Skip to main content
Log in

Inheritance and quantitative trail loci mapping of adventitious root numbers in cucumber seedlings under waterlogging conditions

  • Original Article
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

The hypocotyl-derived adventitious root (AR) is an important morphological acclimation to waterlogging stress; however, its genetic basis has not been adequately understood. In the present study, a mixed major gene plus polygene inheritance model was used to analyze AR numbers (ARN) 7 days after waterlogging treatment in six generations (P1, P2, F1, B1, B2, and F2), using cucumber waterlogging tolerant line Zaoer-N and sensitive Pepino as parents. The results showed that the genetic model D-4, mixed one negative dominance major gene and additive–dominance polygenes, is the best-fitting genetic model for waterlogging-triggered ARN phenotype. A genetic linkage map spanning 550.8 cM and consisting of 149 simple sequence repeat (SSR) markers segregating into seven linkage groups was constructed. Three QTLs (ARN3.1, ARN5.1, and ARN6.1) distributed on chromosomes 3, 5, and 6 were identified by composite interval mapping. The major-effect QTL, ARN6.1, located between SSR12898 and SSR04751, was the only locus detected in three seasons, with least likelihood (LOD) scores of 8.8, 10.4, and 9.5 and account for 17.6, 24, and 19.8% of the phenotypic variance, respectively. Using five additional single nucleotide polymorphism (SNP) makers, the ARN6.1 was narrowed down to a 0.79 Mb interval franked by SSR12898 and SNP25558853. Illumina RNA-sequencing data generated on hypocotyls of two parents 48 h after waterlogging treatment revealed 15 genes in the 0.79 Mb interval were differentially expressed, including Csa6G503880 encoding a salicylic acid methyl transferase-like protein, Csa6G504590 encoding a cytochrome P450 monooxygenase, and Csa6G505230 encoding a heavy metal-associated protein. Our findings shed light on the genetic architecture underlying adventitious rooting during waterlogging stress in cucumber, and provide a list of potential gene targets for further elucidating waterlogging tolerance in plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ando S, Sakai S (2002) Isolation of an ethylene-responsive gene (ERAF16) for a putative methyltransferase and correlation of ERAF16 gene expression with female flower formation in cucumber plants (Cucumis sativus). Physiol Plant 116(2):213–222

    Article  CAS  PubMed  Google Scholar 

  • Bailey-Serres J, Fukao T, Gibbs DJ, Holdsworth MJ, Lee SC, Licausi F, Perata P, Voesenek LACJ, van Dongen JT (2012) Making sense of low oxygen sensing. Trends Plant Sci 17:129–138

    Article  CAS  PubMed  Google Scholar 

  • Ballesteros DC, Mason RE, Addison CK, Acu\(\tilde{n}\)a MA, Arguello MN, Subramanian N, Miller RG, Sater H, Gbur EE, Miller D, Griffey CA (2015) Tolerance of wheat to vegetative stage soil waterlogging is conditioned by both constitutive and adaptive QTL. Euphytica 201(3): 329–343

  • Boru G, Van Ginkel M, Kronstad WE, Boersma L (2001) Expression and inheritance of tolerance to waterlogging stress in wheat. Euphytica 117(2):91–98

    Article  Google Scholar 

  • Broughton S, Zhou GF, Teakle NL, Matsuda R, Zhou MX, Leary RAO, Colmer TD, Li CD (2015) Waterlogging tolerance is associated with root porosity in barley (Hordeum vulgare L.). Mol Breed 35(1):1–15

    Article  Google Scholar 

  • Cavagnaro PF, Senalik DA, Yang LM, Simon PW, Harkins TT, Kodira CD, Huang SW, Weng YQ (2010) Genome-wide characterization of simple sequence repeats in cucumber (Cucumis sativus L.). BMC Genom 11(1):569

    Article  Google Scholar 

  • Cingolani P, Platts A, Wang LL, Coon M, Nguyen T, Wang L, Land SJ, Lu X, Ruden DM (2012) A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly 6(2):80–92

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19:11–15

    Google Scholar 

  • Gai JY, Wang JK (1998) Identification and estimation of a QTL model and its effects. Theor Appl Genet 97:1162–1168

    Article  Google Scholar 

  • Guan L, Murphy AS, Peer WA, Gan L, Li Y, Cheng ZM (2015) Physiological and molecular regulation of adventitious root formation. Criti Rev Plant Sci 34(5):506–521

    Article  CAS  Google Scholar 

  • Henshaw TL, Gilbert RA, Scholberg JM, Sinclair TR (2007) Soya bean (Glycine max L. Merr.) genotype response to early-season flooding: I. root and nodule development. J Agron Crop Sci 193(3):177–188

    Article  Google Scholar 

  • Huang SW, Li RQ, Zhang ZH, Li L, Gu XF, Fan W, Lucas WJ, Wang XW, Xie BY, Ni PX (2009) The genome of the cucumber, Cucumis sativus L. Nat Genet 41(12):1275–1281

    Article  CAS  PubMed  Google Scholar 

  • Kosambi DD (1944) The estimation of map distance from recombination values. Ann Eugen 12:172–175

    Article  Google Scholar 

  • Mano Y, Muraki M, Fujimori M, Takamizo T, Kindiger B (2005a) Identification of QTL controlling adventitious root formation during flooding conditions in teosinte (Zea mays ssp. huehuetenangensis) seedlings. Euphytica 142(1):33–42

    Article  Google Scholar 

  • Mano Y, Muraki M, Fujimori M, Takamizo T (2005b) Varietal difference and genetic analysis of adventitious root formation at the soil surface during flooding in maize and teosinte seedlings. Jpn J Crop Sci 74(1):41–46

    Article  CAS  Google Scholar 

  • Mano Y, Omori F, Muraki M, Takamizo T (2005c) QTL mapping of adventitious root formation under flooding conditions in tropical maize (Zea mays L.) seedlings. Breed Sci 55:343–347

    Article  Google Scholar 

  • Mauriat M, Petterle A, Bellini C, Moritz T (2014) Gibberellins inhibit adventitious rooting in hybrid aspen and Arabidopsis by affecting auxin transport. Plant J 78(3):372–384

    Article  CAS  PubMed  Google Scholar 

  • McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, Garimella K, Altshuler D, Gabriel S, Daly M, DePristo MA (2010) The genome analysis toolkit: a map reduce framework for analyzing next-generation DNA sequencing data. Genome Res 20:1297–1303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mergemann H, Sauter M (2000) Ethylene induces epidermal cell death at the site of adventitious root emergence in rice. Plant Physiol 124(2):609–614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miao H, Zhang SP, Wang XW, Zhang ZH, Li M, Mu SQ, Cheng ZC, Zhang RW, Huang SW, Xie BY, Fang ZY, Zhang ZX, Weng YQ, Gu XF (2011) A linkage map of cultivated cucumber (Cucumis sativus L.) with 248 microsatellite marker loci and seven genes for horticulturally important traits. Euphytica 182(2):167–176

    Article  Google Scholar 

  • Nie J, He H, Peng J, Yang X, Bie B, Zhao J, Wang Y, Si L, Pan JS, Cai R (2015) Identification and fine mapping of pm5. 1: a recessive gene for powdery mildew resistance in cucumber (Cucumis sativus L.). Mol Breed 35(1):7

    Article  Google Scholar 

  • Niu S, Li Z, Yuan H, Fang P, Chen X, Li W (2013) Proper gibberellin localization in vascular tissue is required to regulate adventitious root development in tobacco. J Exp Bot 64(11):3411–3424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pang JY, Zhou MX, Mendham N, Shabala S (2004) Growth and physiological responses of six barley genotypes to waterlogging and subsequent recovery. Aust J Agric Res 55(8):895–906

    Article  Google Scholar 

  • Qi XH, Chen RF, Xu Q, Chen XH (2011) Preliminary analysis of submergence tolerance of cucumber at seedling stage. China Vegetables 4:23–28

    Google Scholar 

  • Qi XH, Xu XW, Lin XJ, Zhang WJ, Chen XH (2012) Identification of differentially expressed genes in cucumber (Cucumis sativus L.) root under waterlogging stress by digital gene expression profile. Genomics 99(3):160–168

    Article  CAS  PubMed  Google Scholar 

  • Qiu FZ, Zheng YL, Zhang ZL, Xu SZ (2007) Mapping of QTL associated with waterlogging tolerance during the seedling stage in maize. Ann Bot 99:1067–1081

    Article  PubMed  PubMed Central  Google Scholar 

  • Rathore TR, Warsi MZK, Lothrop JE, Singh NN (1998) Production of maize under excess soil moisture (waterlogging) condition. In: Proceedings of 7th Asian regional maize workshop. Los Banos, 232–239

  • Ren Y, Zhang ZH, Liu JH (2009) An integrated genetic and cytogenetic map of the cucumber genome. PLoS One 4(6):e5795

    Article  PubMed  PubMed Central  Google Scholar 

  • Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory, Cold Spring Harbor

    Google Scholar 

  • Sauter M (2013) Root responses to flooding. Curr Opin Plant Biol 16(3):282–286

    Article  PubMed  Google Scholar 

  • Shabala S (2011) Physiological and cellular aspects of phytotoxicity tolerance in plants: the role of membrane transporters and implications for crop breeding for waterlogging tolerance. New Phytol 190(2):289–298

    Article  CAS  PubMed  Google Scholar 

  • Stanca AM, Romagosa I, Takeda K, Lundborg T, Terzi V, Cattivelli L (2003) Diversity in abiotic stress tolerances. In: Bothmer R, Hintum T, Knüpffer H, Sato K (eds) Diversity in barley (Hordeum vulgare). Elsevier, Amsterdam

    Google Scholar 

  • Van Ooijen JW, Voorrips RE (2001) JoinMap 3.0, software for the calculation of genetic linkage maps. Kyazma BV, Wageningen

  • van Veen H, Akman M, Jamar DCL, Vreugdenhil D, Kooiker M, van Tienderen P, Voesenek LACJ, Schranz ME, Sasidharan R (2014) Group VII ethylene response factor diversification and regulation in four species from flood-prone environments. Plant Cell Environ 37(10):2421–2432

    PubMed  Google Scholar 

  • VanToai TT, St Martin SK, Chase K, Boru G, Schnipke V, Schmitthenner AF, Lark KG (2001) Identification of a QTL associated with tolerance of soybean to soil waterlogging. Crop Sci 41:1247–1252

    Article  Google Scholar 

  • Vidoz ML, Loreti E, Mensuali A, Alpi A, Perata P (2010) Hormonal interplay during adventitious root formation in flooded tomato plants. Plant J 63(4):551–562

    Article  CAS  PubMed  Google Scholar 

  • Wang JK (1996) Studies on identification of major-polygene mixed inheritance of quantitative traits and estimation of genetic parameters. Doctorate Dissertation, Nanjing Agricultural University

  • Wang F, Zhao TJ, Yu DY, Chen SY, Gai JY (2008) Inheritance and QTL analysis of submergence tolerance at seedling stage in soybean. Acta Agron Sin 34:748–753

    Article  CAS  Google Scholar 

  • Woycicki R, Witkowicz J, Gawronski P, Dabrowska J, Lomsadze A, Pawelkowicz M, Siedlecka E, Yagi K, Plader W, Seroczynska A (2011) The genome sequence of the north-European cucumber (Cucumis sativus L.) unravels evolutionary adaptation mechanisms in plants. PLoS One 6(7):e22728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu Z, Zhang T, Li L, Xu J, Qin X, Zhang T, Cui L, Lou Q, Li J, Chen J (2016) Identification of a stable major-effect QTL (Parth 2.1) controlling parthenocarpy in cucumber and associated candidate gene analysis via whole genome re-sequencing. BMC Plant Biol 16:182

    Article  PubMed  PubMed Central  Google Scholar 

  • Xiao Y, Thatcher S, Wang M, Wang T, Beatty M, Zastrow-Hayes G, Li L, Li J, Li B, Yang X (2016) Transcriptome analysis of near-isogenic lines provides molecular insights into starch biosynthesis in maize kernel. J Integr Plant Biol 58(8):713–723

    Article  CAS  PubMed  Google Scholar 

  • Xu X, Wang H, Qi X, Xu Q, Chen X (2014) Waterlogging-induced increase in fermentation and related gene expression in the root of cucumber (Cucumis sativus L.). Sci Hortic 179:388–395

    Article  CAS  Google Scholar 

  • Xu X, Ji J, Lu L, Qi X, Chen X (2016a) a) Cloning and expression analysis of Cucumis sativus calcium-dependent protein kinase 5 gene (CsCDPK5) under waterlogging stress. Acta Hortic Sin 4:704–714

    Google Scholar 

  • Xu X, Ji J, Ma X, Xu Q, Qi X, Chen X (2016b) Comparative proteomic analysis provides insight into the key proteins involved in cucumber (Cucumis sativus L.) adventitious root emergence under waterlogging stress. Front Plant Sci 7:1515

    Google Scholar 

  • Xu X, Yu T, Xu R, Shi Y, Lin X, Xu Q, Qi X, Weng Y, Chen X (2016c) Fine mapping of a dominantly inherited powdery mildew resistance major-effect QTL, Pm1. 1, in cucumber identifies a 41.1 kb region containing two tandemly arrayed cysteine-rich receptor-like protein kinase genes. Theor Appl Genet 129(3):507–516

    Article  CAS  PubMed  Google Scholar 

  • Yang L, Li D, Li Y, Gu X, Huang S, Garcia-Mas J, Weng Y (2013) A 1,681-locus consensus genetic map of cultivated cucumber including 67 NB-LRR resistance gene homolog and ten gene loci. BMC Plant Biol 13(1):53

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yeboah MA, Chen XH, Chen RF, Mouammar A, Liang GH, Gu MH (2008a) Mapping quantitative trait loci for waterlogging tolerance in cucumber using SRAP and ISSR markers. Biotechnology 7(2):157–167

    Article  CAS  Google Scholar 

  • Yeboah MA, Chen XH, Liang GH, Gu MH, Xu CW (2008b) Inheritance of waterlogging tolerance in cucumber (Cucumis sativus L.). Euphytica 162:145–154

    Article  Google Scholar 

  • Yu F, Han XS, Geng CJ, Zhao YX, Zhang ZX, Qiu FZ (2015) Comparative proteomic analysis revealing the complex network associated with waterlogging stress in maize (Zea mays L.) seedling root cells. Proteomics 15(1):135–147

    Article  CAS  PubMed  Google Scholar 

  • Zaidi PH, Rashid Z, Vinayan MT, Almeida GD, Phagna RK, Babu R (2015) QTL mapping of agronomic waterlogging tolerance using recombinant inbred lines derived from tropical maize (Zea mays L) germplasm. PLoS One 10(4):e0124350

    Article  PubMed  PubMed Central  Google Scholar 

  • Zeng ZB (1993) Theoretical basis of separation of multiple linked gene effects on mapping quantitative trait loci. Proc Natl Acad Sci USA 901:10972–10976

    Article  Google Scholar 

  • Zhang WW, Pan JS, He HL, Zhang C, Li Z, Zhao JL, Yuan XJ, Zhu LH, Huang SW, Cai R (2012) Construction of a high density integrated genetic map for cucumber (Cucumis sativus L.). Theor Appl Genet 124(2):249–259

    Article  CAS  PubMed  Google Scholar 

  • Zhang XB, Tang B, Yu F, Li L, Wang M, Xue YD, Zhang ZX, Yan JB, Yue B, Zheng YL, Qiu FZ (2013a) Identification of major QTL for waterlogging tolerance using genome-wide association and linkage mapping of maize seedlings. Plant Mol Biol Rep 31(3):594–606

    Article  CAS  Google Scholar 

  • Zhang SP, Liu MM, Miao H, Zhang SQ, Yang YH, Xie BY, Wehner TC, Gu XF (2013b) Chromosomal mapping and QTL analysis of resistance to downy mildew in Cucumis sativus. Plant Dis 97:245–251

    Article  CAS  Google Scholar 

  • Zheng BS, Yang L, Mao CZ, Zhang WP, Wu P (2006) QTLs and candidate genes for rice root growth under flooding and upland conditions. Acta Genetica Sinica 33(2):141–151

    Article  PubMed  Google Scholar 

  • Zhou M (2011) Accurate phenotyping reveals better QTLs for waterlogging tolerance in barley. Plant Breed 130(2):203–208

    Article  CAS  Google Scholar 

  • Zhou MX, Li H, Neville M, Salter S (2004) Inheritance of water-logging tolerance of barley (Hordeum vulgare L.). In: Proceedings of 4th Intl Crop Science Congress (Vol. 26), Queensland

  • Zhu Y, Nomura T, Xu Y, Zhang Y, Peng Y, Mao B, Hanada A, Zhou H, Wang R, Li P, Zhu X (2006) ELONGATED UPPERMOST INTERNODE encodes a cytochrome P450 monooxygenase that epoxidizes gibberellins in a novel deactivation reaction in rice. Plant Cell 18(2):442–456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We greatly appreciate the helpful comments on the manuscript from two anonymous reviewers. The authors gratefully acknowledge financial support from China scholarship council and foundation of excellent doctoral dissertation of Yangzhou University. This research was funded by the National Natural Science Foundation of China (No. 31372087).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuehao Chen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Communicated by S. Hohmann.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (RAR 140 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, X., Ji, J., Xu, Q. et al. Inheritance and quantitative trail loci mapping of adventitious root numbers in cucumber seedlings under waterlogging conditions. Mol Genet Genomics 292, 353–364 (2017). https://doi.org/10.1007/s00438-016-1280-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-016-1280-2

Keywords

Navigation