Skip to main content
Log in

Genomic copy number variation of the CHKB gene alters gene expression and affects growth traits of Chinese domestic yak (Bos grunniens) breeds

  • Original Article
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

Copy number variation (CNV) influences the mRNA transcription levels and phenotypic traits through gene dosage, position effects, alteration of downstream pathways, and modulation of the structure and position of chromosomes. A previous study using the read depth approach to genome resequencing analysis revealed CNVs of the choline kinase beta (CHKB) gene in the copy number variable regions (CNVRs) of yak breeds may influence muscle development and therefore the phenotypic traits of yak breeds. Further work is required to attain a more complete understanding and validate the importance of the detected CNVR of the CHKB gene found in yak breeds, because there is no association studies of the CHKB gene with yak growth traits that have been reported. The goal of this study was to determine the distribution of CHKB copy numbers in five Chinese domestic yak breeds and evaluate their impact on gene expression and growth traits. The data were analyzed using real-time quantitative PCR. In this study, the normal CNV of the CHKB gene was found to be significantly (p < 0.05) associated with greater chest girth and body weight for three age groups of Datong yaks. Our results indicated that the copy number of the CHKB gene is negatively correlated with the mRNA expression level. From this result, we conclude that CNVs of the CHKB gene could be novel markers for growth traits of Chinese domestic yak breeds and might therefore provide a novel opportunity to utilize data on CNVs in designing molecular markers for the selection of animal breeding programs for larger populations of various yaks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

aCGH:

Array-based comparative genomic hybridization

BTF3:

Bovine basic transcription factor 3

CHKB:

Choline kinase beta

CHRM3:

Cholinergic receptor muscarinic 3

CNV:

Copy number variation

CNVRs:

Copy number variable regions

Ct:

Comparative threshold cycle

CYP4A11:

Cytochrome P450 family 4 subfamily A member 11

GAPDH:

Glyceraldehyde-3-phosphate dehydrogenase gene

GDNA:

Genomic DNA

GPC1:

Glypican 1

KCNJ12:

Potassium voltage-gated channel subfamily J member 12

KLF6:

Kruppel-like factor

LEPR:

Leptin receptor

MAPK10:

Mitogen-activated protein kinase 10

MYH3:

Myosin heavy chain 3

MyHC I:

Type I myosin heavy chain, cardiac muscle complex

NAHR:

Non-allelic homologous recombination

PCR:

Polymerase chain reaction

PGC-1α:

Peroxisome proliferator-activated receptor gamma coactivator 1-alpha

PLA2G2D:

Phospholipase A2 group IID

qPCR:

Quantitative real-time polymerase chain reaction

QTLs:

Quantitative trait locus

RHACD8:

Alpha chain (CD8A) gene

References

  • Alvarez CE, Akey JM (2012) Copy number variation in the domestic dog. Mamm Genome 23:144–163

    Article  PubMed  Google Scholar 

  • Aoyama C, Liao H, Ishidate K (2004) Structure and function of choline kinase isoforms in mammalian cells. Prog Lipid Res 43:266–281

    Article  CAS  PubMed  Google Scholar 

  • Bae JS, Cheong HS, Kim LH, NamGung S, Park TJ, Chun JY, Kim JY, Pasaje CF, Lee JS, Shin HD (2010) Identification of copy number variations and common deletion polymorphisms in cattle. BMC Genom 11:232

    Article  CAS  Google Scholar 

  • Beckmann JS, Estivill X, Antonarakis SE (2007) Copy number variants and genetic traits: closer to the resolution of phenotypic to genotypic variability. Nat Rev Genet 8:639–646

    Article  CAS  PubMed  Google Scholar 

  • Bickhart DM, Hou Y, Schroeder SG, Alkan C, Cardone MF, Matukumalli LK, Song J, Schnabel RD, Ventura M, Taylor JF, Garcia JF, Van Tassell CP, Sonstegard TS, Eichler EE, Liu GE (2012) Copy number variation of individual cattle genomes using next-generation sequencing. Genome Res 22:778–790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bickhart DM, Xu L, Hutchison JL, Cole JB, Null DJ, Schroeder SG, Song J, Garcia JF, Sonstegard TS, Tassell CPV, Schnabel RD, Taylor JF, Lewin HA, Liu GE (2016) Diversity and population-genetic properties of copy number variations and multicopy genes in cattle. DNA Res 23:253–262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Butte AJ, Dzau VJ, Glueck SB (2001) Further defining housekeeping, or “maintenance”, genes focus on ‘a compendium of gene expression in normal human tissues’. Physiol Genom 7:95–96

    Article  CAS  Google Scholar 

  • Chang CC, Ling LF, Manfred K, Wei C, Too S (2016) Phosphorylation of human choline kinase beta by protein kinase a: it’s impact on activity and inhibition. PLoS One 11(5):e0154702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen C, Qiao R, Wei R, Guo Y, Ai H, Ma J, Ren J, Huang L (2012) A comprehensive survey of copy number variation in 18 diverse pig populations and identification of candidate copy number variable genes associated with complex traits. BMC Genom 13:733

    Article  CAS  Google Scholar 

  • Cheung VG, Spielman RS, Ewens KG, Weber TM, Morley M, Burdick JT (2005) Mapping determinants of human gene expression by regional and genome-wide association. Nature 437:1365–1369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Conrad DF, Pinto D, Redon R, Feuk L, Gokcumen O, Zhang Y, Aerts J, Andrews TD, Barnes C, Campbell P, Fitzgerald T, Hu M, Ihm CH, Kristiansson K, Macarthur DG, Macdonald JR, Onyiah I, Pang AW, Robson S, Stirrups K, Valsesia A, Walter K, Wei J, Tyler-Smith C, Carter NP, Lee C, Scherer SW, Hurles ME (2010) Origins and functional impact of copy number variation in the human genome. Nature 464:704–712

    Article  CAS  PubMed  Google Scholar 

  • Da Silva JM, Giachetto PF, da Silva LO, Cintra LC, Paiva SR, Yamagishi MEB, Caetano AR (2016) Genome-wide copy number variation (CNV) detection in Nelore cattle reveals highly frequent variants in genome regions harbouring QTLs affecting production traits. BMC Genom 17:454

    Article  CAS  Google Scholar 

  • Fadista J, Thomsen B, Holm LE, Bendixen C (2010) Copy number variation in the bovine genome. BMC Genom 11:284

    Article  CAS  Google Scholar 

  • Feuk L, Marshall CR, Wintle RF, Scherer SW (2006) Structural variants: changing the landscape of chromosomes and design of disease studies. Hum Mol Genet 15:R57–R66

    Article  CAS  PubMed  Google Scholar 

  • Fontanesi L, Martelli PL, Beretti F, Riggio V, Dall’Olio S, Colombo M, Casadio R, Russo V, Portolano B (2010) An initial comparative map of copy number variations in the goat (Capra hircus) genome. BMC Genom 11:639

    Article  CAS  Google Scholar 

  • Freeman JL, Perry GH, Feuk L, Redon R, McCarroll SA, Altshuler DM, Aburatani H, Jones KW, Tyler-Smith C, Hurles ME, Carter NP, Scherer SW, Lee C (2006) Copy number variation: new insights in genome diversity. Genome Res 16:949–961

    Article  CAS  PubMed  Google Scholar 

  • Ghosh S, Qu Z, Das PJ, Fang E, Juras R, Cothran EG, McDonell S, Kenney DG, Lear TL, Adelson DL, Chowdhary BP, Raudsepp T (2014) Copy number variation in the horse genome. PLoS Genet 10:e1004712

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gilbert RP Bailey DRC, Shannon NH (1993) Linear body measurements of cattle before and after 20 years of selection for postweaning gain when fed two different diets. Anim Sci 71:1712–1720

    Article  CAS  Google Scholar 

  • Gutiérrez Ríos P, Kalra AA, Wilson JD, Tanji K, Akman HO, Area Gómez E, Schon EA, DiMauro S (2012) Congenital megaconial myopathy due to a novel defect in the choline kinase beta gene. Arch Neurol 69:657–661

    Article  PubMed  Google Scholar 

  • Haliloglu G, Talim B, Sel CG, Topaloglu H (2015) Clinical characteristics of megaconial congenital muscular dystrophy due to choline kinase beta gene defects in a series of 15 patients. J Inherit Metab Dis 38:1099–1108

    Article  CAS  PubMed  Google Scholar 

  • Hou Y, Liu GE, Bickhart DM, Cardone MF, Wang K, Kim E, Matukumalli LK,, Song J, VanRaden P, Sonstegard TS, Tassel CPV, Ventura M (2011) Genomic characteristics of cattle copy number variations. BMC Genom 12:127

    Article  Google Scholar 

  • Hou Y, Liu GE, Bickhart DM, Matukumalli LK, Li C, Song J, Gasbarre LC, Tassel CPV, Sonstegard TS (2012) Genomic regions showing copy number variations associated with resistance or susceptibility to gastrointestinal nematodes in Angus cattle. Funct Integr Genom 12:81–92

    Article  CAS  Google Scholar 

  • Hulse AM, Cai JJ (2013) Genetic variants contribute to gene expression variability in humans. Genetics 193:95–108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Keel BN, Keele JW, Snelling WM (2017) Genome-wide copy number variation in the bovine genome detected using low coverage sequence of popular beef breeds. Anim Genet 48:141–150

    Article  CAS  PubMed  Google Scholar 

  • Knezevic SZ, Streibig JC, Ritz C (2007) Utilizing R software package for dose–response studies: the concept and data analysis. Weed Technol 21:840–848

    Article  Google Scholar 

  • Kular J, Tickner JC, Pavlos NJ, Viola HM, Abel T, Lim BS, Yang X, Chen H, Cook R, Hool LC, Zheng MH, Xu J (2015) Choline kinase beta mutant mice exhibit reduced phosphocholine, elevated osteoclast activity, and low bone mass. J Biol Chem 290:1729–1742

    Article  CAS  PubMed  Google Scholar 

  • Lehnert SA, Reverter A, Byrne KA, Wang Y, Nattrass GS, Hudson NJ, Greenwood PL (2007) Gene expression studies of developing bovine longissimus muscle from two different beef cattle breeds. BMC Dev Biol 7:95

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Z, Wu G, Sher RB, Khavandgar Z, Hermansson M, Cox GA, Doschak MR, Murshed M, Beier F, Vance DV (2014) Choline kinase beta is required for normal endochondral bone formation. Biochim Biophys Acta 1840:2112–2122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liang C, Wang L, Wu X, Wang K, Ding X, Wang M, Ding XZ, Wang M, Chu M, Xie X, Qiu Q, Yan P (2016) Genome-wide association study identifies loci for the polled phenotype in yak. PLoS One 11:e0158642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin YQ, Wang GS, Feng J, Huang JQ, Xu YO, Jin SY, Li YP, Jiang ZR, Zheng YC (2010) Comparison of enzyme activities and gene expression profiling between yak and bovine skeletal muscles. Lives Sci 135:93–97

    Article  Google Scholar 

  • Liu GE, Hou Y, Zhu B, Cardone MF, Jiang L, Cellamare A, Mitra A, Alexander LJ, Coutinho LL, Dell’Aquila ME, Gasbarre LC, Lacalandra G, Li RW, Matukumalli LK, Nonneman D, Regitano LC, Smith TP, Song J, Sonstegard TS, Van Tassell CP, Ventura M, Eichler EE, McDaneld TG, Keele JW (2010) Analysis of copy number variations among diverse cattle breeds. Genome Res 20:693–670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu J, Zhang L, Xu L, Ren H, Lu J, Zhang X, Zhang S, Zhou X, Wei C, Zhao F, Du L (2013) Analysis of copy number variations in the sheep genome using 50 K SNP Bead Chip array. BMC Genom 14:229

    Article  CAS  Google Scholar 

  • Liu GE, Xu L, Huang K (2014a) Recent advances in studying of copy number variation and gene expression. Gene Express Genet Genom 7:1–5

    Article  CAS  Google Scholar 

  • Liu WB, Liu J, Liang CN, Guo X, Bao PJ, Chu M, Ding XZ, Wang HB, Zhu XS, Yan P (2014b) Associations of single nucleotide polymorphisms in candidate genes with the polled trait in Datong domestic yaks. Anim Genet 45:138–141

    Article  CAS  PubMed  Google Scholar 

  • Liu M, Lia B, Huanga Y, Yanga M, Lana X et al (2016) Copy number variation of bovine MAPK10 modulates the transcriptional activity and affects growth traits. Live Sci 194:44–50

    Article  Google Scholar 

  • Medugorac I, Graf A, Grohs C, Rothammer S, Zagdsuren Y, Gladyr E, Zinovieva N, Barbieri J, Seichter D, Russ I, Eggen A, Hellenthal G, Brem G, Blum H, Krebs S, Capitan A (2017) Whole-genome analysis of introgressive hybridization and characterization of the bovine legacy of Mongolian yaks. Nat Genet 49:470–475

    Article  CAS  PubMed  Google Scholar 

  • Merla G, Howald C, Henrichsen CN, Lyle R, Wyss C, Zabot MT, Antonarakis SE, Reymond A (2006) Submicroscopic deletion in patients with Williams–Beuren syndrome influences expression levels of the nonhemizygous flanking genes. Am J Hum Genet 79:332–341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mills RE, Walter K, Stewart C, Handsaker RE, Chen K, Alkan C, Abyzov A, Ye K, Cheetham RK, Chinwalla A, Conrad DF, Fu Y, Grubert F, Hajirasouliha I, Hormozdiari F, Iakoucheva LM, Iqbal Z, Kang S, Kidd JM, Konkel MK, Korn J, Khurana E, Kural D, Lam HYK, Leng J, Li R, Li Y, Lin C-Y, Luo R, Mu XJ, Nemesh J, Peckham HE, Rausch T, Scally A, Shi X, Stromberg MP, Urban AE, Walker JA, Wu J, Zhang Y, Zhang ZD, Batzer MA, Ding L, Marth GT, McVean G, Sebat J, Wang J, Ye K, Eichler EE, Gerstein MB, Hurles ME, Lee C, McCarroll SA, Korbel JO, 100 Genomes Project (2011) Mapping copy number variation by population-scale genome sequencing. Nature 470:59–65

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mitsuhashi S, Nishino I (2013) Megaconial congenital muscular dystrophy due to loss-of-function mutations in choline kinase. Curr Opin Neurol 26:536–543

    Article  CAS  PubMed  Google Scholar 

  • Mitsuhashi S, Ohkuma A, Talim B, Karahashi M, Koumura T, Aoyama C, Kurihara M, Quinlivan R, Sewry C, Mitsuhashi H, Goto K, Koksal B, Kale G, Ikeda K, Taguchi R, Noguchi S, Hayashi YK, Nonaka I, Sher RB, Sugimoto H, Nakagawa Y, Cox GA, Topaloglu H, Nishino I (2011a) A congenital muscular dystrophy with mitochondrial structural abnormalities caused by defective de novo phosphatidylcholine biosynthesis. Am J Hum Genet 88:845–851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mitsuhashi S, Hatakeyama H, Karahashi M, Koumura T, Nonaka I, Hayashi YK, Noguchi S, Sher RB, Nakagawa Y, Manfredi G, Goto Y, Cox GA, Nishino, Ichizo I (2011b) Muscle choline kinase beta defect causes mitochondrial dysfunction and increased mitophagy. Hum Mol Genet 20:3841–3851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miyagawa T, Kawashima M, Nishida N, Ohashi J, Kimura R, Fujimoto A, Shimada M, Morishita S, Shigeta T, Lin L, Hong SC, Faraco J, Shin YK, Jeong JH, Okazaki Y, Tsuji S, Honda M, Honda Y, Mignot E, Tokunaga K (2008) Variant between CPT1B and CHKB associated with susceptibility to narcolepsy. Nat Genet 40:1324–1328

    Article  CAS  PubMed  Google Scholar 

  • Myers AJ, Gibbs JR, Webster JA, Rohrer K, Zhao A, Marlowe L, Kaleem M, Leung D, Bryden L, Nath P, Zismann VL, Joshipura K, Huentelman MJ, Hu-Lince D, Coon KD, Craig DW, Pearson JV, Holmans P, Heward CB, Reiman EM, Stephan D, Hardy J (2007) A survey of genetic human cortical gene expression. Nat Genet 39:1494–1499

    Article  CAS  PubMed  Google Scholar 

  • Olshen AB, Venkatraman E, Lucito R, Wigler M (2004) Circular binary segmentation for the analysis of array-based DNA copy number data. Biostatistics 5:557–572

    Article  PubMed  Google Scholar 

  • Paudel Y, Madsen O, Megens HJ, Frantz LA, Bosse M, Bastiaansen JW, Crooijmans RP, Groenen MA (2013) Evolutionary dynamics of copy number variation in pig genomes in the context of adaptation and domestication. BMC Genom 14:1–13

    Article  CAS  Google Scholar 

  • Qiu Q, Wang L, Wang K, Yang Y, Ma T, Wang Z, Zhang X, Ni Z, Hou F, Long R, Abbott R, Lenstra J, Liu J (2015) Yak whole-genome resequencing reveals domestication signatures and prehistoric population expansions. Nature Commun 6:10283

    Article  CAS  Google Scholar 

  • Schadt EE, Molony C, Chudin E, Hao K, Yang X, Lum PY, Kasarskis A, Zhang B, Wang S, Suver C, Zhu J, Millstein J, Sieberts S, Lamb J, GuhaThakurta D, Derry J, Storey JD, Avila-Campillo I, Kruger MJ, Johnson JM, Rohl CA, van Nas A, Mehrabian M, Drake TA, Lusis AJ, Smith RC, Guengerich FP, Strom SC, Schuetz E, Rushmore TH, Ulrich R (2008) Mapping the genetic architecture of gene expression in human liver. PLoS Biol 6:e107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmittgen TD, Livak KJ (2008) Analyzing real-time PCR data by the comparative CT method. Nat Protoc 3:1101–1107

    Article  CAS  PubMed  Google Scholar 

  • Seroussi E, Klompus S, Silanikove M, Krifucks O, Shapiro F, Gertler A, Leitner G (2013) Nonbactericidal secreted phospholipase A2s are potential anti-inflammatory factors in the mammary gland. Immunogenetics 65:861–871

    Article  CAS  PubMed  Google Scholar 

  • Sher RB, Aoyama C, Huebsch KA, Ji S, Kerner J, Yang Y, Frankel WN, Hoppel CL, Wood PA, Vance DE, Cox GA (2006) A rostrocaudal muscular dystrophy caused by a defect in choline kinase beta, the first enzyme in phosphatidylcholine biosynthesis. J Biol Chem 281:4938–4948

    Article  CAS  PubMed  Google Scholar 

  • Sherriff JL, O’Sullivan TA, Properzi C, Oddo J-L, Adams LA (2016) Choline, its potential role in nonalcoholic fatty liver disease, and the case for human and bacterial genes. Adv Nutr 7:5–13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi T, Xu Y, Yang M, Huang Y, Lan X, Lei C, Qi X, Yang X, Chen H (2016) Copy number variations at LEPR gene locus associated with gene expression and phenotypic traits in Chinese cattle. Anim Sci J 87:336–343

    Article  CAS  PubMed  Google Scholar 

  • Song QQ, Chai ZX, Xin JW, Zhao SJ, Ji QM, Zhang CF, Ma ZJ, Zhong JC (2015) Genetic diversity and classification of Tibetan yak populations based on the mtDNA COIII gene. Genet Mol Res 14:1763–1770

    Article  CAS  PubMed  Google Scholar 

  • Stothard P, Choi JW, Basu U, Sumner-Thomson JM, Meng Y, Liao X, Moore SS (2011) Whole genome resequencing of black Angus and Holstein cattle for SNP and CNV discovery. BMC Genom 12:559

    Article  CAS  Google Scholar 

  • Stranger BE, Forrest MS, Dunning M, Ingle CE, Beazley C, Thorne N, Redon R, Bird CP, de Grassi A, Lee C, Tyler-Smith C, Carter N, Scherer SW, Tavaré S, Deloukas P, Hurles ME, Dermitzakis ET (2007) Relative impact of nucleotide and copy number variation on gene expression phenotypes. Science 315:848–853

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Turner DJ, Miretti M, Rajan D, Fiegler H, Carter NP, Blayney ML, Beck S (2008) Germline rates of de novo meiotic deletions and duplications causing several genomic disorders. Nat Genet 40:90–95

    Article  CAS  PubMed  Google Scholar 

  • Wang XF, Nahashon S, Feaster TK, Bohannon-Stewart A, Adefope N (2010) An initial map of chromosomal segmental copy number variations in the chicken. BMC Genom 11:351

    Article  CAS  Google Scholar 

  • Wang MD, Dzama K, Hefer CA, Muchadeyi FC (2015) Genomic population structure and prevalence of copy number variations in South African Nguni cattle. BMC Genom 16:894

    Article  CAS  Google Scholar 

  • Wiener G, Han JL, Long RJ (2003) The yak. Regional Office for Asia and the Pacific of the Food and Agriculture Organization of the United Nations, Bangkok, pp 189–200

    Google Scholar 

  • Wu G, Vance DE (2010) Choline kinase and its function. Biochem Cell Biol 88:559–564

    Article  CAS  PubMed  Google Scholar 

  • Wu G, Sher RB, Cox GA, Vance DE (2009) Understanding the muscular dystrophy caused by deletion of choline kinase beta in mice. Biochim Biophys Acta 1791:347–356

    Article  CAS  PubMed  Google Scholar 

  • Xu Y, Zhang L, Shi T, Zhou Y, Cai H, Lan X, Zhang C, Lei C, Chen H (2013) Copy number variations of MICAL-L2 shaping gene expression contribute to different phenotypes of cattle. Mamm Genome 24:508–516

    Article  CAS  PubMed  Google Scholar 

  • Xu Y, Shi T, Cai H, Zhou Y, Lan X, Zhang C, Lei C, Qi X, Chen H (2014a) Associations of MYH3 gene copy number variations with transcriptional expression and growth traits in Chinese cattle. Genet 535:106–111

    CAS  Google Scholar 

  • Xu L, Cole JB, Bickhart DM, Hou Y, Song J, VanRaden PM, Sonstegard TS, Van Tassell CP, Liu GE (2014b) Genome-wide CNV analysis reveals additional variants associated with milk production traits in Holsteins. BMC Genom 15:683

    Article  CAS  Google Scholar 

  • Xu L, Bickhart DM, Cole JB, Schroeder SG, Song J, Tassell CP, Sonstegard TS, Liu GE (2015) Genomic signatures reveal new evidences for selection of important traits in domestic cattle. Mol Biol Evol 32(3):711–725

    Article  CAS  PubMed  Google Scholar 

  • Xu L, Hou Y, Bickhart DM, Zhou Y, Hay el HA, Song J, Sonstegard TS, Van Tassell CP, Liu GE (2016) Population-genetic properties of differentiated copy number variations in cattle. Sci Rep 6:23161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu Y, Jiang Y, Shi T, Cai H, Lan X, Zhao X, Plath M, Chen H (2017) Whole-genome sequencing reveals mutational landscape underlying phenotypic differences between two widespread Chinese cattle breeds. PLoS One 12:e0183921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang M, Lv J, Zhang L, Li M, Zhou Y, Lan X, Lei C, Chen H (2017) Association study and expression analysis of CYP4A11 gene copy number variation in Chinese cattle. Sci Rep 7:46599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yi G, Qu L, Chen S, Xu G, Yang N (2015) Genome-wide copy number profiling using high-density SNP array in chickens. Anim Genet 46(2):148–157

    Article  CAS  PubMed  Google Scholar 

  • Yim SH, Chung YJ, Jin EH, Shim SC, Kim JY, Kim YS, Hu HJ, Shin SH, Pae HO, Zouali M, Chung HT (2011) The potential role of VPREB1 gene copy number variation in susceptibility to rheumatoid arthritis. Mol Immunol 48:1338–1343

    Article  CAS  PubMed  Google Scholar 

  • Zhang G, Chen W, Xue M, Wang Z, Chang H, Han X, Liao X, Wang D (2008) Analysis of genetic diversity and population structure of Chinese yak breeds (Bos grunniens) using microsatellite markers. J Genet Genom 35:233–238

    Article  CAS  Google Scholar 

  • Zhang L, Jia S, Yang M, Xu Y, Li C, Sun J, Huang Y, Lan X, Lei C, Zhou Y, Zhang C, Zhao X, Chen H (2014) Detection of copy number variations and their effects in Chinese bulls. BMC Genom 15:480

    Article  Google Scholar 

  • Zhang X, Wang K, Wang L, Yang Y, Ni Z, Xie X, Shao X, Han J, Wan D, Qiu Q (2016) Genome-wide patterns of copy number variation in the Chinese yak genome. BMC Genom 17:379

    Article  CAS  Google Scholar 

  • Zhou Y, Utsunomiya YT, Xu L, Hay EH, Bickhart DM, Alexandre PA, Rosen BD, Schroeder SG, Carvalherio R, Neves HHR, Sonstegard TS, Tassell CPV, Ferraz SJB, Fukumasu H, Garcia JF, Liu GE (2016) Genome-wide CNV analysis reveals variants associated with growth traits in Bos indicus. BMC Genom 17:1–9

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Mr. Yong Feng Zhang for guidance and technical assistance during the laboratory work and Dr. Hong Bo Wang, Ms. Li Xiaoxiao, and Mr. Peng Tang for blood sample collection.

Funding

This research was funded by the Innovation Project of Chinese Academy of Agricultural Sciences (Grant number CAAS-ASTIP-2014-LIHPS-01) and the Program of National Beef Cattle and Yak Industrial Technology System (Grant number CARS-37).

Author information

Authors and Affiliations

Authors

Contributions

HA performed the data analysis and literature review. PY, MC, BP, and DXZ contributed to guidance and supervision during this study. WX was involved in drafting the manuscript and performing the laboratory work. HA wrote the manuscript and prepared the graphics.

Corresponding authors

Correspondence to Habtamu Abera Goshu or Ping Yan.

Ethics declarations

Conflict of interest

Habtamu Abera Goshu declares that he has no conflict of interest. Min Chu declares that she has no conflict of interest. Wu Xiaoyun declares that he has no conflict of interest. Bao Pengjia declares that he has no conflict of interest. Ding Xue Zhi declares that he has no conflict of interest. Ping Yan declares that she has no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Additional information

Communicated by S. Hohmann.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goshu, H.A., Chu, M., Xiaoyun, W. et al. Genomic copy number variation of the CHKB gene alters gene expression and affects growth traits of Chinese domestic yak (Bos grunniens) breeds. Mol Genet Genomics 294, 549–561 (2019). https://doi.org/10.1007/s00438-018-01530-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-018-01530-y

Keywords

Navigation