Skip to main content
Log in

High-throughput sequencing and degradome analysis reveal microRNA differential expression profiles and their targets in Paulownia fortunei

  • Original Paper
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

Paulownia fortunei (family Paulowniaceae) is an economically important tree species indigenous to China. Autotetraploid cultivars of P. fortunei have better growth and wood quality than their diploid counterparts. MicroRNAs (miRNAs) play vital regulatory roles in plant growth, development, and biotic and abiotic stress responses by direct cleavage of transcripts, translational repression, or chromatin modification. Although miRNAs have been identified in various plant species, no reports of miRNAs in P. fortunei have been published so far. To study the functions of miRNAs in the autotetraploid P. fortunei, four sequencing libraries from the autotetraploid and its corresponding diploid plants were constructed. 142 conserved miRNAs grouped into 41 families, and 38 novel miRNAs were obtained. Among these miRNAs, 58 were up-regulated and 30 were down-regulated in the autotetraploid relative to the diploid. MiRNA target genes were identified using a degradome sequencing approach and the differently expressed miRNAs and their target genes were validated by real time PCR analysis. To our knowledge, this is the first study to identify conserved and novel miRNAs and their potential targets from diploid and autotetraploid Paulownia plants using high-throughput sequencing and degradome analysis. Our results provide valuable information on P. fortunei miRNAs and their targets, and will help build a foundation for future studies of the biological functions of miRNA-mediated gene regulation in P. fortunei.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adams KL, Wendel JF (2005) Polyploidy and genome evolution in plants. Curr Opin Struct Bio 8(2):135–141

    Article  CAS  Google Scholar 

  • Addo-Quaye C, Eshoo TW, Bartel DP, Axtell MJ (2008) Endogenous siRNA and miRNA targets identified by sequencing of the Arabidopsis degradome. Curr Biol 18(10):758–762. doi:10.1016/j.cub.2008.04.042

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • An FM, Chan MT (2012) Transcriptome-wide characterization of miRNA-directed and non-miRNA-directed endonucleolytic cleavage using Degradome analysis under low ambient temperature in Phalaenopsis aphrodite subsp. formosana. Plant Cell Physiol 53(10):1737–1750. doi:10.1093/pcp/pcs118

    Article  CAS  PubMed  Google Scholar 

  • Anssour S, Krugel T, Sharbel TF, Saluz HP, Bonaventure G, Baldwin IT (2009) Phenotypic, genetic and genomic consequences of natural and synthetic polyploidization of Nicotiana attenuata and Nicotiana obtusifolia. Ann Bot 103(8):1207–1217. doi:10.1093/aob/mcp058

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ao Y, Wang Y, Chen L, Wang T, Yu H, Zhang Z (2012) Identification and comparative profiling of microRNAs in wild-type Xanthoceras sorbifolia and its double flower mutant. Genes Genom 34(5):561–568

    Article  CAS  Google Scholar 

  • Axtell MJ, Snyder JA, Bartel DP (2007) Common functions for diverse small RNAs of land plants. Plant cell 19(6):1750–1769. doi:10.1105/tpc.107.051706

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116(2):281–297. doi:10.1007/s00425-010-1231-9

    Article  CAS  PubMed  Google Scholar 

  • Chen C, Ridzon DA, Broomer AJ, Zhou Z, Lee DH, Nguyen JT, Barbisin M, Xu NL, Mahuvakar VR, Andersen MR, Lao KQ, Livak KJ, Guegler KJ (2005) Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Res 33(20):e179. doi:10.1093/nar/gni178

    Article  PubMed Central  PubMed  Google Scholar 

  • Chuck G, Candela H, Hake S (2009) Big impacts by small RNAs in plant development. Curr Opin Plant Biol 12(1):81–86

    Article  CAS  PubMed  Google Scholar 

  • Crawford BC, Nath U, Carpenter R, Coen ES (2004) CINCINNATA controls both cell differentiation and growth in petal lobes and leaves of Antirrhinum. Plant Physiol 135(1):244–253

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Curley A (1993) Paulownia growing rapidly outside Asia. J Forest 91(6):41

    Google Scholar 

  • Dai X, Xu Y, Ma Q, Xu W, Wang T, Xue Y, Chong K (2007) Overexpression of an R1R2R3 MYB gene, OsMYB3R-2, increases tolerance to freezing, drought, and salt stress in transgenic Arabidopsis. Plant Physiol 143(4):1739–1751

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Deng M, Dong Y, Zhao Z, Zhang X, Fan G (2013) Llumina-based de novo sequencing and characterization of the transcriptome of Paulownia plant. Sci Silv Sin 49(6):30–36

    Google Scholar 

  • Fan G, Cao Y, Zhao Z, Yang Z (2007) Induction of autotetraploid of Paulownia fortunei. Sci Silv Sin 43(4):31–35

    CAS  Google Scholar 

  • Fan G, Zhai X, Niu S, Ren Y (2014) Dynamic expression of novel and conserved microRNAs and their targets in diploid and tetraploid of Paulownia tomentosa. Biochimie. doi:10.1016/j.biochi.2014.02.008

  • Filipowicz W, Jaskiewicz L, Kolb FA, Pillai RS (2005) Post-transcriptional gene silencing by siRNAs and miRNAs. Curr Opin Struct Biol 15(3):331–341

    Article  CAS  PubMed  Google Scholar 

  • German MA, Pillay M, Jeong DH, Hetawal A, Luo S, Janardhanan P, Kannan V, Rymarquis LA, Nobuta K, German R, De Paoli E, Lu C, Schroth G, Meyers BC, Green PJ (2008) Global identification of microRNA-target RNA pairs by parallel analysis of RNA ends. Nat Biotech 26(8):941–946. doi:10.1038/nbt1417

    Article  CAS  Google Scholar 

  • Guzman F, Almerao MP, Korbes AP, Loss-Morais G, Margis R (2012) Identification of microRNAs from Eugenia uniflora by high-throughput sequencing and bioinformatics analysis. PLoS ONE 7(11):49811. doi:10.1371/journal.pone.0049811

    Article  Google Scholar 

  • Ha M, Lu J, Tian L, Ramachandran V, Kasschau KD, Chapman EJ, Carrington JC, Chen X, Wang XJ, Chen ZJ (2009) Small RNAs serve as a genetic buffer against genomic shock in Arabidopsis interspecific hybrids and allopolyploids. PNAS 106(42):17835–17840. doi:10.1073/pnas.0907003106

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hao D, Yang L, Xiao P, Liu M (2012) Identification of Taxus microRNAs and their targets with high-throughput sequencing and degradome analysis. Physiol Plant 146(4):388–403. doi:10.1111/j.1399-3054.2012.01668.x

    Article  CAS  PubMed  Google Scholar 

  • Hofacker IL, Fontana W, Stadler PF, Bonhoeffer LS, Tacker M, Schuster P (1994) Fast folding and comparison of RNA secondary structures. Monatsh Chem 125(2):167–188

    Article  CAS  Google Scholar 

  • Khan Y, Yadav A, Bonthala V, Muthamilarasan M, Yadav C, Prasad M (2014) Comprehensive genome-wide identification and expression profiling of foxtail millet [Setaria italica (L.)] miRNAs in response to abiotic stress and development of miRNA database. Plant Cell Tiss Organ Cult 1–14. doi:10.1007/s11240-014-0480-x

  • Lee RC, Feinbaum RL, Ambros V (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75(5):843–854

    Article  CAS  PubMed  Google Scholar 

  • Leitch IJ, Bennett MD (1997) Polyploidy in angiosperms. Trends Plant Sci 2(12):470–476

    Article  Google Scholar 

  • Li B, Yin W, Xia X (2009) Identification of microRNAs and their targets from Populus euphratica. Biochem Biophys Res Commun 388(2):272–277. doi:10.1016/j.bbrc.2009.07.161

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Zheng Y, Addo-Quaye C, Zhang L, Saini A, Jagadeeswaran G, Axtell M, Zhang W, Sunkar R (2010) Transcriptome-wide identification of microRNA targets in rice. Plant J 62(5):742–759. doi:10.1111/j.1365-313X.2010.04187.x

    Article  CAS  PubMed  Google Scholar 

  • Li B, Qin Y, Duan H, Yin W, Xia X (2011) Genome-wide characterization of new and drought stress responsive microRNAs in Populus euphratica. J Exp Bot 62(11):3765–3779

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Li X, Yu E, Fan C, Zhang C, Fu T, Zhou Y (2012) Developmental, cytological and transcriptional analysis of autotetraploid Arabidopsis. Planta 236(2):579–596. doi:10.1007/s00425-012-1629-7

    Article  CAS  PubMed  Google Scholar 

  • Li W, Zhang S, Han S, Wu T, Zhang J, Qi L (2013) Regulation of LaMYB33 by miR159 during maintenance of embryogenic potential and somatic embryo maturation in Larix kaempferi (Lamb.). Plant Cell Tiss Organ Cult 113(1):131–136

    Article  CAS  Google Scholar 

  • Livak K, Schmittgen T (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. Methods 25(4):402–408

    Article  CAS  PubMed  Google Scholar 

  • Lu S, Sun Y, Shi R, Clark C, Li L, Chiang VL (2005) Novel and mechanical stress–responsive microRNAs in Populus trichocarpa that are absent from Arabidopsis. Plant Cell 17(8):2186–2203

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lu S, Sun Y, Amerson H, Chiang V (2007) MicroRNAs in loblolly pine (Pinus taeda L.) and their association with fusiform rust gall development. Plant J 51(6):1077–1098. doi:10.1111/j.1365-313X.2007.03208.x

    Article  CAS  PubMed  Google Scholar 

  • Mackowiak SD (2011) Identification of novel and known miRNAs in deep‐sequencing data with miRDeep2. Curr Protoc Bioinform 36:121011–121015

    Google Scholar 

  • Meyers B, Axtell M, Bartel B, Bartel D, Baulcombe D, Bowman J, Cao X, Carrington J, Chen X, Green P (2008) Criteria for annotation of plant MicroRNAs. Plant Cell 20(12):3186–3190

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Miyashima S, Koi S, Hashimoto T, Nakajima K (2011) Non-cell-autonomous microRNA165 acts in a dose-dependent manner to regulate multiple differentiation status in the Arabidopsis root. Development 138(11):2303–2313

    Article  CAS  PubMed  Google Scholar 

  • Morin R, O’Connor M, Griffith M, Kuchenbauer F, Delaney A, Prabhu AL, Zhao Y, McDonald H, Zeng T, Hirst M, Eaves CJ, Marra MA (2008) Application of massively parallel sequencing to microRNA profiling and discovery in human embryonic stem cells. Genome Res 18(4):610–621. doi:10.1101/gr.7179508

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Moxon S, Jing R, Szittya G, Schwach F, Pilcher RLR, Moulton V, Dalmay T (2008) Deep sequencing of tomato short RNAs identifies microRNAs targeting genes involved in fruit ripening. Genome Res 18(10):1602–1609

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nagpal P, Ellis CM, Weber H, Ploense SE, Barkawi LS, Guilfoyle TJ, Hagen G, Alonso JM, Cohen JD, Farmer EE, Ecker JR, Reed JW (2005) Auxin response factors ARF6 and ARF8 promote jasmonic acid production and flower maturation. Development 132(18):4107–4118. doi:10.1242/dev.01955

    Article  CAS  PubMed  Google Scholar 

  • Nath U, Crawford BC, Carpenter R, Coen E (2003) Genetic control of surface curvature. Science 299(5611):1404–1407

    Article  CAS  PubMed  Google Scholar 

  • Niu S, Fan G, Zhao Z, Deng M, Dong Y (2013) MicroRNAs of Paulownia plants and their functional prediction. Sci Silv Sin 49(11):77–82

    CAS  Google Scholar 

  • Paul S, Kundu A, Pal A (2011) Identification and validation of conserved microRNAs along with their differential expression in roots of Vigna unguiculata grown under salt stress[J]. Plant Cell Tiss Organ Cult 105(2):233–242

    Article  CAS  Google Scholar 

  • Ren Y, Chen L, Zhang Y, Kang X, Zhang Z, Wang Y (2012) Identification of novel and conserved Populus tomentosa microRNA as components of a response to water stress. Funct Integr Genomics 12(2):327–339. doi:10.1007/s10142-012-0271-6

    Article  CAS  PubMed  Google Scholar 

  • Rhoades M, Reinhart B, Lim L, Burge C, Bartel B, Bartel D (2002) Prediction of plant microRNA targets. Cell 110(4):513–520

    Article  CAS  PubMed  Google Scholar 

  • Schommer C, Palatnik JF, Aggarwal P, Chetelat A, Cubas P, Farmer EE, Nath U, Weigel D (2008) Control of jasmonate biosynthesis and senescence by miR319 targets. PLoS Biol 6(9):230. doi:10.1371/journal.pbio.0060230

    Article  Google Scholar 

  • Shen H, He H, Li J, Chen W, Wang X, Guo L, Peng Z, He G, Zhong S, Qi Y, Terzaghi W, Deng XW (2012) Genome-wide analysis of DNA methylation and gene expression changes in two Arabidopsis ecotypes and their reciprocal hybrids. Plant Cell 24(3):875–892. doi:10.1105/tpc.111.094870

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Shleizer-Burko S, Burko Y, Ben-Herzel O, Ori N (2011) Dynamic growth program regulated by LANCEOLATE enables flexible leaf patterning. Development 138(4):695–704. doi:10.1242/dev.056770

    Article  CAS  PubMed  Google Scholar 

  • Shu C (1989) A survey of the chromosome number of four species of Paulownia. J Henan Agric Univ 19(1):48–50

    Google Scholar 

  • Simon SA, Meyers BC (2011) Small RNA-mediated epigenetic modifications in plants. Curr Opin Plant Biol 14(2):148–155

    Article  CAS  PubMed  Google Scholar 

  • Song C, Wang C, Zhang C, Korir NK, Yu H, Ma Z, Fang J (2010) Deep sequencing discovery of novel and conserved microRNAs in trifoliate orange (Citrus trifoliata). BMC Genom 11:431. doi:10.1186/1471-2164-11-431

    Article  Google Scholar 

  • Song Q, Liu Y, Hu X, Zhang W, Ma B, Chen S, Zhang J (2011) Identification of miRNAs and their target genes in developing soybean seeds by deep sequencing. BMC Plant Biol 11:5. doi:10.1186/1471-2229-11-5

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sun C, Zhao Q, Liu D, You C, Hao Y (2013) Ectopic expression of the apple Md-miRNA156 h gene regulates flower and fruit development in Arabidopsis. Plant Cell Tiss Organ Cult 112(3):343–351

    Article  CAS  Google Scholar 

  • Sunkar R, Zhou X, Zheng Y, Zhang W, Zhu J-K (2008) Identification of novel and candidate miRNAs in rice by high throughput sequencing. BMC Plant Biol 8(1):25

    Article  PubMed Central  PubMed  Google Scholar 

  • Unver T, Budak H (2009) Conserved microRNAs and their targets in model grass species Brachypodium distachyon. Planta 230(4):659–669

    Article  CAS  PubMed  Google Scholar 

  • Voinnet O (2009) Origin, biogenesis, and activity of plant microRNAs. Cell 136(4):669–687

    Article  CAS  PubMed  Google Scholar 

  • Wan L, Wang F, Guo X, Lu S, Qiu Z, Zhao Y, Zhang H, Lin J (2012) Identification and characterization of small non-coding RNAs from Chinese fir by high throughput sequencing. BMC Plant Biol 12:146. doi:10.1186/1471-2229-12-146

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wang Z, Huang J, Huang Y, Li Z, Zheng B (2012) Discovery and profiling of novel and conserved microRNAs during flower development in Carya cathayensis via deep sequencing. Planta 236(2):613–621. doi:10.1007/s00425-012-1634-x

    Article  CAS  PubMed  Google Scholar 

  • Wei M, Wei H, Wu M, Song M, Zhang J, Yu J, Fan S, Yu S (2013) Comparative expression profiling of miRNA during anther development in genetic male sterile and wild type cotton. BMC Plant Biol 13:66. doi:10.1186/1471-2229-13-66

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Xie F, Frazier TP, Zhang B (2011) Identification, characterization and expression analysis of MicroRNAs and their targets in the potato (Solanum tuberosum). Gene 473(1):8–22

    Article  CAS  PubMed  Google Scholar 

  • Yakovlev IA, Fossdal CG, Johnsen O (2010) MicroRNAs, the epigenetic memory and climatic adaptation in Norway spruce. New Phytol 187(4):1154–1169. doi:10.1111/j.1469-8137.2010.03341.x

    Article  CAS  PubMed  Google Scholar 

  • Zhai X, Zhang X, Zhao Z, Deng M, Fan G (2012) Study on wood physical properties of tetraploid Paulownia fortunei. J Henan Agric Univ 46(6):2012

    Google Scholar 

  • Zhang B, Pan X, Cobb GP, Anderson TA (2006a) Plant microRNA: a small regulatory molecule with big impact. Dev Biol 289(1):3–16

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Guo W, Deng X (2006b) Relationship between ploidy variation of citrus calli and competence for somatic embryogenesis. Acta Genet Sin 33(7):647–654

    Article  PubMed  Google Scholar 

  • Zhang B, Pan X, Anderson T (2006c) Identification of 188 conserved maize microRNAs and their targets. FEBS Lett 580:3753–3762

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Zhai X, Fan G, Deng M, Zhao Z (2012) Observation on microstructure of leaves and stress tolerance analysis of different tetraploid Paulownia. J Henan Agric Univ 46(6):646–650

    Google Scholar 

  • Zhang X, Fan G, Zhao Z, Cao X, Zhao G, Deng M, Dong Y (2013) Analysis of diploid and its autotetraploid Paulownia tomentosa × Paulownia fortunei with AFLP and MSAP. Sci Silv Sin 10:026

    Google Scholar 

  • Zhang J, Zhang S, Li S, Han S, Li W, Li X, Qi L (2014) Regulation of synchronism by abscisic-acid-responsive small noncoding RNAs during somatic embryogenesis in larch (Larix leptolepis). Plant Cell Tiss Organ Cult 116(3):361–370

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Grant No. 30271082, 30571496, U1204309), by the Outstanding Talents Project of Henan Province (Grant No. 122101110700), by the Transformation Project of the National Agricultural Scientific and Technological Achievement of China (Grant No. 2012GB2D000271), and by Science and Technology Innovation Team Project of Zhengzhou City (Grant No. 121PCXTD515).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guoqiang Fan.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLS 23 kb)

Supplementary material 2 (XLS 55 kb)

Supplementary material 3 (XLS 35 kb)

11240_2014_546_MOESM4_ESM.doc

Online Resource 4 The secondary structures of novel P. fortunei miRNA precursors. (The mature miRNAs are in red, and the miRNA*s are in green) (DOC 69 kb)

Supplementary material 5 (XLS 290 kb)

11240_2014_546_MOESM6_ESM.doc

Online Resource 6 Species distribution of the BLAST matches of the degradome targets. This figure shows the distributions of unigenes BLASTX matches against the nr protein database (cutoff value E < 10−5) and the proportions for each species (DOC 116 kb)

11240_2014_546_MOESM7_ESM.doc

Online Resource 7 GO analyses of the targets of the conserved and novel miRNAs in P. fortunei. Blue bar, indicate the Biological process; Red bar, indicate the Cellular component; Green bar, indicate the Molecular function (DOC 140 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Niu, S., Fan, G., Zhao, Z. et al. High-throughput sequencing and degradome analysis reveal microRNA differential expression profiles and their targets in Paulownia fortunei . Plant Cell Tiss Organ Cult 119, 457–468 (2014). https://doi.org/10.1007/s11240-014-0546-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-014-0546-9

Keywords

Navigation