n(z')\\&=16\pi ^4 {n^{d-4}} \sum _{z,\,z'\in \mathbb {T}_n^d} H(nz, nz') \int _{B(z,\,\frac{1}{2n})} u(x){{\mathrm{d}}}x\int _{B(z',\,\frac{1}{2n})} u(x'){{\mathrm{d}}}x'. \end{aligned}$$
Now we break the above sum into the following 3 sums (recall \(K_n(u)\) from (4.2)):
$$\begin{aligned} \mathsf {E}\left[ \left\langle \Xi _{w_n}, u\right\rangle ^2\right]&= 16\pi ^4 n^{d-4} \sum _{z,\,z'\in \mathbb {T}_n^d}n^{-2d} H(nz, nz') u(z) u(z')\\&\quad +16\pi ^4 n^{d-4} \sum _{z,\,z'\in \mathbb {T}_n^d}n^{-2d} H(nz, nz') K_n(z) K_n(z')\\&\quad +32\pi ^4 n^{d-4} \sum _{z,\,z'\in \mathbb {T}_n^d}n^{-2d} H(nz, nz') K_n(z) u(z'). \end{aligned}$$
A combination of Propositions 5 and 6 with the Cauchy-Schwarz inequality shows that the first term converges to \(\Vert u\Vert ^2_{-1}\) in the limit \(n\rightarrow +\infty \) and the other two go to zero.
Having concluded the case \(m=2\), we would like to see what the higher moments look like. Let us take for example \(m=3\), in which case
$$\begin{aligned}&\mathsf {E}\left[ \left\langle \Xi _{w_n}, u\right\rangle ^3\right] \\&\quad = \left( \frac{4\pi ^2 n^{\frac{d-4}{2}}}{2d}\right) ^3 \sum _{z_1, \,z_2, \,z_3\in \mathbb {T}_n^d} \mathsf {E}\left[ w(nz_1)w(nz_2)w(nz_3)\right] T_n(z_1) T_n(z_2)T_n(z_3)\\&\quad =\left( \frac{2\pi ^2 n^{\frac{d-4}{2}}}{d}\right) ^3 \sum _{z_1, \,z_2, \,z_3\in \mathbb {T}_n^d} \sum _{x_1,\,x_2,\,x_3\in {{\mathrm{\mathbb {Z}}}}_n^d}\mathsf {E}\left[ \prod _{j=1}^3\sigma (x_j) \right] \prod _{j=1}^3g(x_j,\,nz_j)T_n(z_j)\\&\quad = \left( \frac{2\pi ^2 n^{\frac{d-4}{2}}}{d}\right) ^3 \sum _{z_1, \,z_2, \,z_3\in \mathbb {T}_n^d} \sum _{x \in {{\mathrm{\mathbb {Z}}}}_n^d}\mathsf {E}\left[ \sigma ^3(x) \right] \prod _{j=1}^3g(x,\,nz_j)T_n(z_j)\\&\quad = \left( \frac{2\pi ^2 n^{\frac{d-4}{2}}}{d}\right) ^3 \mathsf {E}\left[ \sigma ^3 \right] \sum _{x \in {{\mathrm{\mathbb {Z}}}}_n^d} \left[ \sum _{z \in \mathbb {T}_n^d} g(x,\,nz)T_n(z)\right] ^3. \end{aligned}$$
More generally, let us call \({\mathscr {P}}(n)\) the set of partitions of \(\{1,\,\ldots ,\,n\}\) and as \({\mathscr {P}}_2(n)\subset {\mathscr {P}}(n)\) the set of pair partitions. We denote as \(\Pi \) a generic block of a partition P and as \(|\Pi |\) its cardinality (for example, \(\Pi =\{1,\,2,\,3\}\) is a block of cardinality 3 of \(P=\{\{1,\,2,\,3\},\,\{4\}\}\in {\mathscr {P}}(4)\)). Observe that
$$\begin{aligned}&\mathsf {E}\left[ \left\langle \Xi _{w_n}, u\right\rangle ^{m}\right] =\left( \frac{2\pi ^2 n^{\frac{d-4}{2}}}{d}\right) ^m\sum _{z_1,\,\ldots ,\,z_m\in \mathbb {T}_n^d}\mathsf {E}\left[ \prod _{j=1}^m w_n(nz_j)\right] \prod _{j=1}^m T_n(z_j)\nonumber \\&\quad =\left( \frac{2\pi ^2 n^{\frac{d-4}{2}}}{d}\right) ^m\sum _{P\in {\mathscr {P}}(m)}\prod _{\Pi \in P}\mathsf {E}\left[ \sigma ^{|\Pi |}\right] \sum _{x \in {{\mathrm{\mathbb {Z}}}}_n^d }\left( \sum _{ \begin{array}{c} z_j \in \mathbb {T}^d_n:\,j \in \Pi \end{array}} \,\prod _{j\in \Pi } g(x,\, nz_j)T_n(z_j)\right) \nonumber \\&\quad =\sum _{P\in {\mathscr {P}}(m)}\prod _{\Pi \in P}\left( \frac{2\pi ^2 n^{\frac{d-4}{2}}}{d}\right) ^{|\Pi |}\mathsf {E}\left[ \sigma ^{|\Pi |}\right] \sum _{x \in {{\mathrm{\mathbb {Z}}}}_n^d } \left( \sum _{z \in \mathbb {T}^d_n} g(x,\,nz)T_n(z) \right) ^{|\Pi |}. \end{aligned}$$
(5.9)
For a fixed P, let us consider in the product over \(\Pi \in P\) any term corresponding to a block \(\Pi \) with \(|\Pi |=1\): this will give no contribution because \(\sigma \) is centered. Consider instead \(\Pi \in P\) with \(\ell :=|\Pi |>2.\) We see that
$$\begin{aligned}&\left( \frac{2\pi ^2 n^{\frac{d-4}{2}}}{d}\right) ^\ell \mathsf {E}\left[ \sigma ^\ell \right] \sum _{x\in {{\mathrm{\mathbb {Z}}}}_n^d} \left( \sum _{z \in \mathbb {T}^d_n} g(x,\,nz)T_n(z) \right) ^{l} \nonumber \\&\quad =\left( \frac{2\pi ^2 n^{\frac{d-4}{2}}}{d}\right) ^\ell \mathsf {E}\left[ \sigma ^\ell \right] \sum _{x\in {{\mathrm{\mathbb {Z}}}}_n^d}\left( \sum _{z\in {{\mathrm{\mathbb {Z}}}}_n^d}g(x,\,z){{\mathcal {T}}_n}(z)\right) ^\ell . \end{aligned}$$
Applying Parseval the above expression equals
$$\begin{aligned}&\left( \frac{2\pi ^2 n^{\frac{d-4}{2}}}{d}\right) ^\ell \mathsf {E}\left[ \sigma ^\ell \right] \sum _{x\in {{\mathrm{\mathbb {Z}}}}_n^d}\left( n^{d}\sum _{z\in {{\mathrm{\mathbb {Z}}}}_n^d}\widehat{g_x}(z) \widehat{{\mathcal {T}}_n}(z)\right) ^\ell \nonumber \\&\quad {\mathop {=}\limits ^{(2.2)}}\left( {4\pi ^2 n^{\frac{d-4}{2}}}\right) ^\ell \mathsf {E}\left[ \sigma ^\ell \right] \sum _{x\in {{\mathrm{\mathbb {Z}}}}_n^d}\left( \sum _{z\in {{\mathrm{\mathbb {Z}}}}_n^d{\setminus }\{0\}}\frac{\psi _{-z}(x)}{-\lambda _z} \widehat{{\mathcal {T}}_n}(z)\right) ^\ell . \end{aligned}$$
(5.10)
Here we have used that \(\widehat{{\mathcal {T}}_n}(0)=0.\) Thanks to the fact that \(-\lambda _z\ge Cn^{-2}\) uniformly over \(z\in {{\mathrm{\mathbb {Z}}}}_n^d{\setminus } \{0\}\) (see (4.5)) we obtain
$$\begin{aligned}&\left( \frac{2\pi ^2 n^{\frac{d-4}{2}}}{d}\right) ^\ell \mathsf {E}\left[ \sigma ^\ell \right] \sum _{x\in {{\mathrm{\mathbb {Z}}}}_n^d}\left( \sum _{z \in \mathbb {T}^d_n} g(x,\,nz)T_n(z) \right) ^{l}\nonumber \\&\quad \le C\mathsf {E}\left[ \sigma ^\ell \right] n^{\frac{\ell d}{2}+d} \left( \sum _{z\in {{\mathrm{\mathbb {Z}}}}_n^d{\setminus }\{0\}} \left| \widehat{\mathcal T_n}(z)\right| \right) ^\ell . \end{aligned}$$
(5.11)
Since \(\sigma \) is almost surely bounded, by Lemma 12 we can conclude that each term in (5.9) corresponding to a block of cardinality \(\ell >2\) has order at most \(n^{\frac{ \ell d}{2}-(\ell -1)d}=\mathrm {o}\left( 1\right) \). Hence in (5.9) only pair partitions of m will give a contribution of order unity to the sum. Since, for \(m:=2m'+1\), there are no pair partitions, \(\mathsf {E}\left[ \left\langle \Xi _{w_n}, u\right\rangle ^{2m'+1}\right] \) will converge to zero. Otherwise, for \(m:=2m'\) we can rewrite
$$\begin{aligned} \mathsf {E}\left[ \left\langle \Xi _{w_n}, u\right\rangle ^{2m'}\right]&=\sum _{P\in \mathscr {P}_2(2m')}\left( \frac{4\pi ^4 n^{{d-4}}}{d^2}\sum _{x\in {{\mathrm{\mathbb {Z}}}}_n^d }\left( \sum _{z\in {{\mathrm{\mathbb {Z}}}}_n^d}g(x,\,z){\mathcal {T}}_n(z)\right) ^2\right) ^{m'}+\mathrm {o}\left( 1\right) . \end{aligned}$$
Since \(\left| {\mathscr {P}}_2(m)\right| =(2m-1)!!\) and the term in the bracket above converges to \(\Vert u\Vert _{-1}^{2}\) we can conclude the proof of Proposition 13. \(\square \)
Tightness The proof of tightness is, not suprisingly, a re-run of that in the Gaussian case. In fact tightness depends on the covariance structure of the field we are examining; since both the Gaussian functional \(\Xi _n\) and \(w_n\) share the same covariance, we can recover mostly of the results already calculated. First we notice that
$$\begin{aligned} ||{\Xi _{w_n}}||_{L^2(\mathbb {T}^d)}^2=\frac{16\pi ^4}{(2d)^2} n^{d-4}\sum _{x,\,y\in {{\mathrm{\mathbb {Z}}}}_n^d}g(x,\,y)\sigma (x)\sum _{x',\,y'\in {{\mathrm{\mathbb {Z}}}}_n^d}g(x',\,y')\sigma (x') \end{aligned}$$
is finite with probability one, since \(\sigma \) is bounded. One can then go along the lines of the proof of (P1) in Sect. 4.2 and get to (4.14) which will become, in our new setting,
$$\begin{aligned}&\frac{16\pi ^4}{(2d)^2}\sum _{\nu \in {{\mathrm{\mathbb {Z}}}}^d{\setminus }\{0\}}\sum _{x,\,y\in \mathbb {T}^d_n}\Vert \nu \Vert ^{-2\epsilon }n^{d-4}\mathsf {E}\left[ w_n(nx)w_n(ny)\right] \int _{B(x,\,\frac{1}{2n})}{\mathbf {e}}_{\nu }(\vartheta ){{\mathrm{d}}}\vartheta \int _{B(y,\,\frac{1}{2n})}\overline{{\mathbf {e}}_{\nu }(\vartheta )}{{\mathrm{d}}}\vartheta \\&\quad {\mathop {=}\limits ^{(5.8)}}{16\pi ^4}\sum _{\nu \in {{\mathrm{\mathbb {Z}}}}^d{\setminus }\{0\}}\sum _{x,\,y\in \mathbb {T}^d_n}\Vert \nu \Vert ^{-2\epsilon }n^{d-4}\left( n^d L^2+H(nx,\,ny)\right) \nonumber \\&\qquad \times \int _{B(x,\,\frac{1}{2n})}{\mathbf {e}}_{\nu }(\vartheta ){{\mathrm{d}}}\vartheta \int _{B(y,\,\frac{1}{2n})}\overline{{\mathbf {e}}_{\nu }(\vartheta )}{{\mathrm{d}}}\vartheta . \end{aligned}$$
Since \(\int _{\mathbb {T}^d}{\mathbf {e}}_{\nu }(\vartheta ){{\mathrm{d}}}\vartheta =0\), the previous expression reduces to
$$\begin{aligned} {16\pi ^4}\sum _{\nu \in {{\mathrm{\mathbb {Z}}}}^d{\setminus }\{0\}}\sum _{x,\,y\in \mathbb {T}^d_n}\Vert \nu \Vert ^{-2\epsilon }n^{d-4}H(nx,\,ny)\int _{B(x,\,\frac{1}{2n})}{\mathbf {e}}_{\nu }(\vartheta ){{\mathrm{d}}}\vartheta \int _{B(y,\,\frac{1}{2n})}\overline{{\mathbf {e}}_{\nu }(\vartheta )}{{\mathrm{d}}}\vartheta . \end{aligned}$$
From this point onwards, the computations of the proof of (P1) can be repeated in a one-to-one fashion.
Truncation method
At the moment we are able to determine the scaling limit when the weights are bounded almost surely. To lift this condition to zero mean and finite variance only, we begin by defining a truncated field and show it will determine the scaling limit of the global field. Fix an arbitrarily large (but finite) constant \(\mathcal R>0\). Set
$$\begin{aligned} w_n^{<\mathcal R}(x)&:=\frac{1}{2d}\sum _{y\in {{\mathrm{\mathbb {Z}}}}_n^d}g(x,\,y)\sigma (y){{\mathrm{\mathbb {1}}}}_{\{|\sigma (y)|< \mathcal R\}},\\ w_n^{\ge \mathcal R}(x)&:=\frac{1}{2d}\sum _{y\in {{\mathrm{\mathbb {Z}}}}_n^d}g(x,\,y)\sigma (y){{\mathrm{\mathbb {1}}}}_{\{|\sigma (y)|\ge \mathcal R\}}. \end{aligned}$$
Clearly \(w_n(\cdot )=w_n^{<\mathcal R}(\cdot )+w_n^{\ge \mathcal R}(\cdot )\). To prove our result, we will use
Theorem 14
(Billingsley [3, Theorem 4.2]) Let S be a metric space with metric \(\rho \). Suppose that \((X_{n,\,u},\,X_n)\) are elements of \(S\times S.\) If
$$\begin{aligned} \lim _{u\rightarrow +\infty } \limsup _{n\rightarrow +\infty } \mathsf {P}\left( \rho (X_{n,\,u},\,X_n)\ge \tau \right) =0 \end{aligned}$$
for all \(\tau >0\), and \(X_{n,\,u}\Rightarrow _{n}Z_u\Rightarrow _u X\), where \(``\Rightarrow _x''\) indicates convergence in law as \(x\rightarrow +\infty \), then \(X_n\Rightarrow _n X\).
Following this Theorem, we need to show two steps:
-
(S1)
\(\lim _{\mathcal R\rightarrow +\infty } \limsup _{n\rightarrow +\infty } \mathsf {P}\left( \left\| \Xi _{w_n}-\Xi _{w_n^{<\mathcal R}}\right\| _{\mathcal H_{-\epsilon }}\ge \tau \right) =0\) for all \(\tau >0\).
-
(S2)
For a constant \(v_\mathcal R>0\), we have \(\Xi _{w_n^{<\mathcal R}}\Rightarrow _n \sqrt{v_\mathcal R}\, \Xi \Rightarrow _{\mathcal R}\Xi \) in the topology of \({\mathcal {H}}_{-\epsilon }\).
As a consequence we will obtain that \(\Xi _{w_n}\) converges to \(\Xi \) in law in the topology of \({\mathcal {H}}_{-\epsilon }.\)
Proof of (S1)
We notice that
$$\begin{aligned} \left\| \Xi _{w_n}-\Xi _{w_n^{<\mathcal R}}\right\| _{\mathcal H_{-\epsilon }}=\left\| \Xi _{w_n^{\ge \mathcal R}}\right\| _{{\mathcal {H}}_{-\epsilon }} \end{aligned}$$
by definition, for every realization of \((\sigma (x))_{x\in {{\mathrm{\mathbb {Z}}}}_n^d}\). Since, for every \(\tau >0\),
$$\begin{aligned} \mathsf {P}\left( \left\| \Xi _{w_n^{\ge \mathcal R}}\right\| _{\mathcal H_{-\epsilon }}\ge \tau \right) \le \frac{\mathsf {E}\left[ \left\| \Xi _{w_n^{\ge \mathcal R}}\right\| _{{\mathcal {H}}_{-\epsilon }}^2\right] }{\tau ^2} \end{aligned}$$
it will suffice to show that the numerator on the right-hand side goes to zero to show (S1). But
$$\begin{aligned}&\mathsf {E}\left[ \left\| \Xi _{w_n^{\ge \mathcal R}}\right\| _{\mathcal H_{-\epsilon }}^2\right] \nonumber \\&\quad =16\pi ^4\sum _{\nu \in {{\mathrm{\mathbb {Z}}}}^d{\setminus }\{0\}}\sum _{x,\,y\in \mathbb {T}^d_n}\Vert \nu \Vert ^{-4\epsilon }n^{d-4}\mathsf {E}\left[ w_n^{\ge \mathcal R}(xn) w_n^{\ge \mathcal R}(ny)\right] \nonumber \\&\qquad \times \int _{B(x,\,\frac{1}{2n})}{\mathbf {e}}_{\nu }(\vartheta ){{\mathrm{d}}}\vartheta \int _{B(y,\,\frac{1}{2n})}\overline{{\mathbf {e}}_{\nu }(\vartheta )}{{\mathrm{d}}}\vartheta \end{aligned}$$
(5.12)
Since the \(\sigma \)’s are i.i.d., we see that
$$\begin{aligned}&\mathsf {E}\left[ w_{n}^{\ge R}(xn)w_{n}^{\ge \mathcal R}(yn)\right] =\frac{1}{4d^{2}}\sum _{w\in \mathbb {Z}_n^{d}}g(nx,\,w)g(ny,\,w)\mathsf {E}\left[ \sigma (w)^{2}\mathbb {1}_{\left\{ |\sigma (w)|\ge \mathcal R\right\} }\right] \nonumber \\&\qquad +\frac{1}{4d^{2}}\sum _{w\ne v\in \mathbb {Z}_n^{d}}g(nx,\,w)g(ny,\,v)\mathsf {E}\left[ \sigma (w)\sigma (v)\mathbb {1}_{\left\{ |\sigma (w)|\ge \mathcal R\right\} }\mathbb {1}_{\left\{ |\sigma (v)|\ge \mathcal R\right\} }\right] \nonumber \\&\quad =\left( \mathsf {E}\left[ \sigma ^2\mathbb {1}_{\left\{ |\sigma |\ge \mathcal R\right\} }\right] -\mathsf {E}\left[ \sigma \mathbb {1}_{\left\{ |\sigma |\ge \mathcal R\right\} }\right] ^{2}\right) \frac{1}{4d^{2}}\sum _{w\in \mathbb {Z}_n^{d}}g(nx,\,w)g(ny,\,w)\nonumber \\&\qquad +\mathsf {E}\left[ \sigma \mathbb {1}_{\left\{ |\sigma |\ge \mathcal R\right\} }\right] ^2\frac{1}{4d^{2}}\sum _{w,\,v\in \mathbb {Z}^{d}_n}g(nx,\,w)g(ny,\,v). \end{aligned}$$
(5.13)
Pluging the last expression into (5.12) gives two terms. The first one is, using (5.8), equal to
$$\begin{aligned}&16\pi ^4\left( \mathsf {E}\left[ \sigma ^{2}\mathbb {1}_{\left\{ |\sigma |\ge \mathcal R\right\} }\right] -E\left[ \sigma \mathbb {1}_{\left\{ |\sigma |\ge \mathcal R\right\} }\right] ^{2}\right) \\&\quad \times \sum _{\nu \in {{\mathrm{\mathbb {Z}}}}^d{\setminus }\{0\}}\Vert \nu \Vert ^{-4\epsilon }n^{d-4}\sum _{x,\,y\in \mathbb {T}^d_n}H(nx,\,ny)F_{n,\,\nu }(x)\overline{F_{n,\,\nu }(y)} \end{aligned}$$
where \(F_{n,\,\nu }(x)\) was defined as \(\int _{B(x,\,\frac{1}{2n})}{\mathbf {e}}_{\nu }(\vartheta ){{\mathrm{d}}}\vartheta \). We have at hand (4.15), which we can use to upper-bound the previous expression by
$$\begin{aligned} C'16\pi ^4\left( \mathsf {E}\left[ \sigma (w)^{2}\mathbb {1}_{\left\{ |\sigma (w)|\ge \mathcal R\right\} }\right] -E\left[ \sigma (w)\mathbb {1}_{\left\{ |\sigma (w)|\ge \mathcal R\right\} }\right] ^{2}\right) \sum _{\nu \in {{\mathrm{\mathbb {Z}}}}^d{\setminus }\{0\}}\Vert \nu \Vert ^{-4\epsilon } \end{aligned}$$
for some \(C'>0\). The sum over \(\nu \) is finite as long as \(\epsilon >{d}/{4}\), and
$$\begin{aligned} \mathsf {E}\left[ \sigma (w)^{2}\mathbb {1}_{\left\{ |\sigma (w)|\ge \mathcal R\right\} }\right] -E\left[ \sigma (w)\mathbb {1}_{\left\{ |\sigma (w)|\ge \mathcal R\right\} }\right] ^{2} \end{aligned}$$
is going to zero as \(\mathcal R\rightarrow +\infty \) (note that \(\sigma \) has finite variance). We will show that the second term obtained by inserting the second summand of (5.13) in (5.12) is zero to complete the proof of (S1). In fact we obtain
$$\begin{aligned}&\frac{4\pi ^4}{d^2}n^{d-4}\mathsf {E}\left[ \sigma \mathbb {1}_{\left\{ |\sigma |\ge \mathcal R\right\} }\right] ^{2}\sum _{\nu \in {{\mathrm{\mathbb {Z}}}}^d{\setminus }\{0\}}\Vert \nu \Vert ^{-4\epsilon }\\&\quad \times \sum _{x,\,y\in \mathbb {T}^d_n}\sum _{w,\,v\in \mathbb {Z}_n^{d}}g(nx,\,w)g(ny,\,v) F_{n,\,\nu }(x)\overline{F_{n,\,\nu }(y)}. \end{aligned}$$
We consider the second line in the previous expression to deduce that it equals
$$\begin{aligned}&\left| \sum _{x\in \mathbb {T}^d_n}\sum _{w\in \mathbb {Z}_n^{d}}g(nx,\,w)F_{n,\,\nu }(x)\right| ^2=n^{2d}\left| \sum _{w\in \mathbb {Z}_n^{d}}\sum _{x\in {{\mathrm{\mathbb {Z}}}}^d_n}\widehat{g_w}(x)\widehat{F_{n,\,\nu }}(x)\right| ^2\\&\quad {\mathop {=}\limits ^{(2.2)}}\left| -2d\sum _{w\in \mathbb {Z}_n^{d}}\sum _{x\in {{\mathrm{\mathbb {Z}}}}^d_n{\setminus }\{0\}}\frac{\psi _{-x}(w)}{\lambda _x}\widehat{F_{n,\,\nu }}(x)+\sum _{w\in {{\mathrm{\mathbb {Z}}}}_n^d}\widehat{g_w}(0)\widehat{F_{n,\,\nu }}(0)\right| ^2 \end{aligned}$$
where Parseval’s theorem was used in the first equality. Both the summands above are zero: the first because
$$\begin{aligned} \sum _{w\in {{\mathrm{\mathbb {Z}}}}_n^d}\psi _{-x}(w)=n^d\langle \psi _0,\,\psi _{-x}\rangle =0,\quad x\ne 0, \end{aligned}$$
the second because \({\mathbf {e}}_{\nu }\) has zero average and so
$$\begin{aligned} \widehat{F_{n,\,\nu }}(0)=n^{-d}\sum _{y\in {{\mathrm{\mathbb {Z}}}}_n^d}F_{n, \,\nu }(y)=0. \end{aligned}$$
Proof of (S2)
Our idea is to use the computations we did for the case in which \(\sigma \) is bounded a. s. since we are imposing that \(|\sigma |<\mathcal R\). However we have to pay attention to the fact that \(\sigma {{\mathrm{\mathbb {1}}}}_{\{|\sigma |<\mathcal R\}}\) is not centered anymore, but has mean \(m_\mathcal R:=\mathsf {E}[\sigma {{\mathrm{\mathbb {1}}}}_{\{|\sigma |<\mathcal R\}}]\), nor has variance 1, but \(v_{\mathcal R}:=\mathsf {Var}[\sigma {{\mathrm{\mathbb {1}}}}_{\{|\sigma |<\mathcal R\}}]\). However we can circumvent this by using our previous results. If we set
$$\begin{aligned} \sigma ^\mathcal R(x):=\sigma (x){{\mathrm{\mathbb {1}}}}_{\{|\sigma (x)|<\mathcal R\}}-m_\mathcal R\end{aligned}$$
we can consider the field
$$\begin{aligned} \Xi _{n,\,\mathcal R}(x):=\frac{4\pi ^2}{2d}{n^{\frac{d-4}{2}}}\sum _{z\in \mathbb {T}^d_n}\sum _{w\in {{\mathrm{\mathbb {Z}}}}_n^d}g(w,\,nz)\sigma ^\mathcal R(w){{\mathrm{\mathbb {1}}}}_{B(z,\,\frac{1}{2n})}(x),\quad x\in \mathbb {T}^d. \end{aligned}$$
Since \((2d)^{-1}\sum _{y\in {{\mathrm{\mathbb {Z}}}}_n^d}g(\cdot ,\,y)\) is a constant function on \({{\mathrm{\mathbb {Z}}}}_n^d\) it follows that
$$\begin{aligned} \left\langle \Xi _{n,\,\mathcal R},\,u \right\rangle =\left\langle \Xi _{w_n^{<\mathcal R}},\,u\right\rangle \end{aligned}$$
for all smooth functions u with zero average. Hence the field \(\Xi _{n,\,\mathcal R}\) has the same law of \(\Xi _{w_n^{<\mathcal R}}\). If we multiply and divide the former by \(\sqrt{v_\mathcal R}\), we obtain
$$\begin{aligned} \Xi _{n,\,\mathcal R}=\sqrt{v_\mathcal R}\frac{4\pi ^2}{2d}{n^{\frac{d-4}{2}}}\sum _{z\in \mathbb {T}^d_n}\sum _{w\in {{\mathrm{\mathbb {Z}}}}_n^d}g(w,\,nz)\frac{\sigma ^\mathcal R(w)}{\sqrt{v_\mathcal R}}{{\mathrm{\mathbb {1}}}}_{B(z,\,\frac{1}{2n})}(x),\quad x\in \mathbb {T}^d. \end{aligned}$$
Since now the weights \({\sigma ^\mathcal R(w)}(v_\mathcal R)^{-\frac{1}{2}}\) satisfy the assumptions of Theorem 2, we know that the above field will converge to \(\sqrt{v_\mathcal R}\,\Xi \) in law. Using the covariance structure of the limiting field, the fact that the field is Gaussian, and \(\lim _{\mathcal R\rightarrow +\infty }\sqrt{v_\mathcal R}= 1\), a straightforward computation shows that \(\sqrt{v_\mathcal R}\,\Xi \) converges in law to \(\Xi \) in the topology of \({\mathcal {H}}_{-\epsilon }\). With Theorem 14 we can conclude.