Skip to main content
Log in

Random matrices: tail bounds for gaps between eigenvalues

  • Published:
Probability Theory and Related Fields Aims and scope Submit manuscript

Abstract

Gaps (or spacings) between consecutive eigenvalues are a central topic in random matrix theory. The goal of this paper is to study the tail distribution of these gaps in various random matrix models. We give the first repulsion bound for random matrices with discrete entries and the first super-polynomial bound on the probability that a random graph has simple spectrum, along with several applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anderson, G., Guionnet, A., Zeitouni, O.: An Introduction to Random Matrices. Cambridge University Press, Cambridge (2009)

    Book  MATH  Google Scholar 

  2. Arora, S., Bhaskara, A.: Eigenvectors of random graphs: delocalization and nodal domains (preprint). http://www.cs.princeton.edu/~bhaskara/files/deloc

  3. Bourgade, P., Ben Arous, G.: Extreme gaps in the eigenvalues of random matrices. Ann. Probab. 41(4), 2648-2681 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bourgade, P., Erdős, L., Yau, H.-T., Yin, J.: Fixed energy universality for generalized Wigner matrices (preprint). arXiv:1407.5606

  5. Babai, L., Grigoryev, D., Mount, D.: Isomorphism of graphs with bounded eigenvalue multiplicity. In: Proceedings of the 14th Annual ACM Symposium on Theory of Computing, pp. 310-324 (1982)

  6. Band, R., Oren, I., Smilansky, U.: Nodal domains on graphs: how to count them and why? Analysis on graphs and its applications, Proc. Sympos. Pure Math., vol. 77, pp. 5-27. Amer. Math. Soc., Providence (2008)

  7. Coifman, R., Lafon, S., Lee, A.B., Maggioni, M., Nadler, B., Warner, F., Zucker, S.: Geometric diffusion as a tool for harmonic analysis and structure definition of data, part 1: diffusion maps. Proc. Natl. Acad. Sci. 102(21), 7426-7431 (2005)

    Article  Google Scholar 

  8. Coifman, R.R., Lafon, S., Lee, A.B., Maggioni, M., Nadler, B., Warner, F., Zucker, S.: Geometric diffusion as a tool for harmonic analysis and structure definition of data, part 2: multiscale methods. Proc. Natl. Acad. Sci. 102(21), 7432-7437 (2005)

    Article  Google Scholar 

  9. Dekel, Y., Lee, J., Linial, N.: Eigenvectors of random graphs: nodal domains. Random Struct. Algorithms 39(1), 39-58 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  10. Erdős, P.: On a lemma of Littlewood and Offord. Bull. Am. Math. Soc. 51, 898-902 (1945)

    Article  MathSciNet  MATH  Google Scholar 

  11. Erdős, L., Yau, H.-T.: Universality of local spectral statistics of random matrices. Bull. Am. Math. Soc. 49, 377-414 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  12. Erdős, L., Knowles, A., Yau, H.-T., Yin, J.: Spectral statistics of Erdős-Rényi graphs II: eigenvalue spacing and the extreme eigenvalues. Commun. Math. Phys. 314(3), 587-640 (2012)

    Article  MATH  Google Scholar 

  13. Erdős, L., Schlein, B., Yau, H.-T.: Wegner estimate and level repulsion for Wigner random matrices. Int. Math. Res. Notices 3, 436-479 (2010)

    MathSciNet  MATH  Google Scholar 

  14. Erdős, L., Yau, H.-T.: Gap universality of generalized Wigner and beta-ensembles (preprint). arXiv:1211.3786

  15. Erdős, L., Schnelli, K.: Universality for random matrix flows with time-dependent density (preprint). arXiv:1504.00650

  16. Golub, G., van Loan, C.: Matrix Computation, 3rd edn. John Hopkins Univ. Press, Baltimore (1996)

    MATH  Google Scholar 

  17. Halász, G.: Estimates for the concentration function of combinatorial number theory and probability. Period. Math. Hung. 8, 197-211 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  18. Huang, J., Landon, B., Yau, H.T.: Bulk Universality of sparse random matrices (preprint). arXiv:1504.05170

  19. Landon, B., Yau, H.T.: Convergence of local statistics of Dyson Brownian motion (preprint). arXiv:1504.03605

  20. Litvak, A., Pajor, A., Rudelson, M., Tomczak-Jaegermann, N.: Smallest singular value of random matrices and geometry of random polytopes. Adv. Math. 195(2), 491-523 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  21. Mehta, M.L.: Random Matrices and the Statistical Theory of Energy Levels. Academic Press, New York (1967)

    MATH  Google Scholar 

  22. Nguyen, H., Vu, V.: Small ball probability, inverse theorems, and applications. In: Erdős, L. (ed.) Centennial Proceeding. Springer, Berlin (2013)

    Google Scholar 

  23. Nguyen, H., Vu, V.: Optimal Littlewood-Offord theorems. Adv. Math. 226(6), 5298-5319 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  24. O’Rourke, S., Vu, V.: Universality of local eigenvalue statistics in random matrices with external source. arXiv:1308.1057

  25. Rudelson, M., Vershynin, R.: The Littlewood-Offord problem and invertibility of random matrices. Adv. Math. 218(2), 600-633 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  26. Rudelson, M., Vershynin, R.: Smallest singular value of a random rectangular matrix. Commun. Pure Appl. Math. 62, 1707-1739 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  27. Spielman, D.A., Teng, S.H.: Smoothed analysis of algorithms. In: Proceedings of the International Congress of Mathematicians, vol. I, pp. 597-606. Higher Ed. Press, Beijing (2002)

  28. Tao, T., Vu, V.: Inverse Littlewood-Offord theorems and the condition number of random matrices. Ann. Math. 169(2), 595-632 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  29. Tao, T.: The asymptotic distribution of a single eigenvalue gap of a Wigner matrix. Probab. Theory Related Fields 157(1-2), 81-106 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  30. Tao, T., Vu, V.: From the Littlewood-Offord problem to the circular law: universality of the spectral distribution of random matrices. Bull. Am. Math. Soc. 46, 377-396 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  31. Tao, T., Vu, V.: Inverse Littlewood-Offord theorems and the condition number of random matrices. Ann. Math. (2) 169(2), 595-632 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  32. Tao, T., Vu, V.: A sharp inverse Littlewood-Offord theorem. Random Struct. Algorithms 37(4), 525-539 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  33. Tao, T., Vu, V.: Random matrices: universality of local eigenvalue statistics up to the edge. Commun. Math. Phys. 298, 549-572 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  34. Tao, T., Vu, V.: The Wigner-Dyson-Mehta bulk universality conjecture for Wigner matrices. Electron. J. Probab. 16, 2104-2121 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  35. Tao, T., Vu, V.: Random matrices: the Universality phenomenon for Wigner ensembles. In: Vu, V. (ed.) Modern Aspects of Random Matrix theory. AMS, Providence (2014)

    Google Scholar 

  36. Tao, T., Vu, V.: Smooth analysis of the condition number and the least singular value. Math. Comput. 79, 2333-2352 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  37. Tao, T., Vu, V.: Random matrices: universality of local eigenvalue statistics. Acta Math. 206, 127-204 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  38. Tao, T., Vu, V.: Random matrices have simple spectrum. Combinatorica (2016, to appear). arXiv:1412.1438

  39. Vershynin, R.: Invertibility of symmetric random matrices. Random Struct. Algorithms 44(2), 135-182 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  40. Weiss, Y.: Segmentation using eigenvectors: a unifying view. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 520-527 (1999)

Download references

Acknowledgments

The authors thank S. Ge and the anonymous referees for comments and corrections on an early version of this manuscript. They are also grateful to H.-T. Yau for help with references.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hoi Nguyen.

Additional information

H. Nguyen is supported by NSF Grant DMS-1358648. T. Tao is supported by a Simons Investigator grant, the James and Carol Collins Chair, the Mathematical Analysis and Application Research Fund Endowment, and by NSF Grant DMS-1266164. V. Vu is supported by NSF Grant DMS-1307797 and AFORS Grant FA9550-12-1-0083. Part of this work was done while this author was visiting VIASM (Hanoi), he would like to thank them for their hospitality.

Appendices

Appendix A: Proof of Theorem 4.2

The statement for \(A_n(p )\) follows from [9, Theorem 3.1]. For the Wigner model \(X_n\) of subgaussian entries, we just need to recall from Lemma 5.3 that with probability at least \(1-O(\exp (-\alpha _0n))\) the eigenvectors of \(X_n\) belong to \(\mathbf {Incomp}(c_0,c_1)\). On this event, by (8), each eigenvector has at least \(c_0c_1^2n/2\) coordinates of absolute value at least \(c_1/\sqrt{2n}\).

Appendix B: Proof of Theorem 5.9

The treatment here is based on [39]. For short, we will write \(T_D\) instead of \(T_{D,\kappa ,\gamma ,\alpha }\). The key ingredient is finding a fine net for \(T_D\).

Lemma 11.1

Let \(n^{-c}\le \alpha \le c'/4\). For every \(D\ge 1\), the level set \(T_D\) accepts a \(O(\frac{\kappa }{\sqrt{\alpha }D})\)-net \({\mathcal N}\) of size

$$\begin{aligned} |{\mathcal N}|\le \frac{(CD)^n}{\left( \sqrt{\alpha n}\right) ^{c'n/2}}D^{2/\alpha }, \end{aligned}$$

where C is an absolute constant.

Roughly speaking, the principle is similar to the proof of Lemmas 7.5 and 8.4. We will break \(x\in T_D\) into disjoint subvectors of size roughly m, where \(m=\lceil \alpha n \rceil \), and find appropriate nets for each. In what follows we will be working with \(S^{m-1}\) first.

Definition 11.2

(Level sets) Let \(D_0\ge c \sqrt{m}\). Define \(S_{D_0}\subset S^{m-1}\) to be the level set

$$\begin{aligned} S_{D_0}:=\{x\in S^{m-1}: D_0 \le \mathbf {LCD}_{\kappa ,\gamma }(x) \le 2D_0 \}. \end{aligned}$$

Notice that \(\kappa =o(\sqrt{m})\) because \(\kappa =n^{2c}\) and \(m\ge n^{1-c}\). We will invoke the following result from [26].

Lemma 11.3

[26, Lemma 4.7] There exists a \((2\kappa /D_0)\)-net of \(S_{D_0}\) of cardinality at most \((C_0D_0/\sqrt{m})^m\), where \(C_0\) is an absolute constant.

As the proof of this result is short and uses the important notion of \(\mathbf {LCD}\), we include it here for the reader’s convenience.

Proof of Lemma 11.3

For \(x\in S_{D_0}\), denote

$$\begin{aligned} D(x):= \mathbf {LCD}_{\kappa ,\gamma }(x). \end{aligned}$$

By definition, \(D_0\le D(x)\le 2D_0\) and there exists \(p\in {\mathbf {Z}}^m\) with

$$\begin{aligned} \left\| x -\frac{p}{D(x)}\right\| \le \frac{\kappa }{D(x)} =O\left( \frac{n^{2c}}{n^{1-c}}\right) =o(1). \end{aligned}$$

As \(\Vert x\Vert =1\), this implies that \(\Vert p\Vert \approx D(x)\), more precisely

$$\begin{aligned} 1- \frac{\kappa }{D(x)} \le \left\| \frac{p}{D(x)}\right\| \le 1+ \frac{\kappa }{D(x)}. \end{aligned}$$
(55)

This implies that

$$\begin{aligned} \Vert p\Vert \le (1+o(1)) D(x) <3D_0. \end{aligned}$$
(56)

It also follows from (55) that

$$\begin{aligned} \left\| x -\frac{p}{\Vert p\Vert }\right\| \le \left\| x -\frac{p}{D(x)}\right\| + \left\| \frac{p}{\Vert p\Vert }(\frac{\Vert p\Vert }{D(x)} -1)\right\| \le 2\frac{\kappa }{D(x)} \le \frac{2\kappa }{D_0}. \end{aligned}$$
(57)

Now set

$$\begin{aligned} {\mathcal N}_0:=\left\{ \frac{p}{\Vert p\Vert }, p\in {\mathbf {Z}}^m \cap B(0,3D_0)\right\} . \end{aligned}$$

By (56) and (57), \({\mathcal N}_0\) is a \(\frac{2\kappa }{D_0}\)-net for \(S_{D_0}\). On the other hand, it is known that the size of \({\mathcal N}_0\) is bounded by \((C_0\frac{D_0}{\sqrt{m}})^m\) for some absolute constant \(C_0\).

In fact we can slightly improve the approximations in Lemma 11.3 as follows.

Lemma 11.4

Let \(c \sqrt{m} \le D_0 \le D\). Then the set \(S_{D_0}\) has a \((2\kappa /D)\)-net of cardinality at most \((C_0D/\sqrt{m})^m\) for some absolute constant \(C_0\) (probably different from that of Lemma 11.3).

Proof of Lemma 11.4 First, by Lemma 11.3 one can cover \(S_{D_0}\) by \((C_0D_0/\sqrt{m})^m\) balls of radius \(2\kappa /D_0\). We then cover these balls by smaller balls of radius \(2\kappa /D\), the number of such small balls is at most \((O(D/D_0))^m\). Thus there are at most \((O(D/\sqrt{m}))^m\) balls in total.

Taking the union of these nets as \(D_0\) ranges over powers of two, we thus obtain the following.

Lemma 11.5

Let \(D\ge c \sqrt{m}\). Then the set \(\{x\in S^{m-1}: c\sqrt{m} \le \mathbf {LCD}_{\kappa ,\gamma }(x) \le D \}\) has a \((2\kappa /D)\)-net of cardinality at most

$$\begin{aligned} (C_0D/\sqrt{m})^m \log _2 D, \end{aligned}$$

for some absolute constant \(C_0\) (probably different from that of Lemmas 11.3 and 11.4).

We can also update the net above for x without normalization.

Lemma 11.6

Let \(D\ge c \sqrt{m}\). Then the set \(\{x\in {\mathbb {R}}^m, \Vert x\Vert \le 1, c\sqrt{m} \le \mathbf {LCD}_{\kappa ,\gamma }(x/\Vert x\Vert ) \le D \}\) has a \((2\kappa /D)\)-net of cardinality at most \((C_0D/\sqrt{m})^m D^2\) for some absolute constant \(C_0\).

Proof of Lemma 11.6

Starting from the net obtained from Lemma 11.5, we just need to \(2\kappa /D\)-approximate the fiber of \(span(x/\Vert x\Vert )\) in \(B_2^m\).

We now justify our main lemma.

Proof of Lemma 11.1

We first write \(x=x_{I_0}\cup \mathbf {spread}(x)\), where \(\mathbf {spread}(x)= I_1\cup \cdots \cup I_{k_0} \cup J\) such that \(|I_k| =\lceil \alpha n \rceil \) and \(|J|\le \alpha n\). Notice that we trivially have

$$\begin{aligned} |\mathbf {spread}(x)| \ge |I_1\cup \cdots \cup I_{k_0}| = k_0 \lceil \alpha n \rceil \ge |\mathbf {spread}(x)|- \alpha n \ge c'n/2. \end{aligned}$$

Thus we have

$$\begin{aligned} \frac{c'}{2\alpha } \le k_0 \le \frac{2c'}{\alpha }. \end{aligned}$$

In the next step, we will construct nets for each \(x_{I_j}\). For \(x_{I_0}\), we construct trivially a (1 / D)-net \({\mathcal N}_0\) of size

$$\begin{aligned} |{\mathcal N}_0| \le (3D)^{|I_0|}. \end{aligned}$$

For each \(I_k\), as

$$\begin{aligned} \mathbf {LCD}_{\kappa ,\gamma }(x_{I_k}/\Vert x_{I_k}\Vert )\le \widehat{\mathbf {LCD}}_{\kappa ,\gamma }(x) \le D, \end{aligned}$$

by Lemma 11.6 (where the condition \(\mathbf {LCD}_{\kappa ,\gamma }(x_{I_k}/\Vert x_{I_k}\Vert )\gg \sqrt{|I_k|}\) follows from, say Theorem 7.2, because the entries of \(x_{I_k}/\Vert x_{I_k}\Vert \) are all of order \(\sqrt{\alpha n}\) while \(\kappa =o(\sqrt{\alpha n})\)), one obtains a \((2\kappa /D)\)-net \({\mathcal N}_k\) of size

$$\begin{aligned} |{\mathcal N}_k|\le \left( \frac{C_0D}{\sqrt{|I_k|}}\right) ^{|I_k|} D^2. \end{aligned}$$

Combining the nets together, as \(x=(x_{I_0},x_{I_1},\ldots ,x_{I_{k_0}},x_J)\) can be approximated by \(y=(y_{I_0},y_{I_1},\ldots ,y_{I_{k_0}},y_J)\) with \(\Vert x_{I_j}-y_{I_j}\Vert \le \frac{2\kappa }{D}\), we have

$$\begin{aligned} \Vert x-y\Vert \le \sqrt{k_0+1}\frac{2\kappa }{D} \ll \frac{\kappa }{\sqrt{\alpha } D}. \end{aligned}$$

As such, we have obtain a \(\beta \)-net \({\mathcal N}\), where \(\beta =O(\frac{\kappa }{\sqrt{\alpha } D})\), of size

$$\begin{aligned} |{\mathcal N}| \le 2^n |{\mathcal N}_0| |{\mathcal N}_1| \cdots |{\mathcal N}_{k_0}| \le 2^n (3D)^{|I_0|} \prod _{k=1}^{k_0} \left( \frac{CD}{\sqrt{|I_k|}}\right) ^{|I_k|} D^2. \end{aligned}$$

This can be simplified to

$$\begin{aligned} |{\mathcal N}|\le \frac{(CD)^n}{\sqrt{\alpha n}^{c'n/2}}D^{O(1/\alpha )}. \end{aligned}$$

Before completing the proof of Lemma 5.9, we cite another important consequence of Lemma 5.8 (on the small ball estimate) and Lemma 7.7 (on the tensorization trick).

Lemma 11.7

Let \(x\in \mathbf {Incomp}(c_0,c_1)\) and \(\alpha \in (0,c')\). Then for any \(\beta \ge \frac{1}{c_0}\sqrt{\alpha } (\widehat{\mathbf {LCD}}_{\kappa ,\gamma }(x,\alpha ))^{-1}\) one has

$$\begin{aligned} \rho _{\beta \sqrt{n}}((X_n-\lambda _0)x) \le \left( \frac{O(\beta )}{\sqrt{\alpha }} +e^{-\Theta (\kappa ^2)}\right) ^{n-\alpha n}. \end{aligned}$$

Proof of Lemma 5.9

It suffices to show the result for the level set \(\{x\in T_D\backslash T_{D/2}\}\). With \(\beta = \frac{\kappa }{\sqrt{\alpha } D}\), the condition on \(\beta \) of Lemma 11.7 is clearly guaranteed,

$$\begin{aligned} \frac{\kappa }{\sqrt{\alpha } D} \gg \frac{\sqrt{\alpha }}{D}. \end{aligned}$$

This lemma then implies

$$\begin{aligned}&{\mathbf {P}}\left( \exists x\in T_D\backslash T_{D/2} : \Vert (X_n-\lambda _0) x -u\Vert =o (\beta \sqrt{n})\right) \\&\quad \le \left( \frac{O(\beta )}{\sqrt{\alpha }} +e^{-\Theta (\kappa ^2)}\right) ^{n-\alpha n} \times \frac{(CD)^n}{(\sqrt{\alpha n})^{c'n/2}}D^{O(1/\alpha )}\\&\quad \le \left( \frac{O(\kappa )}{\alpha D} +e^{-\Theta (\kappa ^2)}\right) ^{n-\alpha n} \times \frac{(CD)^n}{(\sqrt{\alpha n})^{c'n/2}}D^{O(1/\alpha )}\\&\quad \le n^{-c'n/8}, \end{aligned}$$

provided that \(\kappa =n^{2c}\) with sufficiently small c compared to \(c'\), and that \(D \le n^{c/\alpha }\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen, H., Tao, T. & Vu, V. Random matrices: tail bounds for gaps between eigenvalues. Probab. Theory Relat. Fields 167, 777–816 (2017). https://doi.org/10.1007/s00440-016-0693-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00440-016-0693-5

Mathematics Subject Classification

Navigation