Skip to main content
Log in

Discovery of microRNAs and transcript targets related to witches’ broom disease in Paulownia fortunei by high-throughput sequencing and degradome approach

  • Original Article
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

Paulownia witches’ broom (PaWB) caused by the phytoplasma is a devastating disease of Paulownia trees. It has caused heavy yield losses to Paulownia production worldwide. However, knowledge of the transcriptional and post-transcriptional regulation of gene expression by microRNAs (miRNAs), especially miRNAs responsive to PaWB disease stress, is still rudimentary. In this study, to identify miRNAs and their transcript targets that are responsive to PaWB disease stress, six sequencing libraries were constructed from healthy (PF), PaWB-infected (PFI), and PaWB-infected, 20 mg L−1 methyl methane sulfonate-treated (PFI20) P. fortunei seedlings. As a result, 95 conserved miRNAs belonging to 18 miRNA families, as well as 122 potential novel miRNAs, were identified. Most of them were found to be a response to PaWB disease-induced stress, and the expression levels of these miRNAs were validated by quantitative real-time PCR analysis. The study simultaneously identified 109 target genes from the P. fortunei for 14 conserved miRNA families and 24 novel miRNAs by degradome sequencing. Furthermore, the functions of the miRNA targets were annotated based on Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analysis. The results presented here provide the groundwork for further analysis of miRNAs and target genes responsive to the PaWB disease stress, and could be also useful for addressing new questions to better understand the mechanisms of plant infection by phytoplasma in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Addo-Quaye C, Eshoo TW, Bartel DP, Axtell MJ (2008) Endogenous siRNA and miRNA targets identified by sequencing of the Arabidopsis degradome. Curr Biol 18:758–762

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Baric S, Kerschbamer C, Dalla Via J (2006) TaqMan real-time PCR versus four conventional PCR assays for detection of apple proliferation phytoplasma. Plant Mol Biol Rep 24:169–184

    Article  CAS  Google Scholar 

  • Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297

    Article  PubMed  CAS  Google Scholar 

  • Berg JM, Shi Y (1996) The galvanization of biology: a growing appreciation for the roles of zinc. Science 271:1081–1085

    Article  PubMed  CAS  Google Scholar 

  • Brodersen P, Voinnet O (2006) The diversity of RNA silencing pathways in plants. Trends Genet 22:268–280

    Article  PubMed  CAS  Google Scholar 

  • Buhtz A, Springer F, Chappell L, Baulcombe DC, Kehr J (2008) Identification and characterization of small RNAs from the phloem of Brassica napus. Plant J 53:739–749

    Article  PubMed  CAS  Google Scholar 

  • Cao X, Fan G, Zhao Z, Deng M, Dong Y (2014) Morphological changes of Paulownia seedlings infected phytoplasmas reveal the genes associated with witches’ broom through AFLP and MSAP. PLoS One 9:e112533

    Article  PubMed  PubMed Central  Google Scholar 

  • Capra M, Nuciforo PG, Confalonieri S, Quarto M, Bianchi M, Nebuloni M, Boldorini R, Pallotti F, Viale G, Gishizky ML, Draetta GF, Di Fiore PP (2006) Frequent alterations in the expression of serine/threonine kinases in human cancers. Cancer Res 66:8147–8154

    Article  PubMed  CAS  Google Scholar 

  • Chi X, Yang Q, Chen X, Wang J, Pan L, Chen M, Yang Z, He Y, Liang X, Yu S (2011) Identification and characterization of microRNAs from peanut (Arachis hypogaea L.) by high-throughput sequencing. PLoS One 6:e27530

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Chuck G, Candela H, Hake S (2009) Big impacts by small RNAs in plant development. Curr Opin Plant Biol 12:81–86

    Article  PubMed  CAS  Google Scholar 

  • Curley A (1993) Paulownia growing rapidly outside Asia. J Forest 91:41

    Google Scholar 

  • Ehya F, Monavarfeshani A, Mohseni Fard E, Karimi Farsad L, Khayam Nekouei M, Mardi M, Salekdeh GH (2013) Phytoplasma-responsive microRNAs modulate hormonal, nutritional, and stress signalling pathways in mexican lime trees. PLoS One 8:e66372

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Fan G, Zhai X, Niu S, Ren Y (2014) Dynamic expression of novel and conserved microRNAs and their targets in diploid and tetraploid of Paulownia tomentosa. Biochimie 102:68–77

    Article  PubMed  CAS  Google Scholar 

  • Filipowicz W, Jaskiewicz L, Kolb F, Pillai R (2005) Post-transcriptional gene silencing by siRNAs and miRNAs. Curr Opin Struct Biol 15:331–341

    Article  PubMed  CAS  Google Scholar 

  • Fornari M, Calvenzani V, Masiero S, Tonelli C, Petroni K (2013) The Arabidopsis NF-YA3 and NF-YA8 genes are functionally redundant and are required in early embryogenesis. PLoS One 8:e82043

    Article  PubMed  PubMed Central  Google Scholar 

  • Gai YP, Li YQ, Guo FY, Yuan CZ, Mo YY, Zhang HL, Wang H, Ji XL (2014) Analysis of phytoplasma-responsive sRNAs provide insight into the pathogenic mechanisms of mulberry yellow dwarf disease. Sci Rep 4:5378

    Article  PubMed  CAS  Google Scholar 

  • German MA, Pillay M, Jeong DH, Hetawal A, Luo S, Janardhanan P, Kannan V, Rymarquis LA, Nobuta K, German R, De Paoli E, Lu C, Schroth G, Meyers BC, Green PJ (2008) Global identification of microRNA-target RNA pairs by parallel analysis of RNA ends. Nat Biotechnol 26:941–946

    Article  PubMed  CAS  Google Scholar 

  • Group T, Firrao G (2004) “Candidatus Phytoplasma”, a taxon for the wall-less, nonhelical prokaryotes that colonize plant phloem and insects. Int J Syst Evol Microbiol 54:1243–1255

    Article  Google Scholar 

  • Hafner M, Landgraf P, Ludwig J, Rice A, Ojo T, Lin C, Holoch D, Lim C, Tuschl T (2008) Identification of microRNAs and other small regulatory RNAs using cDNA library sequencing. Methods 44:3–12

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Hao DC, Yang L, Xiao PG, Liu M (2012) Identification of Taxus microRNAs and their targets with high-throughput sequencing and degradome analysis. Physiol Plantarum 146:388–403

    Article  CAS  Google Scholar 

  • He F, Wang C, Wang F, Yang L (2001) Interaction mechanism between plant resistance gene ang pathogen avirulence gene. Chin J Cell Biol 33:1037–1044

    Google Scholar 

  • Hiruki C (1999) Paulownia witches’-broom disease important in East Asia. Acta Horticul 469:63–68

    Article  Google Scholar 

  • Hofacker IL, Fontana W, Stadler PF, Bonhoeffer LS, Tacker M, Schuster P (1994) Fast folding and comparison of RNA secondary structures. Monatsh Chem 125:167–188

    Article  CAS  Google Scholar 

  • Lee I, Hammond RW, Davis RE, Gundersen DE (1993) Universal amplification and analysis of pathogen 16S rDNA for classification and identification of mycoplasmalike organisms. Phytopathology 83:834–842

    Article  CAS  Google Scholar 

  • Lelandais-Briere C, Naya L, Sallet E, Calenge F, Frugier F, Hartmann C, Gouzy J, Crespi M (2009) Genome-wide Medicago truncatula small RNA analysis revealed novel microRNAs and isoforms differentially regulated in roots and nodules. Plant Cell 21:2780–2796

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Li J, Jia D, Chen X (2001) HUA1, a regulator of stamen and carpel identities in Arabidopsis, codes for a nuclear RNA binding protein. Plant Cell 13:2269–2281

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Li B, Qin Y, Duan H, Yin W, Xia X (2011) Genome-wide characterization of new and drought stress responsive microRNAs in Populus euphratica. J Exp Bot 62:3765–3779

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Liu R, Dong Y, Fan G, Zhao Z, Deng M, Cao X, Niu S (2013) Discovery of genes related to witches broom disease in Paulownia tomentosa × Paulownia fortunei by a De Novo assembled transcriptome. PLoS One 8:e80238

    Article  PubMed  PubMed Central  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)). Methods 25:402–408

    Article  PubMed  CAS  Google Scholar 

  • Lu S, Sun Y, Shi R, Clark C, Li L, Chiang V (2005) Novel and mechanical stress–responsive microRNAs in Populus trichocarpa that are absent from Arabidopsis. Plant Cell Environ 17:2186–2203

    Article  CAS  Google Scholar 

  • Mackowiak SD (2011) Identification of Novel and Known miRNAs in deep-sequencing data with miRDeep2. Curr Protoc Bioinform 12(10):11–15

    Google Scholar 

  • Mao W, Li Z, Xia X, Li Y, Yu J (2012) A combined approach of high-throughput sequencing and degradome analysis reveals tissue specific expression of microRNAs and their targets in cucumber. PLoS One 7:e33040

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Meyers BC, Axtell MJ, Bartel B, Bartel DP, Baulcombe D, Bowman JL, Cao X, Carrington JC, Chen X, Green PJ, Griffiths-Jones S, Jacobsen SE, Mallory AC, Martienssen RA, Poethig RS, Qi Y, Vaucheret H, Voinnet O, Watanabe Y, Weigel D, Zhu JK (2008) Criteria for annotation of plant MicroRNAs. Plant Cell 20:3186–3190

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Morita-Yamamuro C, Tsutsui T, Sato M, Yoshioka H, Tamaoki M, Ogawa D, Matsuura H, Yoshihara T, Ikeda A, Uyeda I, Yamaguchi J (2005) The Arabidopsis gene CAD1 controls programmed cell death in the plant immune system and encodes a protein containing a MACPF domain. Plant Cell Physiol 46:902–912

    Article  PubMed  CAS  Google Scholar 

  • Mou H, Lu J, Zhu S, Lin C, Tian G, Xu X, Zhao W (2013) Transcriptomic analysis of paulownia infected by paulownia witches’-broom phytoplasma. PLoS One 8:e77217

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Nagpal P, Ellis CM, Weber H, Ploense SE, Barkawi LS, Guilfoyle TJ, Hagen G, Alonso JM, Cohen JD, Farmer EE, Ecker JR, Reed JW (2005) Auxin response factors ARF6 and ARF8 promote jasmonic acid production and flower maturation. Development 132:4107–4118

    Article  PubMed  CAS  Google Scholar 

  • Nakamura H, Yoshikawa N, Takahashi T, Sahashi N, Kubono T, Shoji T (1996) Evaluation of primer pairs for the reliable diagnosis of Paulownia Witches’-Broom disease using a polymerase chain reaction. Plant Dis 80:302–305

    Article  CAS  Google Scholar 

  • Namba S (2002) Molecular biological studies on phytoplasmas. J Gen Plant Pathol 68:257–259

    Article  CAS  Google Scholar 

  • Niu S, Fan G, Xu E, Deng M, Zhao Z, Dong Y (2014a) Transcriptome/degradome-wide discovery of MicroRNAs and transcript targets in two Paulownia australis genotypes. PLoS One 9:e106736

    Article  PubMed  PubMed Central  Google Scholar 

  • Niu S, Fan G, Zhao Z, Deng M, Dong Y (2014b) High-throughput sequencing and degradome analysis reveal microRNA differential expression profiles and their targets in Paulownia fortunei. Plant Cell Tiss Org 119:457–468

    Article  CAS  Google Scholar 

  • Peng X, Zhao Y, Cao J, Zhang W, Jiang H, Li X, Ma Q, Zhu S, Cheng B (2012) CCCH-type zinc finger family in maize: genome-wide identification, classification and expression profiling under abscisic acid and drought treatments. PLoS One 7:e40120

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Rhoades MW, Reinhart BJ, Lim LP, Burge CB, Bartel B, Bartel DP (2002) Prediction of plant microRNA targets. Cell 110:513–520

    Article  PubMed  CAS  Google Scholar 

  • Sabatini S, Beis D, Wolkenfelt H, Murfett J, Guilfoyle T, Malamy J, Benfey P, Leyser O, Bechtold N, Weisbeek P, Scheres B (1999) An auxin-dependent distal organizer of pattern and polarity in the Arabidopsis root. Cell 99:463–472

    Article  PubMed  CAS  Google Scholar 

  • Sánchez C, Vielba JM, Ferro E, Covelo G, Solé A, Abarca D, De Mier BS, Díaz-Sala C (2007) Two SCARECROW-LIKE genes are induced in response to exogenous auxin in rooting-competent cuttings of distantly related forest species. Tree Physiol 27:1459–1470

    Article  PubMed  Google Scholar 

  • Shukla L, Chinnusamy V, Sunkar R (2008) The role of microRNAs and other endogenous small RNAs in plant stress responses. Biochim Biophys Acta 1779:743–748

    Article  PubMed  CAS  Google Scholar 

  • Siefers N, Dang KK, Kumimoto RW, Bynum WE, Tayrose G, Holt BF 3rd (2009) Tissue-specific expression patterns of Arabidopsis NF-Y transcription factors suggest potential for extensive combinatorial complexity. Plant Physiol 149:625–641

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Sunkar R, Zhu JK (2004) Novel and stress-regulated microRNAs and other small RNAs from Arabidopsis. Plant Cell 16:2001–2019

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Sunkar R, Girke T, Jain PK, Zhu JK (2005) Cloning and characterization of microRNAs from rice. Plant Cell 17:1397–1411

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Sunkar R, Chinnusamy V, Zhu J, Zhu J (2007) Small RNAs as big players in plant abiotic stress responses and nutrient deprivation. Trends Plant Sci 12:301–309

    Article  PubMed  CAS  Google Scholar 

  • Unver T, Bakar M, Shearman RC, Budak H (2010) Genome-wide profiling and analysis of Festuca arundinacea miRNAs and transcriptomes in response to foliar glyphosate application. Mol Genet Genomic 283:397–413

    Article  CAS  Google Scholar 

  • Vaucheret H (2006) Post-transcriptional small RNA pathways in plants: mechanisms and regulations. Genes Dev 20:759–771

    Article  PubMed  CAS  Google Scholar 

  • Wang D, Guo Y, Wu C, Yang G, Li Y, Zheng C (2008) Genome-wide analysis of CCCH zinc finger family in Arabidopsis and rice. BMC Genom 9:44

    Article  Google Scholar 

  • Wang T, Pan H, Wang J, Yang W, Cheng T, Zhang Q (2014a) Identification and profiling of novel and conserved microRNAs during the flower opening process in Prunus mume via deep sequencing. Mol Genet Genomic 289:169–183

    Article  CAS  Google Scholar 

  • Wang Y, Wang Z, Amyot L, Tian L, Xu Z, Gruber MY, Hannoufa A (2014b) Ectopic expression of miR156 represses nodulation and causes morphological and developmental changes in Lotus japonicus. Mol Genet Genomic 290:471–484

    Article  Google Scholar 

  • Wei M, Wei H, Wu M, Song M, Zhang J, Yu J, Fan S, Yu S (2013) Comparative expression profiling of miRNA during anther development in genetic male sterile and wild type cotton. BMC Plant Biol 13:66

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Whitney LAS, Loreti E, Alpi A, Perata P (2011) Alcohol dehydrogenase and hydrogenase transcript fluctuations during a day–night cycle in Chlamydomonas reinhardtii: the role of anoxia. N Phytol 190:488–498

    Article  CAS  Google Scholar 

  • Wysocka-Diller JW, Helariutta Y, Fukaki H, Malamy JE, Benfey PN (2000) Molecular analysis of SCARECROW function reveals a radial patterning mechanism common to root and shoot. Development 127:595–603

    PubMed  CAS  Google Scholar 

  • Zhai X, Cao X, Fan G (2010) Growth of Paulownia witches’ broom seedlings treated with methylmethane sulphonate and SSR analysis. Sci Silv Sin 46:176–181

    CAS  Google Scholar 

  • Zhang B, Pan X, Cobb G, Anderson T (2006) Plant microRNA: a small regulatory molecule with big impact. Dev Biol 289:3–16

    Article  PubMed  CAS  Google Scholar 

  • Zhou Z, Zeng H, Liu Z, Yang Z (2012a) Genome-wide identification of Medicago truncatula microRNAs and their targets reveals their differential regulation by heavy metal. Plant Cell Environ 35:86–99

    Article  PubMed  Google Scholar 

  • Zhou ZS, Song JB, Yang ZM (2012b) Genome-wide identification of Brassica napus microRNAs and their targets in response to cadmium. J Exp Bot 63:4597–4613

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgments

This study was funded by the National Natural Science Foundation of China (Grant Nos. 30271082, 30571496, U1204309), by the Outstanding Talents Project of Henan Province (Grant No. 122101110700), by the Transformation Project of the National Agricultural Scientific and Technological Achievement of China (Grant No. 2012GB2D000271), and by the Science and Technology Innovation Team Project of Zhengzhou City, China (Grant No. 121PCXTD515).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guoqiang Fan.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Communicated by S. Hohmann.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Niu, S., Fan, G., Deng, M. et al. Discovery of microRNAs and transcript targets related to witches’ broom disease in Paulownia fortunei by high-throughput sequencing and degradome approach. Mol Genet Genomics 291, 181–191 (2016). https://doi.org/10.1007/s00438-015-1102-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-015-1102-y

Keywords

Navigation