Skip to main content

Advertisement

Log in

Polymorphisms in the MLL breakpoint cluster region (BCR)

  • Original Investigation
  • Published:
Human Genetics Aims and scope Submit manuscript

Abstract

The MLL gene is involved in many chromosomal translocations leading to both acute myeloid and lymphoid leukemia. Some patients treated for primary malignancies with chemotherapeutic agents that inhibit DNA topoisomerase II (topo II) develop treatment-related leukemia (t-AML) caused by MLL gene rearrangement. Whether these patients are unusually susceptible to anti-topo II drugs, or whether this is a random adverse event is unknown. To discover genetic polymorphisms that may predispose patients to t-AML development, we sequenced the 8.3-kb MLL breakpoint cluster region (BCR) from 22 patients who had been treated with topo II inhibitors and who developed t-AML and from 37 patients who did not, and from eight infants and 20 normal individuals. Four polymorphic sites within Alu repetitive elements were identified; three affected the length of poly-A tracts and one altered the size of a trinucleotide repeat. The three poly-A tract polymorphisms occurred with equal frequency in leukemic patients and controls and hence are not predictors of risk. The trinucleotide GAA repeat has three alleles: (GAA)4, (GAA)5, and (GAA)6. The (GAA)6 allele is very rare. The adult t-AML patients are almost exclusively (GAA)4/5 heterozygotes (83%), whereas the normal population is only 55% (GAA)4/5 heterozygotic and is represented equally by (GAA)4 and (GAA)5 homozygotes (20% each). Only certain trends could be established because of the small sample size of these leukemic groups. Whereas adult t-AML patients are more likely to be (GAA)4/5 heterozygotes, this is not statistically significant, and this polymorphism within the MLL BCR has only a suggestive association with t-AML development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

References

  • Ahmed DL, Bloodgood CM, Kidd JR, Castiglione CM, Duttagupta S, Lebowitz P (1987) Polymorphism of the human c-abl gene: relation to incidence and course of chronic myelogenous leukemia. Oncogene 2:193–200

    Google Scholar 

  • Awad M, Pravica V, Perrey C, ElGamel A, Yonan N, Sinnott PJ, Hutchinson IV (1999) CA repeat allele polymorphism in the first intron of the human interferon-γ gene is associated with lung allograft fibrosis. Hum Immunol 60:343–346

    Article  CAS  PubMed  Google Scholar 

  • Blanco JG, Dervieux T, Edick MJ, Mehta PK, Rubnitz JE, Shurtleff S, Raimondi SC, Behm FG, Pui CH, Relling MV (2001) Molecular emergence of acute myeloid leukemia during treatment for acute lymphoblastic leukemia. Proc Natl Acad Sci USA 28:10338–10343

    Article  Google Scholar 

  • Bloomfield CD, Archer KJ, Mrozek K, Lillington DM, Kaneko Y, Head DR, Dal Cin P, Raimondi SC (2002) 11q23 Balanced chromosome aberrations in treatment-related myelodysplastic syndromes and acute leukemia: report from an international workshop. Genes Chromosom Cancer 33:362–378

    Article  PubMed  Google Scholar 

  • Bode J, Benham C, Ernst E, Knopp A, Marschalek R, Strick R, Strissel P (2000) Fatal connections: when DNA ends meet on the nuclear matrix. J Cell Biochem (Suppl) 35:3–22

    Google Scholar 

  • Bratt O, Borg A, Kristofersson U, Lundgren R, Zhang Q-X, Olsson H (1999) CAG repeat length in the androgen receptor gene is related to age at diagnosis of prostate cancer and response to endocrine therapy, but not to prostate cancer risk. Br J Cancer 81:672–676

    CAS  PubMed  Google Scholar 

  • Campuzano V, Montermini L, Lutz Y, Cova L, Hindelang C, Jiralerspong S, Trottier Y, Kish SJ, Faucheaux B, Trouillas P, Authier FJ, Durr A, Mandel JL, Vescovi A, Pandolfo M, Koenig M (1997) Frataxin is reduced in Friedreich ataxia patients and is associated with mitochondrial membranes. Hum Mol Genet 6:1771–1780

    CAS  PubMed  Google Scholar 

  • Chakravarti A (1999) Population genetics—making sense out of sequence. Nat Genet 21(Suppl):56–60

    CAS  PubMed  Google Scholar 

  • Cimino G, Rapanotti MC, Biondi A, Elia L, Coco FL, Price C, Rossi V, Rivolta A, Cananni E, Croce CM, Mandelli F, Greaves M (1997) Infant acute leukemias show the same biased distribution of ALL1 gene breaks as topoisomerase II related secondary acute leukemias. Cancer Res 57:2879–2883

    CAS  PubMed  Google Scholar 

  • DiMartino JF, Cleary ML (1999) MLL rearrangements in haematological malignancies: lessons from clinical and biological studies. Br J Haematol 106:614–626

    CAS  PubMed  Google Scholar 

  • Djabaldi M, Selleri L, Parry P, Bower M, Young BD, Evans GA (1992) A trithorax-like gene is interrupted by chromosome 11q23 translocations in acute leukemias. Nat Genet 2:113–118

    CAS  PubMed  Google Scholar 

  • Don RH, Cox PT, Wainwright BJ, Baker K, Mattick JS (1991) "Touchdown" PCR to circumvent spurious priming during gene amplification. Nucleic Acids Res 19:4008

    CAS  PubMed  Google Scholar 

  • Fisher B, Anderson S, DeCillis A, Dimitrov N, Atkins JN, Fehrenbacher L, Henry PH, Romond EH, Lanier KS, Davila E, Kardinal CG, Laufman L, Pierce HI, Abramson N, Keller AM, Hamm JT, Wickerham DL, Begovic M, Tan-Chiu E, Tian W, Wolmark N (1999) Further evaluation of intensified and increased total dose of cyclophosphamide for the treatment of primary breast cancer: findings from National Surgical Adjuvant Breast and Bowel Project B-25. J Clin Oncol 17:3374-3388

    CAS  PubMed  Google Scholar 

  • Frank-Kamenetskii MD, Mirkin SM (1995) Triplex DNA structures. Annu Rev Biochem 64:65–95

    CAS  PubMed  Google Scholar 

  • Gillert E, Leis T, Repp R, Reichel M, Hosch A, Brieitenlohner I, Angermuller S, Borkhardt A, Harbott J, Lampert F, Griesinger F, Greil J, Fey GH, Marschalek R (1999) A DNA damage repair mechanism is involved in the origin of chromosomal translocation t(4;11) in primary leukemic cells. Oncogene 18:4663–4671

    Article  CAS  PubMed  Google Scholar 

  • Gill Super HJ, Rothberg P, Kobayaski H, Freeman A, Diaz M, Rowley JD (1994) Clonal, nonconstitutional rearrangements of the MLL gene in infant twins with acute lymphoblastic leukemia: in utero chromosome rearrangement of 11q23. Blood 83:641–644

    PubMed  Google Scholar 

  • Gill Super HJ, Strissel PL, Sobulo OM, Burian D, Reshmi SC, Roe B, Zeleznik-Le NJ, Diaz MO, Rowley JD (1997) Identification of complex genomic breakpoint junctions in the t(9;11) MLL-AF9 fusion gene in acute leukemia. Genes Chromosom Cancer 20:185–195

    Article  PubMed  Google Scholar 

  • Greaves MF (1997) Aetiology of acute leukaemia. Lancet 349:344–349

    Article  CAS  PubMed  Google Scholar 

  • Gu Y, Nakamura T, Alder H, Prasad R, Canaani O, Cimino G, Croce CM, Canaani E (1992) The t(4;11) chromosome translocation of human acute leukemias fuses the ALL-1 gene, related to Drosophila trithorax, to the AF4 gene. Cell 71:701–708

    CAS  PubMed  Google Scholar 

  • Gu Y, Alder H, Nakamura T, Schichman SA, Prasad R, Canaani O, Saito H, Croce CM, Canaani E (1994) Sequence analysis of the breakpoint cluster region in the ALL-1 gene involved in acute leukemia. Cancer Res 54:2327–2330

    CAS  Google Scholar 

  • Gyurus P, Molnar J, Melegh B, Toth G, Morava E, Kosztolanyi G, Mehes K (1999) Trinucleotide repeat polymorphism at five disease loci in mixed Hungarian population. Am J Med Genet 87:245–250

    Article  CAS  PubMed  Google Scholar 

  • Heerema NA, Arthur DC, Sather J, Albo V, Feusner J, Lange BJ, Steinherz PG, Aeltzer P, Hammond D, Reaman GH (1994) Cytogenetic features of infants less than 12 months of age at diagnosis of acute lymphoblastic leukemia: impact of the 11q23 breakpoint on outcome: a report of the Children's Cancer Group. Blood 83:2274–2284

    CAS  PubMed  Google Scholar 

  • Huret JL, Dessen P, Bernheim A (2001) An atlas of chromosomes in hematological malignancies. Example: 11q23 and MLL partners. Leukemia 15:987–989

    Article  CAS  PubMed  Google Scholar 

  • International FMF Consortium (1997) Ancient missense mutations in a new member of the RoRet gene family are likely to cause familial Mediterranean fever. Cell 90:797–807

    PubMed  Google Scholar 

  • International SNP Map Working Group (2001) A map of human genome sequence variation containing 1.42 million single nucleotide polymorphisms. Nature 409:928–933

    Article  CAS  PubMed  Google Scholar 

  • Justice CM, Zhining D, Nguyen SV, Stoneking M, Deininger PL, Batzer MA, Keats BJB (2001) Phylogenetic analysis of the Friedreich ataxia GAA trinucleotide repeat. J Mol Evol 52:232–238

    CAS  PubMed  Google Scholar 

  • Kas E, Laemmli UK (1992) In vivo topoisomerase II cleavage of the Drosophila histone and satellite III repeats: DNA sequence and structural characteristics. EMBO J 11:705–716

    CAS  PubMed  Google Scholar 

  • Kollmannsberger C, Kuzcyk M, Mayer F, Hartmann J, Kanz L, Bokemeyer C (1999) Late toxicity following curative treatment of testicular cancer. Semin Surg Oncol 17:275–281

    Article  CAS  PubMed  Google Scholar 

  • Kolomietz E, Meyn S, Pandita A, Squire JA (2002) The role of Alu repeat clusters as mediators of recurrent chromosomal aberrations in tumors. Genes Chromosom Cancer 35:97–112

    Article  CAS  PubMed  Google Scholar 

  • Kotsinas A, Gorgoulis VG, Zacharatos P, Mariatos G, Kokotas S, Liloglou T, Ikonomopoulos J, Zoumpourlis V, Kyroudi A, Field JK, Asimacopoulos PJ, Kittas C (2001) Additional characterization of a hexanucleotide polymorphic site in the first intron of human H-ras gene: comparative study of its alterations in non-small cell lung carcinomas and sporadic invasive breast carcinomas. Cancer Genet Cytogenet 126:147–154

    Article  CAS  PubMed  Google Scholar 

  • Kuklin A, Munson K, Gjerde D, Haefele R, Taylor P (1997/98) Detection of single-nucleotide polymorphisms with the WAVE DNA fragment analysis system. Genet Testing 1:201–206

    CAS  Google Scholar 

  • Lazaro C, Gaona A, Ravella A, Volpini V, Casals T, Fuentes JJ, Estivill X (1993) Novel alleles, hemizygosity and deletions at an Alu-repeat within the neurofibromatosis type 1 (NF1) gene. Hum Mol Genet 2:725–730

    Google Scholar 

  • Lovett BD, Nigro LL, Rappaport EF, Blair IA, Osheroff N, Zheng N, Megonigal MD, Williams WR, Nowell PC, Felix CA (2001) Near-precise interchromosomal recombination and functional DNA topoisomerase II cleavage sites at MLL and AF-4 genomic breakpoints in treatment-related acute lymphoblastic leukemia with t(4;11) translocation. Proc Nat Acad Sci USA 98:9802–9807

    Article  CAS  PubMed  Google Scholar 

  • Mbangkollo D, Burnett R, McCabe N, Thirman M, Gill H, Yu H, Rowley JD, Diaz MO (1995) The human MLL gene: nucleotide sequence, homology to the Drosophila trx zinc-finger domain, and alternative splicing. DNA Cell Biol 14:475–483

    CAS  PubMed  Google Scholar 

  • Mirkovitch J, Mirault ME, Laemmli UK (1984) Organization of the higher-order chromatin loop: specific DNA attachment sites on nuclear scaffold. Cell 39:223–232

    PubMed  Google Scholar 

  • Mitsumori K, TeraiA, Oka H, Segawa T, Ogura K, Yoshida O, Ogawa O (1999) Androgen receptor CAG repeat length polymorphism in benign prostatic hyperplasia (BPH): correlation with adenoma growth. Prostate 41:253–257

    CAS  PubMed  Google Scholar 

  • Mok TS, Wong H, Zee B, Yu KH, Leung TWT, Lee TW, Yim A, Chan ATC, Yeo W, Chak K, Johnson P (2002) A phase I–II study of sequential administration of topotecan and oral etoposide (topoisomerase I and II inhibitors) in the treatment of patients with small cell lung carcinoma. Cancer 95:1511–1519

    Article  CAS  PubMed  Google Scholar 

  • Nilson I, Lochner K, Siegler G, Greil J, Beck JD, Fey GH, Marschalek P (1996) Exon/intron structure of the human ALL-1 (MLL) gene involved in translocations to chromosomal region 11q23 and acute leukaemias. Br J Haematol 93:966–972

    CAS  PubMed  Google Scholar 

  • Osaka M, Rowley JD, Zeleznik-Le NJ (1999) MSF (MLL septin-like fusion), a fusion partner gene of MLL, in a therapy-related acute myeloid leukemia with a t(11;17)(q23;q25). Proc Natl Acad Sci USA 96:6428–6433

    Google Scholar 

  • Pagani F, Bumatti E, Stuani C, Bendix R, Dork T, Baralle FE (2002) A new type of mutation causes a splicing defect in ATM. Nat Genet 4:426–429

    Google Scholar 

  • Pravica V, Asderakis A, Perrey C, Hajeer A, Sinnott PJ, Hutchinson IV (1999) In vitro production of IFN-γ correlates with CA repeat polymorphism in the human IFN-γ gene. Eur J Immunogenet 26:1–3

    CAS  PubMed  Google Scholar 

  • Reichel M, Gillert E, Angermuller S, Hensel JP, Heidel F, Lode M, Leis T, Biondi A, Haas OA, Strehl S, Panzer-Grumayer ER, Griesinger F, Beck JD, Greil J, Fey GH, Uckun FM, Marschalek R (2001) Biased distribution of chromosomal breakpoints involving the MLL gene in infants versus children and adults with t(4;11) ALL. Oncogene 24:2900–2907

    Article  Google Scholar 

  • Relling M, Yanishevski Y, Nemec J, Evans WE, Boyett JM, Behn FG, Pui C-H (1998) Etoposide and antimetabolite pharmacology in patients who develop secondary acute myeloid leukemia. Leukemia 12:346–352

    Article  CAS  PubMed  Google Scholar 

  • Ross JA (2000) A pathway to infant leukemia? Proc Natl Acad Sci USA 97:4411–4413

    Article  CAS  PubMed  Google Scholar 

  • Ross JA, Davies SM, Potter JD, Robinson LL (1994) Epidemiology of childhood leukemia, with a focus on infants. Epidemiol Rev 16:243–272

    CAS  PubMed  Google Scholar 

  • Roulston D, Anastasi J, Rudinsky R, Nucifora G, Zeleznik-Le NJ, Rowley JD (1995) Therapy-related acute leukemia associated with t(11q23) after primary acute myeloid leukemia with t(8;21): a report of two cases. Blood 86:3613–3614

    CAS  PubMed  Google Scholar 

  • Rowley JD (1998) The critical role of chromosome translocations in human leukemias. Annu Rev Genet 32:495–519

    Article  CAS  PubMed  Google Scholar 

  • Rowley JD (1999) The role of chromosome translocations in leukemogenesis. Semin Hematol 36(Suppl 7):59–72

    CAS  PubMed  Google Scholar 

  • Rowley JD, Olney H (2002) International workshop on the relationship of prior therapy to balanced chromosome aberrations in therapy-related myelodysplastic syndromes and acute leukemia: overview report. Genes Chromosom Cancer 33:331–345

    Article  PubMed  Google Scholar 

  • Sakamoto N, Chastain PD, Parniewski P, Ohshima K, Pandolfo M, Griffith JD, Wells RD (1999) Sticky DNA: self-association properties of long GAA:TTC repeats in R.R.Y triplex structures from Friedreich's ataxia. Mol Cell 4:465–475

    Google Scholar 

  • Sakamoto N, Chastain PD, Parniewdki P, Ohshimaa K, Pandolfo M, Wells RD (2001) Sticky DNA, a self-associated complex formed at long GAATTC repeats in intron 1 of the frataxin gene, inhibits transcription. J Biol Chem 276:27171–27177

    Article  CAS  PubMed  Google Scholar 

  • Schichman SA, Canaani E, Croce CM (1995) Self-fusion of the ALL1 gene. A new genetic mechanism for acute leukemia. JAMA 273:571–576

    Article  CAS  PubMed  Google Scholar 

  • Skibola CF, Smith MT, Kane E, Roman E, Rollinson S, Cartwright RA, Morgan G (1999) Polymorphisms in the methylenetetrahydrofolate reductase gene are associated with susceptibility to acute leukemia in adults. Proc Natl Acad Sci USA 96:12810–12815

    Article  CAS  PubMed  Google Scholar 

  • Stanulla M, Wang J, Chervinsky DS, Thandla S, Aplan PD (1997) DNA cleavage within the MLL breakpoint cluster region is a specific event which occurs as part of higher-order chromatin fragmentation during the initial stages of apoptosis. Mol Cell Biol 17:4047–4079

    Google Scholar 

  • Strick R, Strissel PL, Borgers S, Smith SL, Rowley JD (2000) Dietary bioflavonoids induce cleavage in the MLL gene and may contribute to infant leukemia. Proc Natl Acad Sci USA 97:4790–4795

    Article  CAS  PubMed  Google Scholar 

  • Strissel PL, Strick R, Rowley JD, Zeleznik-Le NJ (1998) An in vivo topoisomerase II cleavage site and a DNase I hypersensitive site colocalize near exon 9 in the MLL breakpoint cluster region. Blood 92:3793–3803

    CAS  PubMed  Google Scholar 

  • Strissel PL, Strick R, Tomek R, Roe BA, Rowley JD, Zeleznik-Le NJ (2000) DNA structural properties of AF9 are similar to MLL and could act as recombination hot spots resulting in MLL/AF9 translocations and leukemogenesis. Hum Mol Genet 9:1671–1679

    Article  CAS  PubMed  Google Scholar 

  • Strissel Broeker PL, Gill Super H, Thirman MJ, Pomykala H, Yonebayashi Y, Tanabe S, Zeleznik-Le NJ, Rowley JD (1996) Distribution of 11q23 breakpoints within the MLL breakpoint cluster region in de novo acute leukemia and in treatment-related acute myeloid leukemia: correlation with scaffold attachment regions and topoisomerase II consensus binding sites. Blood 87:1912–1922

    PubMed  Google Scholar 

  • Sugita K, Taki T, Hayashi Y, Shimaoka H, Kumazaki H, Inoue H, Konno Y, Taniwaki M, Kurosava H, Eguchi M (2000) MLL-CBP fusion transcript in a therapy-related acute myeloid leukemia with the t(11;16)(q23;p13) which developed in an acute lymphoblastic leukemia patient with Fanconi anemia. Genes Chormosom Cancer 27:264–269

    Article  CAS  Google Scholar 

  • Taki T, Sako M, Tsuchida M, Hayashi Y (1997) The t(11;16)(q23;p13) translocation in myelodysplastic syndrome fuses the MLL gene to the CBP gene. Blood 89:3945–3950

    CAS  PubMed  Google Scholar 

  • Taki T, Ohnishi H, Shihohara K, Sako M, Bessho F, Yanagisawa M, Hayashi Y (1999) AF17q25, a putative septin family gene, fuses the MLL gene in acute myeloid leukemia with t(11;17)(q23;q25). Cancer Res 59:4261–4265

    CAS  PubMed  Google Scholar 

  • Tosata G (1991) Generation of Epstein-Barr virus (EBV)-immortalized B cell lines. In: Coligan JE, Kruisbeek AM, Margulies DH, Shevach EM, Strober W (eds) Current protocols in immunology. Wiley, New York, p 7.22.1

  • Webb JC, Golovleva I, Simpkins AH, Kempski H, Reeves B, Sturt N, Chessells JM, Brickell PM (1999) Loss of heterozygosity and microsatellite instability at the MLL locus are common in childhood acute leukemia, but not in infant acute leukemia. Blood 94:283–290

    CAS  PubMed  Google Scholar 

  • Wiedemann LM, MacGregor A, Caldas C (1999) Analysis of the region of the 5' end of the MLL gene involved in genomic duplication events. Br J Haematol 105:256–264

    Article  CAS  PubMed  Google Scholar 

  • Zhang Z, Kolvraa S, Zhou Y, Kellz DP, Gregersen N, Strauss AW (1993) Three RFLPs defining a haplotype associated with the common mutation in human medium-chain acyl-CoA dehydrogenase (MCAD) deficiency occur in Alu repeats. Am J Hum Genet 52:1111–1121

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to and thank Dr. Cheng Cheng from the Department of Biostatistics at St. Jude Children's Research Hospital for his statistical help and expertise. We thank Dr. Michelle LeBeau at the University of Chicago for kindly providing the DNA samples from the normal individuals. We thank Paul Gardner at the Howard Hughes Medical Institute of the University of Chicago for his assistance in DNA primer preparation and sequencing analysis. D.E.B. was funded by a postdoctoral research fellowship from the Leukemia Research Foundation. D.E.B., L.L.S., R.L., M.V.R., N.Z.L., R.S, P.S., and J.D.R were supported by the PAAR grant (no. U01GM61393-02) from the NIH. R.S., P.S., and J.D.R. were supported by the Harold and Leila Y. Mathers Foundation. J.D.R. also received support from NIH (grant no. CA84405) and The Spastic Paralysis Foundation of the Illinois-Eastern Iowa District of Kiwanis International.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Janet D. Rowley.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Echlin-Bell, D.R., Smith, L.L., Li, L. et al. Polymorphisms in the MLL breakpoint cluster region (BCR). Hum Genet 113, 80–91 (2003). https://doi.org/10.1007/s00439-003-0936-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00439-003-0936-2

Keywords

Navigation