Skip to main content
Log in

Association mapping of soybean seed germination under salt stress

  • Original Paper
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

Soil salinity is a serious threat to agriculture sustainability worldwide. Seed germination is a critical phase that ensures the successful establishment and productivity of soybeans in saline soils. However, little information is available regarding soybean salt tolerance at the germination stage. The objective of this study was to identify the genetic mechanisms of soybean seed germination under salt stress. One natural population consisting of 191 soybean landraces was used in this study. Soybean seeds produced in four environments were used to evaluate the salt tolerance at their germination stage. Using 1142 single-nucleotide polymorphisms (SNPs), the molecular markers associated with salt tolerance were detected by genome-wide association analysis. Eight SNP-trait associations and 13 suggestive SNP-trait associations were identified using a mixed linear model and the TASSEL 4.0 software. Eight SNPs or suggestive SNPs were co-associated with two salt tolerance indices, namely (1) the ratio of the germination index under salt conditions to the germination index under no-salt conditions (ST-GI) and (2) the ratio of the germination rate under salt conditions to the germination rate under no-salt conditions (ST-GR). One SNP (BARC-021347-04042) was significantly associated with these two traits (ST-GI and ST-GR). In addition, nine possible candidate genes were located in or near the genetic region where the above markers were mapped. Of these, five genes, Glyma08g12400.1, Glyma08g09730.1, Glyma18g47140.1, Glyma09g00460.1, and Glyma09g00490.3, were verified in response to salt stress at the germination stage. The SNPs detected could facilitate a better understanding of the genetic basis of soybean salt tolerance at the germination stage, and the marker BARC-021347-04042 could contribute to future breeding for soybean salt tolerance by marker-assisted selection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ahmad SS, Shahri W, Islam ST, Dar RA, Tahir I (2014) Ethylene signaling in plants: introspection. In: Plant signaling: inderstanding the molecular crosstalk. Springer, India, pp 303–313

  • Arahana VS, Graef GL, Specht JE, Steadman JR, Eskridge KM (2001) Identification of QTLs for resistance to Sclerotinia sclerotiorum in soybean. Crop Sci 41(1):180–188

    Article  CAS  Google Scholar 

  • Ashraf M (1994) Breeding for salinity tolerance in plants. Crit Rev Plant Sci 13:17–42

    Article  Google Scholar 

  • Ashraf M, Foolad MR (2013) Crop breeding for salt tolerance in the era of molecular markers and marker-assisted selection. Plant Breed 132(1):10–20

    Article  Google Scholar 

  • Bewley JD (1997) Seed germination and dormancy. Plant Cell 9(7):1055–1066

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bradbury P, Zhang Z, Kroon D, Casstevens T, Ramdoss Y, Buckler ES (2007) TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics 23(19):2633–2635

    Article  CAS  PubMed  Google Scholar 

  • Celik O, Atak Ç (2012) Evaluation of proline accumulation and Δ1-pyrroline-5-carboxylate synthetase (P5CS) gene expression during salinity stress in two soybean (Glycine max L. Merr.) varieties. Pol J Environ Stud 21:559–564

    CAS  Google Scholar 

  • Chamoli S, Verma AK (2014) Targeting of metabolic pathways for genetic engineering to combat abiotic stress tolerance in crop plants. In: Approaches to plant stress and their management. Springer, India, pp 23–37

  • Chen HT, Cui SY, Fu SX, Gai JY, Yu DY (2008) Identification of quantitative trait loci associated with salt tolerance during seedling growth in soybean (Glycine max L.). Aust J Agr Res 59:1086–1091

    Article  CAS  Google Scholar 

  • Cho Y, Njiti VN, Chen X, Triwatayakorn K, Kassem MA, Meksem K, Lightfoot DA, Wood AJ (2002) Quantitative trait loci associated with foliar trigonelline accumulation in Glycine max L. J Biomed Biotechnol 2(3):151–157

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Choi IY, Hyten DL, Matukumalli K, Song QJ, Chaky JM, Quigley CV, Chase K, Lark KG, Reiter RS, Yoon MS, Hwang EY, Yi SI, Young ND, Shoemaker RC, van Tassell CP, Specht JE, Cregan PB (2007) A soybean transcript map: gene distribution, haplotype and single-nucleotide polymorphism analysis. Genetics 176:685–696

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Deinlein U, Stephan AB, Horie T, Luo W, Xu GH, Schroeder J (2014) Plant salt-tolerance mechanisms. Trends plant Sci 19(6):371–379

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • DeRose-Wilson L, Gaut BS (2011) Mapping salinity tolerance during Arabidopsis thaliana germination and seedling growth. PLoS One 6(8):e22832

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Famoso AN, Zhao K, Clark RT, Tung CW, Wright MH, Bustamante C, Kochian LV, McCouch SR (2011) Genetic architecture of aluminum tolerance in rice (Oryza sativa) determined through genome-wide association analysis and QTL mapping. PLoS Genet 7(8):e1002221

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Flowers TJ, Yeo AR (1995) Breeding for salinity resistance in crop plants. Where next? Aust J Plant Physiol 22:875–884

    Article  Google Scholar 

  • Fredj MB, Zhani K, Hannachi C, Mehwachi T (2013) Effect of NaCl priming on seed germination of four coriander cultivars (Coriandrum sativum). Eurasia J BioSci 7:11–29

    Google Scholar 

  • Guan RX, Qu Y, Guo Y, Yu LL, Liu Y, Jiang JH, Chen JG, Ren YL, Liu GY, Tian L, Jin LG, Liu ZX, Hong HL, Chang RZ, Gilliham M, Qiu LJ (2014) Salinity tolerance in soybean is modulated by natural variation in GmSALT3. Plant J 80(6):937–950

    Article  CAS  PubMed  Google Scholar 

  • Guo B, Qiu LJ, Shao GH, Xu ZY (2002) Markers-assisted identification of the salt tolerant accessions in soybean. Soybean Sci 21(1):56–61

    Google Scholar 

  • Ha BK, Vuong TD, Velusamy V, Nguyen HT, Shannon JG, Lee JD (2013) Genetic mapping of quantitative trait loci conditioning salt tolerance in wild soybean (Glycine soja) PI 483463. Euphytica 193(1):79–88

    Article  CAS  Google Scholar 

  • Hamwieh A, Xu DH (2008) Conserved salt tolerance quantitative trait locus (QTL) in wild and cultivated soybeans. Breed Sci 58:355–359

    Article  Google Scholar 

  • Hamwieh A, Tuyen DD, Cong H, Benitez ER, Takahashi R, Xu DH (2011) Identification and validation of a major QTL for salt tolerance in soybean. Euphytica 179:451–459

    Article  Google Scholar 

  • Han Y, Teng W, Yu K, Poysa V, Anderson T, Qiu LJ, Da Lightfoot, Li WB (2008) Mapping QTL tolerance to Phytophthora root rot in soybean using microsatellite and RAPD/SCAR derived markers. Euphytica 162(2):231–239

    Article  CAS  Google Scholar 

  • Hao DR, Chao MN, Yin ZT, Yu DY (2012a) Genome-wide association analysis detecting significant single nucleotide polymorphisms for chlorophyll and chlorophyll fluorescence parameters in soybean (Glycine max) landraces. Euphytica 186:919–931

    Article  CAS  Google Scholar 

  • Hao DR, Cheng H, Yin ZT, Cui SY, Zhang D, Wang H, Yu DY (2012b) Identification of single nucleotide polymorphisms and haplotypes associated with yield and yield components in soybean (Glycine max) landraces across multiple environments. Theor Appl Genet 124:447–458

    Article  CAS  PubMed  Google Scholar 

  • Hosseini MK, Powell AA, Bingham IJ (2002) Comparison of the seed germination and early seedling growth of soybean in saline conditions. Seed Sci Res 12:165–172

    Article  CAS  Google Scholar 

  • Hu ZB, Zhang HR, Kan GZ, Ma DY, Zhang D, Shi GX, Hong DL, Zhang GZ, Yu DY (2013) Determination of the genetic architecture of seed size and shape via linkage and association analysis in soybean (Glycine max L. Merr.). Genetica 141:247–254

    Article  CAS  PubMed  Google Scholar 

  • Kazi S, Shultz J, Afzal J, Johnson J, Njiti VN, Lightfoot DA (2008) Separate loci underlie resistance to root infection and leaf scorch during soybean sudden death syndrome. Theor Appl Genet 116(7):967–977

    Article  CAS  PubMed  Google Scholar 

  • King KE, Peiffer GA, Reddy M, Lauter N, Lin SF, Cianzio S, Shoemaker RC (2013) Mapping of iron and zinc quantitative trait loci in soybean for association to iron deficiency chlorosis resistance. J Plant Nutr 36(14):2132–2153

    Article  CAS  Google Scholar 

  • Lee GJ, Boerma HR, Villagarcia MR, Zhou X, Carter TE Jr, Li Z, Gibbs MO (2004) A major QTL conditioning salt tolerance in S-100 soybean and descendant cultivars. Theor Appl Genet 109:1610–1619

    Article  CAS  PubMed  Google Scholar 

  • Lee S, Mian MR, McHale LK, Wang H, Wijeratne AJ, Sneller CH, Dorrance AE (2013) Novel quantitative trait loci for partial resistance to Phytophthora sojae in soybean PI 398841. Theor Appl Genet 126(4):1121–1132

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Li XP, Han YP, Teng WL, Zhang SZ, Yu KF, Poysa V, Anderson T, Li WB (2010) Pyramided QTL underlying tolerance to Phytophthora root rot in mega-environments from soybean cultivars ‘Conrad’ and ‘Hefeng 25′. Theor Appl Genet 121(4):651–658

    Article  PubMed  Google Scholar 

  • Lin S, Cianzio S, Shoemaker R (1997) Mapping genetic loci for iron deficiency chlorosis in soybean. Mol Breed 3(3):219–229

    Article  CAS  Google Scholar 

  • Long NV, Dolstra O, Malosetti M, Kilian B, Graner A, Visser RGF, van der Linden CG (2013) Association mapping of salt tolerance in barley (Hordeum vulgare L.). Theor Appl Genet 126(9):2335–2351

    Article  CAS  PubMed  Google Scholar 

  • Mamidi S, Chikara S, Goos RJ, Hyten DL, Annam D, Moghaddam SM, Lee RK, CreganPB McClean PE (2011) Genome-wide association analysis identifies candidate genes associated with iron deficiency chlorosis in soybean. Plant Genome 4(3):154–164

    Article  CAS  Google Scholar 

  • Mccormac AC, Keefe PD (1990) Cauliflower (Brassica oleracea L.) seed vigour: imbibition effects. J Exp Bot 41:893–899

    Article  Google Scholar 

  • Munns R (2005) Genes and salt tolerance: bringing them together. New Phytol 167(3):645–663

    Article  CAS  PubMed  Google Scholar 

  • Na GQ, Kou H, Cao MJ (2009) Salt and alkaline tolerance evaluation of different soybean varieties at germination stage. Soybean Sci 28(2):352–356

    Google Scholar 

  • Orf JH, Chase K, Jarvik T, Mansur LM, Cregan PB, Adler FR, Lark KG (1999) Genetics of soybean agronomic traits: I. Comparison of three related recombinant inbred populations. Crop Sci 39:1642–1651

    Article  Google Scholar 

  • Pathan MS, Lee JD, Shannon JG, Nguyen HT (2007) Recent advances in breeding for drought and salt stress tolerance in soybean. In: Jenks MA, Hasegawa PM, Jain SM (eds) Advances in molecular-breeding toward drought and salt tolerant crops. Springer, Dordrecht, pp 739–773

    Chapter  Google Scholar 

  • Phang TH, Shao GH, Lam HM (2008) Salt tolerance in soybean. J Integr Plant Biol 50(10):1196–1212

    Article  CAS  PubMed  Google Scholar 

  • Qi XP, Li MW, Xie M, Liu X, Ni M, Shao GH, Song C, Yim AKY, Tao Y, Wong FL, Isobe S, Wong CF, Wong KS, Xu CY, Li CQ, Wang Y, Guan R, Sun FM, Fan GY, Xiao ZX, Zhou F, Phang TH, Liu X, Tong SW, Chan TF, Yiu SM, Tabata S, Wang J, Xu X, Lam HM (2014) Identification of a novel salt tolerance gene in wild soybean by whole-genome sequencing. Nat Commun 5:1–11

    Google Scholar 

  • Qiu PC, Zhang WB, Liu CY, Jiang HW, Li CD, Fan HM, Zeng QL, Hu GH, Cheng QS (2011) QTL identification of salt tolerance in germination stage of soybean. Legume Genomics Genet 2(3):20–27. doi:10.5376/lgg.cn.2011.02.0003

    Google Scholar 

  • Sayama T, Nakazaki T, Ishikawa G, Yagasaki K, Yamada N, Hirota N, Hirata K, Yoshikawa T, Saito H, Teraishi M, Okumoto Y, Tsukiyama T, Tanisaka T (2009) QTL analysis of seed-flooding tolerance in soybean (Glycine max [L.] Merr.). Plant Sci 176:514–521

    Article  CAS  PubMed  Google Scholar 

  • Shao GH, Wan CW, Li SF (1994) Preliminary study on the physiology of soybean tolerance to salt stress at germinating stage. Crops 6:25–27

    Google Scholar 

  • Shen R, Fan JB, Campbell D, Chang WH, Chen J, Doucet D, Yeakley J, Bibikova M, Garcia EW, McBride C, Steemers F, Garcia F, Kermani BG, Gunderson K, Oliphant A (2005) High-throughput SNP genotyping on universal bead arrays. Mutat Res Fundam Mol Mech Mutagen 573:70–82

    Article  CAS  Google Scholar 

  • Sun YN, Pan JB, Shi XL, Du XY, Wu Q, Qi ZM, Jiang HW, Xin DW, Liu CY, Hu GH, Chen QS (2012) Multi-environment mapping and meta-analysis of 100-seed weight in soybean. Mol Biol Rep 39(10):9435–9443

    Article  CAS  PubMed  Google Scholar 

  • Tuyen DD, Lal SK, Xu DH (2010) Identification of a major QTL allele from wild soybean (Glycine soja Sieb. & Zucc.) for increasing alkaline salt tolerance in soybean. Theor Appl Genet 121:229–236

    Article  CAS  PubMed  Google Scholar 

  • Tuyen DD, Zhang HM, Xu DH (2013) Validation and high-resolution mapping of a major quantitative trait locus for alkaline salt tolerance in soybean using residual heterozygous line. Mol Breed 31(1):79–86

    Article  CAS  Google Scholar 

  • Vertucci CW, Leopold AC (1983) Dynamics of imbibition by soybean embryos. Plant Physiol 72(1):190–193

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Vertucci CW, Leopold AC (1987) Water binding in legume seeds. Plant Physiol 85(1):224–231

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Vuong TD, Sleper DA, Shannon JG, Nguyen HT (2010) Novel quantitative trait loci for broad-based resistance to soybean cyst nematode (Heterodera glycines Ichinohe) in soybean PI 567516C. Theor Appl Genet 121(7):1253–1266

    Article  CAS  PubMed  Google Scholar 

  • Wang ZQ, Zhu SQ, Yu RP (1993) Saline soil in China. Science Press, Beijing, pp 1–6

    Google Scholar 

  • Wang ZF, Wang JF, Bao YM, Wu YY, Su X, Zhang HS (2010) Inheritance of rice seed germination ability under salt stress. Rice Sci 17:105–110

    Article  Google Scholar 

  • Wang ZF, Wang JF, Bao YM, Wu YY, Zhang HS (2011) Quantitative trait loci controlling rice seed germination under salt stress. Euphytica 178(3):297–307

    Article  Google Scholar 

  • Wang F, Jing W, Zhang W (2014) The mitogen-activated protein kinase cascade MKK1-MPK4 mediates salt signaling in rice. Plant Sci 227:181–189

    Article  CAS  PubMed  Google Scholar 

  • Xu XY, Fan R, Zheng R, Li CM, Yu DY (2011) Proteomic analysis of seed germination under salt stress in soybeans. J Zhejiang Univ Sci B 12(7):507–517

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yan JB, Warburton M, Crouch J (2011) Association mapping for enhancing maize (Zea mays L.) genetic improvement. Crop Sci 51(2):433–449

    Article  Google Scholar 

  • Zhang D, Kan GZ, Hu ZB, Cheng H, Zhang Y, Wang Q, Wang H, Yang Y, Li H, Hao DR, Yu DY (2014a) Use of single nucleotide polymorphisms and haplotypes to identify genomic regions associated with protein content and water-soluble protein content in soybean. Theor Appl Genet 127(9):1905–1915

    Article  CAS  PubMed  Google Scholar 

  • Zhang WJ, Niu Y, Bu SH, Li M, Feng JY, Zhang J, Yang SX, Odinga MM, Wei SP, Liu XF, Zhang YM (2014b) Epistatic association mapping for alkaline and salinity tolerance traits in the soybean germination stage. PLoS One 9(1):e84750

    Article  PubMed Central  PubMed  Google Scholar 

  • Zhu JK (2001) Plant salt tolerance. Trends plant Sci 6(2):66–71

    Article  CAS  PubMed  Google Scholar 

  • Zhu SY, Yu XC, Wang XJ, Zhao R, Li Y, Fan RC, Shang Y, Du SY, Wang XF, Wu FQ, Xu YH, Zhang XY, Zhang DP (2007) Two calcium-dependent protein kinases, CPK4 and CPK11, regulate abscisic acid signal transduction in Arabidopsis. Plant Cell 19(10):3019–3036

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhu J, Lee BH, Dellinger M, Cui X, Zhang C, Wu S, Nothnagel EA, Zhu JK (2010) A cellulose synthase-like protein is required for osmotic stress tolerance in Arabidopsis. Plant J 63(1):128–140

    PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was funded by the National Natural Science Foundation of China (31301341), the Fundamental Research Funds for the Central Universities (KJQN201421), and Jiangsu Collaborative Innovation Center for Modern Crop Production (JCIC-MCP).

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deyue Yu.

Additional information

Communicated by L. Xiong.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 17 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kan, G., Zhang, W., Yang, W. et al. Association mapping of soybean seed germination under salt stress. Mol Genet Genomics 290, 2147–2162 (2015). https://doi.org/10.1007/s00438-015-1066-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-015-1066-y

Keywords

Navigation