Skip to main content
Log in

A comparative study of population genetic structure reveals patterns consistent with selection at functional microsatellites in common sunflower

  • Original Article
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

Microsatellites, also known as short tandem repeats (STRs), have long been considered non-functional, neutrally evolving regions of the genome. Recent findings suggest that they can function as drivers of rapid adaptive evolution. Previous work on the common sunflower identified 479 transcribed microsatellites where allele length significantly correlates with gene expression (eSTRs) in a stepwise manner. Here, a population genetic approach is used to test whether eSTR allele length variation is under selection. Genotypic variation among and within populations at 13 eSTRs was compared with that at 19 anonymous microsatellites in 672 individuals from 17 natural populations of sunflower from across a cline running from Saskatchewan to Oklahoma (distance of approximately 1600 km). Expected heterozygosity, allelic richness, and allelic diversity were significantly lower at eSTRs, a pattern consistent with higher relative rates of purifying selection. Further, an analysis of variation in microsatellite allele lengths (lnRV), and heterozygosities (lnRH), indicate recent selective sweeps at the eSTRs. Mean microsatellite allele lengths at four eSTRs within populations are significantly correlated with latitude consistent with the predictions of the tuning-knob model which predicts stepwise relationships between microsatellite allele length and phenotypes. This finding suggests that shorter or longer alleles at eSTRs may be favored in climatic extremes. Collectively, our results imply that eSTRs are likely under selection and that they may be playing a role in facilitating local adaptation across a well-defined cline in the common sunflower.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Andrew SE, Goldberg YP, Kremer B, Telenius H, Theilmann J, Adam S, Starr E, Squitieri F, Lin B, Kalchman MA et al (1993) The relationship between trinucleotide (CAG) repeat length and clinical features of Huntington’s disease. Nat Genet 4:398–403

    Article  CAS  PubMed  Google Scholar 

  • Balloux F, Brunner H, Lugon-Moulin N, Hausser J, Goudet J (2000) Microsatellites can be misleading: an empirical and simulation study. Evolution 54:1414–1422

    Article  CAS  PubMed  Google Scholar 

  • Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J Roy Stat Soc: Ser B (methodol) 57(1):289–300

    Google Scholar 

  • Bhargava A, Fuentes FF (2010) Mutational dynamics of microsatellites. Mol Biotechnol 44:250–266

    Article  CAS  PubMed  Google Scholar 

  • Blackman BK, Michaels SD, Rieseberg LH (2011) Connecting the sun to flowering in sunflower adaptation. Mol Ecol 20:3503–3512

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bohonak AJ (2002) IBD (isolation by distance): a program for analyses of isolation by distance. J Hered 93:153–154

    Article  CAS  PubMed  Google Scholar 

  • Chapman MA, Pashley CH, Wenzler J, Hvala J, Tang S, Knapp SJ, Burke JM (2008) A genomic scan for selection reveals candidates for genes involved in the evolution of cultivated sunflower (Helianthus annuus). Plant Cell 20:2931–2945

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cho YG, Ishii T, Temnykh S, Chen X, Lipovich L, McCouch SR, Park WD, Ayres N, Cartinhour S (2000) Diversity of microsatellites derived from genomic libraries and GenBank sequences in rice (Oryza sativa L.). Theor Appl Genet 100:713–722

    Article  CAS  Google Scholar 

  • Coscia I, Vogiatzi E, Kotoulas G, Tsigenopoulos CS, Mariani S (2012) Exploring neutral and adaptive processes in expanding populations of gilthead sea bream, Sparus aurata L., in the North-East Atlantic. Heredity 108:537–546

    Article  CAS  PubMed  Google Scholar 

  • Dieringer D, Schlötterer C (2003) MICROSATELLITE ANALYSER (MSA): a platform independent analysis tool for large microsatellite data sets. Mol Ecol Notes 3:167–169

    Article  CAS  Google Scholar 

  • Dokholyan NV, Buldyrev SV, Havlin S, Stanley HE (1997) Distribution of base pair repeats in coding and noncoding DNA sequences. Phys Rev Lett 79:5182–5185

    Article  CAS  Google Scholar 

  • Don RH, Cox PT, Wainwright BJ, Baker K, Mattick JS (1991) ‘Touchdown’ PCR to circumvent spurious priming during gene amplification. Nucleic Acids Res 19:4008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dürr A, Cossee M, Agid Y, Campuzano V, Mignard C, Penet C, Mandel J-L, Brice A, Koenig M (1996) Clinical and genetic abnormalities in patients with Friedreich’s ataxia. N Engl J Med 335:1169–1175

    Article  PubMed  Google Scholar 

  • Earl DA, vonHoldt BM (2012) Structure harvester: a website and program for visualizing structure output and implementing the Evanno method. Conserv Genet Resour 4:359–361

    Article  Google Scholar 

  • Eujayl I, Sledge MK, Wang L, May GD, Chekhovskiy K, Zwonitzer JC, Mian MAR (2004) Medicago truncatula EST-SSRs reveal cross-species genetic markers for Medicago spp. Theor Appl Genet 108:414–422

    Article  CAS  PubMed  Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software structure: a simulation study. Mol Ecol 14:2611–2620

    Article  CAS  PubMed  Google Scholar 

  • Excoffier L, Lischer HEL (2010) Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under linux and windows. Mol Ecol Resour 10:564–567

    Article  PubMed  Google Scholar 

  • Gemayel R, Vinces MD, Legendre M, Verstrepen KJ (2010) Variable tandem repeats accelerate evolution of coding and regulatory sequences. Annu Rev Genet 44:445–477

    Article  CAS  PubMed  Google Scholar 

  • Gross BL, Turner KG, Rieseberg LH (2007) Selective sweeps in the homoploid hybrid species Helianthus deserticola: Evolution in concert across populations and across origins. Mol Ecol 16:5246–5258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haasl RJ, Johnson RC, Payseur BA (2014) The effects of microsatellite selection on linked sequence diversity. Genome Biol Evol 6:1843–1861

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haasl RJ, Payseur BA (2013) Microsatellites as targets of natural selection. Mol Biol Evol 30:285–298

    Article  CAS  PubMed  Google Scholar 

  • Harr B, Kauer M, Schlötterer C (2002) Hitchhiking mapping: a population-based fine-mapping strategy for adaptive mutations in Drosophila melanogaster. Proc Natl Acad Sci USA 99:12949–12954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hedrick PW (1999) Perspective: highly variable loci and their interpretation in evolution and conservation. Evolution 53:313–318

    Article  PubMed  Google Scholar 

  • Hodel RG, Segovia-Salcedo MC, Landis JB et al (2016) The report of my death was an exaggeration: a review for researchers using microsatellites in the 21st century. Appl Plant Sci 4:1600025

    Article  Google Scholar 

  • Johnsen A, Fidler AE, Kuhn S, Carter KL, Hoffmann A, Barr IR, Biard C, Charmantier A, Eens M, Korsten P et al (2007) Avian clock gene polymorphism: evidence for a latitudinal cline in allele frequencies. Mol Ecol 16:4867–4880

    Article  CAS  PubMed  Google Scholar 

  • Kane NC, King MG, Barker MS, Raduski A, Karrenberg S, Yatabe Y, Knapp SJ, Rieseberg LH (2009) Comparative genomic and population genetic analyses indicate highly porous genomes and high levels of gene flow between divergent Helianthus species. Evolution 63:2061–2075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kane NC, Rieseberg LH (2007) Selective sweeps reveal candidate genes for adaptation to drought and salt tolerance in common sunflower, Helianthus annuus. Genetics 175:1823–1834

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kane NC, Rieseberg LH (2008) Genetics and evolution of weedy Helianthus annuus populations: adaptation of an agricultural weed. Mol Ecol 17:384–394

    Article  CAS  PubMed  Google Scholar 

  • Kashi Y, King D, Soller M (1997) Simple sequence repeats as a source of quantitative genetic variation. Trends Genet 13:74–78

    Article  CAS  PubMed  Google Scholar 

  • Kauer MO, Dieringer D, Schlötterer C (2003) A Microsatellite variability screen for positive selection associated with the ‘out of Africa’ habitat expansion of Drosophila melanogaster. Genetics 165:1137–1148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kelkar YD, Tyekucheva S, Chiaromonte F, Makova KD (2008) The genome-wide determinants of human and chimpanzee microsatellite evolution. Genome Res 18(1):30–38

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • King DG, Soller M, Kashi Y (1997) Evolutionary tuning knobs. Endeavour 21:36–40

    Article  Google Scholar 

  • Kolkman JM, Berry ST, Leon AJ, Slabaugh MB, Tang S, Gao W, Shintani DK, Burke JM, Knapp SJ (2007) Single nucleotide polymorphisms and linkage disequilibrium in sunflower. Genetics 177:457–468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kremer EJ, Pritchard M, Lynch M, Yu S, Holman K, Baker E, Warren ST, Schlessinger D, Sutherland GR, Richards RI (1991) Mapping of DNA instability at the fragile X to a trinucleotide repeat sequence p(CCG)n. Science 252:1711–1714

    Article  CAS  PubMed  Google Scholar 

  • Kyriacou CP, Peixoto AA, Sandrelli F, Costa R, Tauber E (2008) Clines in clock genes: fine-tuning circadian rhythms to the environment. Trends Genet 24(3):124–132

    Article  CAS  PubMed  Google Scholar 

  • Lamason RL, Mohideen M-APK, Mest JR, Wong AC, Norton HL, Aros MC, Jurynec MJ, Mao X, Humphreville VR, Humbert JE et al (2005) Genetics: SLC24A5, a putative cation exchanger, affects pigmentation in zebrafish and humans. Science 310:1782–1786

    Article  CAS  PubMed  Google Scholar 

  • Leigh F, Lea V, Law J, Wolters P, Powell W, Donini P (2003) Assessment of EST- and genomic microsatellite markers for variety discrimination and genetic diversity studies in wheat. Euphytica 133:359–366

    Article  CAS  Google Scholar 

  • Lemay MA, Russello MA (2014) Latitudinal cline in allele length provides evidence for selection in a circadian rhythm gene. Biol J Lin Soc 111:869–877

    Article  Google Scholar 

  • Lewontin RC, Krakauer J (1973) Distribution of gene frequency as a test of the theory of the selective neutrality of polymorphisms. Genetics 74:175–195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li YC, Korol AB, Fahima T, Nevo E (2004) Microsatellites within genes: structure, function, and evolution. Mol Biol Evol 21:991–1007

    Article  CAS  PubMed  Google Scholar 

  • Linder CR (2000) Adaptive evolution of seed oils in plants: accounting for the biogeographic distribution of saturated and unsaturated fatty acids in seed oils. Am Nat 156:442–458

    Article  PubMed  Google Scholar 

  • Linnen CR, Kingsley EP, Jensen JD, Hoekstra HE (2009) On the origin and spread of an adaptive allele in deer mice. Science 325:1095–1098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu A, Burke JM (2006) Patterns of nucleotide diversity in wild and cultivated sunflower. Genetics 173:321–330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lonn E, Koskela E, Mappes T, Mokkonen M, Sims AM, Watts PC (2017) Balancing selection maintains polymorphisms at neurogenetic loci in field experiments. Proc Natl Acad Sci 114:3690–3695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mandel JR, Dechaine JM, Marek LF, Burke JM (2011) Genetic diversity and population structure in cultivated sunflower and a comparison to its wild progenitor, Helianthus annuus L. Theor Appl Genet 123:693–704

    Article  CAS  PubMed  Google Scholar 

  • Mantel N (1967) The detection of disease clustering and a generalized regression approach. Can Res 27:209–220

    CAS  Google Scholar 

  • McAssey EV, Corbi J, Burke JM (2016) Range-wide phenotypic and genetic differentiation in wild sunflower. BMC Plant Biol. https://doi.org/10.1186/s12870-016-0937-7

    Article  PubMed  PubMed Central  Google Scholar 

  • Metzgar D, Bytof J, Wills C (2000) Selection against frameshift mutations limits microsatellite expansion in coding DNA. Genome Res 10:72–80

    CAS  PubMed  PubMed Central  Google Scholar 

  • Michael TP, Park S, Kim TS, Booth J, Byer A, Sun Q, Chory J, Lee K (2007) Simple sequence repeats provide a substrate for phenotypic variation in the Neurospora crassa circadian clock. PLoS ONE 2:e795

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Murray MG, Thompson WF (1980) Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res 8:4321–4326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nei M (1978) Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89:583–590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ohadi M, Valipour E, Ghadimi-Haddadan S, Namdar-Aligoodarzi P, Bagheri A, Kowsari A, Kazeminasab S (2015) Core promoter short tandem repeats as evolutionary switch codes for primate speciation. Am J Primatol 77:34–43

    Article  CAS  PubMed  Google Scholar 

  • Oliveira EJ, Pádua JG, Zucchi MI, Vencovsky R, Vieira MLC (2006) Origin, evolution and genome distribution of microsatellites. Genet Mol Biol 29:294–307

    Article  CAS  Google Scholar 

  • Peakall R, Smouse PE (2012) GenALEx 6.5: genetic analysis in excel. Population genetic software for teaching and research-an update. Bioinformatics 28:2537–2539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pramod, S (2012) A study of selection on microsatellites in the Helianthus annuus transcriptome [Mississippi State University]. In ProQuest Dissertations and Theses. https://login.lp.hscl.ufl.edu/login?url=https://www.proquest.com/dissertations-theses/study-selection-on-microsatellites-i-helianthus/docview/1013441800/se-2?accountid=10920 Accessed on 5 Apr 2021

  • Pramod S, Rasberry AB, Butler TG, Welch ME (2011) Characterization of long transcribed microsatellites in Helianthus annuus (Asteraceae). Am J Bot 98(12):e388–e390

    Article  CAS  PubMed  Google Scholar 

  • Pramod S, Downs KE, Welch ME (2012) Gene expression assays for actin, ubiquitin, and three microsatellite-encoding genes in Helianthus annuus (Asteraceae). Am J Bot 99(9):e350–e352

    Article  PubMed  Google Scholar 

  • Pramod S, Perkins AD, Welch ME (2014) Patterns of microsatellite evolution inferred from the Helianthus annus (Asteracea) transcriptome. J Genet 93(2):431–442

    Article  CAS  PubMed  Google Scholar 

  • Press MO, McCoy RC, Hall AN, Akey JM, Queitsch C (2018) Massive variation of short tandem repeats with functional consequences across strains of Arabidopsis thaliana. Genome Res 28(8):1169–1178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Putman AI, Carbone I (2014) Challenges in analysis and interpretation of microsatellite data for population genetic studies. Ecol Evol 4:4399–4428

    Article  PubMed  PubMed Central  Google Scholar 

  • Ranathunge C, Wheeler GL, Chimahusky ME, Kennedy MM, Morrison JI, Baldwin BS, Perkins AD, Welch ME (2018) Transcriptome profiles of sunflower reveal the potential role of microsatellites in gene expression divergence. Mol Ecol 27:1188–1199

    Article  CAS  PubMed  Google Scholar 

  • Ranathunge C, Wheeler GL, Chimahusky ME, Perkins AD, Pramod S, Welch ME (2020) Transcribed microsatellite allele lengths are often correlated with gene expression in natural sunflower populations. Mol Ecol 29:1704–1716

    Article  CAS  PubMed  Google Scholar 

  • Ranathunge C, Pramod S, Renaut S, Wheeler GL, Perkins AD, Rieseberg LH, Welch ME (2021) Microsatellites as agents of adaptive change: an RNA-seq-based comparative study of transcriptomes from five Helianthus species. Symmetry 13:933

    Article  CAS  Google Scholar 

  • R Core Team (2017) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria URL https://www.R-project.org. Accessed on 5 Aug 2017

  • Reinar WB, Lalun VO, Reitan T, Jakobsen KS, Butenko MA (2021) Length variation in short tandem repeats affects gene expression in natural populations of Arabidopsis thaliana. Plant Cell 33:2221–2234

    Article  PubMed  PubMed Central  Google Scholar 

  • Rival P, Press MO, Bale J, Grancharova T, Undurraga SF, Queitsch C (2014) The conserved PFT1 tandem repeat is crucial for proper flowering in Arabidopsis thaliana. Genetics 198:747–754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rockman MV, Hahn MW, Soranzo N, Zimprich F, Goldstein DB, Wray GA (2005) Ancient and recent positive selection transformed opioid cis-regulation in humans. PLoS Biol 3:1–12

    Article  CAS  Google Scholar 

  • Rosato E, Peixoto AA, Costa R, Kyriacou CP (1997) Linkage disequilibrium, mutational analysis and natural selection in the repetitive region of the clock gene, period Drosophila Melanogaster. Genet Res 69(2):89–99

    Article  CAS  PubMed  Google Scholar 

  • Sawyer LA, Hennessy JM, Peixoto AA, Rosato E, Parkinson H, Costa R, Kyriacou CP (1997) Natural variation in a Drosophila clock gene and temperature compensation. Science 278(5346):2117–2120

    Article  CAS  PubMed  Google Scholar 

  • Schlötterer C (2002) A microsatellite-based multilocus screen for the identification of local selective sweeps. Genetics 160:753–763

    Article  PubMed  PubMed Central  Google Scholar 

  • Schlötterer C, Dieringer D (2005) A novel test statistic for the identification of local selective sweeps based on microsatellite gene diversity. In: Nurminsky D (ed) selective sweep. Springer, US, Boston, MA, pp 55–64

    Chapter  Google Scholar 

  • Schuelke M (2000) An economic method for the fluorescent labeling of PCR fragments. Nat Biotechnol 18:233–234

    Article  CAS  PubMed  Google Scholar 

  • Slatkin M (1987) Gene flow and the geographic structure of natural populations. Science 236:787–792

    Article  CAS  PubMed  Google Scholar 

  • Slatkin M, Wiehe T (1998) Genetic hitch-hiking in a subdivided population. Genet Res 71:155–160

    Article  CAS  PubMed  Google Scholar 

  • Storz JF, Payseur A, Nachman MW (2004) Genome scans of DNA variability in humans reveal evidence for selection sweeps outside Africa. Mol Biol Evol 9:1800–1811

    Article  CAS  Google Scholar 

  • Storz JF, Wheat CW (2010) Integrating evolutionary and functional approaches to infer adaptation at specific loci. Evolution 64:2489–2509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tang S, Yu JK, Slabaugh MB, Shintani DK, Knapp SJ (2002) Simple sequence repeat map of the sunflower genome. Theor Appl Genet 105:1124–1136

    Article  CAS  PubMed  Google Scholar 

  • Tautz D, Renz M (1984) Simple sequences are ubiquitous repetitive components of eukaryotic genomes. Nucleic Acids Res 12:4127–4138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trifonov EN (2004) Tuning function of tandemly repeating sequences: a molecular device for fast adaptation. Evolutionary theory and processes: Modern horizons. Springer, Dordrecht 115–138

    Chapter  Google Scholar 

  • Untergasser A, Cutcutache I, Koressaar T, Ye J, Faircloth BC, Remm M, Rozen SG (2012) Primer3-new capabilities and interfaces. Nucleic Acids Research 40:e115–e115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Varshney RK, Graner A, Sorrells ME (2005) Genic microsatellite markers in plants: features and applications. Trends Biotechnol 23:48–55

    Article  CAS  PubMed  Google Scholar 

  • Vasemägi A, Nilsson J, Primmer CR (2005) Expressed sequence tag-linked microsatellites as a source of gene-associated polymorphisms for detecting signatures of divergent selection in Atlantic salmon (Salmo salar L.). Mol Biol Evol 22:1067–1076

    Article  PubMed  CAS  Google Scholar 

  • Watt WB, Donohue K, Carter PA (1996) Adaptation at specific loci. VI. Divergence vs. parallelism of polymorphic allozymes in molecular function and fitness-component effects among Colias species (Lepidoptera, Pieridae). Mol Biol Evol 13:699–709

    Article  CAS  Google Scholar 

  • Watt WB, Wheat CW, Meyer EH, Martin J-F (2003) Adaptation at specific loci. VII. Natural selection, dispersal and the diversity of molecular-functional variation patterns among butterfly species complexes (Colias: Lepidoptera, Pieridae). Mol Ecol 12:1265–1275

    Article  CAS  PubMed  Google Scholar 

  • Watts PC, Kallio ER, Koskela E, Lonn E, Mappes T, Mokkonen M (2017) Stabilizing selection on microsatellite allele length at arginine vasopressin 1a receptor and oxytocin receptor loci. Proc Royal Soc B: Biol Sci 284:20171896

    Article  CAS  Google Scholar 

  • Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38:1358–1370

    CAS  PubMed  Google Scholar 

  • Wright S (1951) The genetical structure of populations. Ann Eugen 15:323–354

    Article  CAS  PubMed  Google Scholar 

  • Yatabe Y, Kane NC, Scotti-Saintagne C, Rieseberg LH (2007) Rampant gene exchange across a strong reproductive barrier between the annual sunflowers Helianthus Annuus and h Petiolaris. Genetics 175:1883–1893

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu JK, Mangor J, Thompson L, Edwards KJ, Slabaugh MB, Knapp SJ (2002) Allelic diversity of simple sequence repeats among elite inbred lines of cultivated sunflower. Genome 45:652–660

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors wish to thank E. L. Drummond and E. V. McAssey for providing some of the plant material and DNA samples for the population genetic study, S. Pramod and J. L. Martin for help with the initial sampling for the common garden experiment, and A. Andersson, M. M. Kennedy, N. R. Torres for assistance with genotyping. This study was supported by the National Science Foundation grant MCB- 1158521 to M. E. Welch and the Department of Biological Sciences at Mississippi State University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chathurani Ranathunge.

Additional information

Communicated by Bing Yang.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 330 KB)

438_2022_1920_MOESM2_ESM.tiff

Supplementary file2 Figure S1. Delta K values calculated according to Evanno’s method showing the number of clusters best supported at (a) anonymous and (b) transcribed microsatellites (eSTRs). The number of clusters best supported at anonymous and transcribed microsatellite loci (eSTRs) was K = 2 and K = 5, respectively (TIFF 17579 KB)

438_2022_1920_MOESM3_ESM.png

Supplementary file3 Figure S2. Population genetic structure of 17 natural populations of common sunflower (Helianthus annuus L.) at (a) anonymous and (b) transcribed microsatellite loci (eSTRs). The number of clusters (K) best supported at anonymous microsatellites (a) and eSTRs (b) was K = 2 and K = 5, respectively (PNG 312 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ranathunge, C., Chimahusky, M.E. & Welch, M.E. A comparative study of population genetic structure reveals patterns consistent with selection at functional microsatellites in common sunflower. Mol Genet Genomics 297, 1329–1342 (2022). https://doi.org/10.1007/s00438-022-01920-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-022-01920-3

Keywords

Navigation