Skip to main content

Advertisement

Log in

Genome-wide analysis and expression of the calcium-dependent protein kinase gene family in cucumber

  • Original Paper
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

Calcium-dependent protein kinases (CDPKs) are multi-functional proteins that combine calcium-binding and signaling capabilities within a single gene product. Current studies have shown that the CDPKs regulate numerous growth and developmental processes and biotic and abiotic stress responses. Nonetheless, knowledge concerning the specific expression patterns and evolutionary history of the CDPK family in cucumber (Cucumis sativus L.) remains very limited. We, therefore, investigated the phylogenetic relationships and expression profiles of the 19 CDPK genes identified in the cucumber genome sequence, resolving them into four subfamilies based on a phylogenetic tree and gene structures. Tissue-specific expression profiles suggest that cucumber CDPK genes are involved in cucumber tissue development. An expression analysis based on qRT-PCR indicated that cucumber CDPK genes are extensively involved in abscisic acid, salt, cold, drought, heat, and waterlogging responses, possibly by different mechanisms. The fates of two paralogs after divergence were also investigated, suggesting subfunctionalization and neofunctionalization during evolution. These observations lay an important foundation for functional and evolutionary analyses of the CDPK gene family in cucurbitaceae species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

CsCDPK:

Cucumis sativus calcium-dependent protein kinase

BLAST:

The basic local alignment search tool

SMART:

Simple modular architecture research tool

HMM:

Hidden markov model

NJ:

The neighbor-joining

MEGA:

Molecular evolutionary genetics analysis

GSDS:

Gene structure display server

pI:

Isoelectric point

M.W.:

Molecular weight

qRT-PCR:

Quantitative real-time PCR

References

  • Asano T, Hayashi N, Kikuchi S, Ohsugi R (2012) CDPK-mediated abiotic stress signaling. Plant Signal Behav 7:817–821

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Billker O, Lourido S, Sibley LD (2009) Calcium-dependent signaling and kinases in apicomplexan parasites. Cell Host Microbe 5:612–622

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Boudet N, Aubourg S, Toffano-Nioche C, Kreis M, Lecharny A (2001) Evolution of intron/exon structure of DEAD helicase family genes in Arabidopsis, Caenorhabditis, and Drosophila. Genome Res 11:2101–2114

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Boudsocq M, Sheen J (2013) CDPKs in immune and stress signaling. Trends Plant Sci 18:30–40

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bush DS (1995) Calcium regulation in plant cells and its role in signalling. Annu Rev Plant Physiol 46:95–122

    Article  CAS  Google Scholar 

  • Chen F, Fasoli M, Tornielli GB, Santo SD, Pezzotti M, Zhang L, Cai B, Cheng ZM (2013) The Evolutionary History and Diverse Physiological Roles of the Grapevine Calcium-Dependent Protein Kinase Gene Family. PLoS One 8:e80818

    Article  PubMed Central  PubMed  Google Scholar 

  • Cheng SH, Willmann MR, Chen HC, Sheen J (2004) Calcium signaling through protein kinases, The Arabidopsis calcium-dependent protein kinase gene family. Plant Physiol 129:469–485

    Article  Google Scholar 

  • Chung E, Park JM, Oh SK, Joung YH, Lee S, Choi D (2004) Molecular and biochemical characterization of the Capsicum annuum calcium-dependent protein kinase3 (CaCDPK3) gene induced by abiotic and biotic stresses. Planta 220:286–295

    Article  CAS  PubMed  Google Scholar 

  • Das R, Pandey GK (2010) Expressional analysis and role of calcium regulated kinases in abiotic stress signaling. Curr Genomics 11:2–13

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dubrovinaa AS, Kiseleva KV, Khristenko VS (2013) Expression of calcium-dependent protein kinase (CDPK) genes under abiotic stress conditions in wild-growing grapevine Vitis amurensis. J Plant Physiol 170:1491–1500

    Article  Google Scholar 

  • Eddy SR (1998) Profile hidden Markov models. Bioinformatics 14:755–763

    Article  CAS  PubMed  Google Scholar 

  • Franz S, Ehlert B, Liese A, Kurth J, Cazalé AC, Romeisa T (2011) Calcium-dependent protein kinase CPK21 functions in abiotic stress response in Arabidopsis thaliana. Mol Plant 4:83–96

    Article  CAS  PubMed  Google Scholar 

  • Guo AY, Zhu QH, Chen X, Luo JC (2007) GSDS: a gene structure display server. Yi Chuan 29:1023–1026

    Article  CAS  PubMed  Google Scholar 

  • Hamel LP, Sheen J, Seguin A (2014) Ancient signals: comparative genomics of green plant CDPKs. Trends Plant Sci 19:2

    Google Scholar 

  • Harmon AC, Yoo BC, McCaffery C (1994) Pseudosubstrate inhibition of CDPK, a protein kinase with a calmodulin-like domain. Biochem 33:7278–7287

    Article  CAS  Google Scholar 

  • Harper JF, Harmon A (2005) Plants, symbiosis and parasites: a calcium signalling connection. Nat Rev Mol Cell Biol 6:555–566

    Article  CAS  PubMed  Google Scholar 

  • Harper JF, Huang JF, Lloyd SJ (1994) Genetic identification of an autoinhibitor in CDPK, a protein kinase with a calmodulin-like domain. Biochem 33:7267–7277

    Article  CAS  Google Scholar 

  • Hrabak EM, Dickmann LJ, Satterlee JS, Sussman MR (1996) Characterization of eight new members of the calmodulin-like domain protein kinase gene family from Arabidopsis thaliana. Plant Mol Biol 31:405–412

    Article  CAS  PubMed  Google Scholar 

  • Hrabak E, Chan C, Gribskov M, Harper J, Choi J, Halford N, Kudla J, Nimmo H, Sussman M, Thomas M, Simmons K, Zhu JK, Harmon A (2003) The Arabidopsis CDPK-SnRK superfamily of protein kinases. Plant Physiol 132:666–680

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Huang S, Li R, Zhang Z, Li L, Gu X, Fan W, Lucas WJ, Wang X, Xie B, Ni P, Ren Y, Zhu H, Li J, Lin K, Jin W, Fei Z, Li G, Staub J, van der Kilian A, Vossen EA, Wu Y, Guo J, He J, Jia Z, Tian G, Lu Y, Ruan J, Qian W, Wang M, Huang Q, Li B, Xuan Z, Cao J, Asan WuZ, Zhang J, Cai Q, Bai Y, Zhao B, Han Y, Li Y, Li X, Wang S, Shi Q, Liu S, Cho WK, Kim JY, Xu Y, Heller-Uszynska K, Miao H, Cheng Z, Zhang S, Wu J, Yang Y, Kang H, Li M, Liang H, Ren X, Shi Z, Wen M, Jian M, Yang H, Zhang G, Yang Z, Chen R, Ma L, Liu H, Zhou Y, Zhao J, Fang X, Fang L, Liu D, Zheng H, Zhang Y, Qin N, Li Z, Yang G, Yang S, Bolund L, Kristiansen K, Li S, Zhang X, Wang J, Sun R, Zhang B, Jiang S, Du Y (2009) The genome of the cucumber, Cucumis sativus L. Nature Genet 41:1275–1281

    Article  CAS  PubMed  Google Scholar 

  • Hughes AL (1994) The evolution of functionally novel proteins after gene duplication. Proc Biol Sci 256:119–124

    Article  CAS  PubMed  Google Scholar 

  • Ishino T, Orito Y, Chinzei Y, Yuda M (2006) A calcium-dependent protein kinase regulates Plasmodium ookinete access to the midgut epithelial cell. Mol Microbiol 59:1175–1184

    Article  CAS  PubMed  Google Scholar 

  • Jiang S, Zhang D, Wang L, Pan J, Liu Y, Kong X, Zhou Y, Li D (2013) A maize calcium-dependent protein kinase gene, ZmCPK4, positively regulated abscisic acid signaling and enhanced drought stress tolerance in transgenic Arabidopsis. Plant Physiol Biochem 71:112–120

    Article  CAS  PubMed  Google Scholar 

  • Jiao Y, Wickett NJ, Ayyampalayam S, Chanderbali AS, Landherr L, Ralph PE, Tomsho LP, Hu Y, Liang H, Soltis PS, Soltis DE, Clifton SW, Schlarbaum SE, Schuster SC, Ma H, Leebens-Mack J, dePamphilis CW (2011) Ancestral polyploidy in seed plants and angiosperms. Nature 473:97–100

    Article  CAS  PubMed  Google Scholar 

  • Johnson DR, Bhatnagar RS, Knoll LJ, Gordon JI (1994) Genetic and biochemical studies of protein N-myristoylation. Annu Rev Biochem 63:869–914

    Article  CAS  PubMed  Google Scholar 

  • Komatsu S, Yang G, Khan M, Onodera H, Toki S, Yamaguchi M (2007) Over-expression of calcium-dependent protein kinase 13 and calreticulin interacting protein 1 confers cold tolerance on Oryza plants. Mol Genet Genomics 277:713–723

    Article  CAS  PubMed  Google Scholar 

  • Kudla J, Batistic O, Hashimoto K (2010) Calcium signals: the lead currency of plant information processing. Plant cell 22:541–563

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kumar KS, Ullanat R, Jayabaskaran C (2004) Molecular cloning, characterization, tissue-specific and phytohormone-induced expression of calcium dependent protein kinase gene in cucumber (Cucumis sativus L.). J Plant Physiol 161:1061–1071

    Article  CAS  PubMed  Google Scholar 

  • Lanteri ML, Pagnussat GC, Lamattina L (2006) Calcium and calcium-dependent protein kinases are involved in nitric oxide- and auxin-induced adventitious root formation in cucumber. J Exp Bot 57:1341–1351

    Article  CAS  PubMed  Google Scholar 

  • Lescot M, Déhais P, Thijs G, Marchal K, Moreau Y, Peer Y, Rouze P, Rombauts S (2002) Plant-CARE: a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res 30:325–327

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Li AL, Zhu YF, Tan XM, Wang X, Wei B, Guo HZ, Zhang ZL, Chen XB, Zhao GY, Kong XY, Jia JZ, Mao L (2008) Evolutionary and functional study of the CDPK gene family in wheat (Triticum aestivum L.). Plant Mol Biol 66:429–443

    Article  CAS  PubMed  Google Scholar 

  • Librado P, Rozas J (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25:1451–1452

    Article  CAS  PubMed  Google Scholar 

  • Ludwig A, Romeis T, Jones J (2004) CDPK-mediated signalling pathways: specificity and cross-talk. J Exp Bot 55:181–188

    Article  CAS  PubMed  Google Scholar 

  • Ma P, Liu J, Yang X, Ma R (2013) Genome-Wide identification of the maize calcium-dependent protein kinase gene family. Appl Biochem Biotechnol 169:2111–2125

    Article  CAS  PubMed  Google Scholar 

  • Machanick P, Bailey TL (2011) MEME-ChIP: motif analysis of large DNA datasets. Bioinformatics 27:1696–1697

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mehlmer N, Wurzinger B, Stael S, Hofmann-Rodrigues D, Csaszar E, Pfister B, Bayer R, Teige M (2010) The Ca2+ dependent protein kinase CPK3 is required for MAPK-independent salt-stress acclimation in Arabidopsis. Plant J 63:484–498

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mori IC, Murata Y, Yang Y, Munemasa S, Wang YF, Andreoli S, Tiriac H, Alonso JM, Harper JF, Ecker JR, Kwak JM, Schroeder JI (2006) CDPKs CPK6 and CPK3 function in ABA regulation of guard cell S-type anion- and Ca2+-permeable channels and stomatal closure. PLoS Biol 4:e327

    Article  PubMed Central  PubMed  Google Scholar 

  • Rajesh U, Jayabaskaran C (2002) Distinct light-, cytokinin- and tissue-specific regulation of calcium dependent protein kinase gene expression in cucumber (Cucumis sativus). Plant Sci 162:153–163

    Article  Google Scholar 

  • Rastogi S, Liberles DA (2005) Subfunctionalization of duplicated genes as a transition state to neofunctionalization. BMC Evol Biol 5:28

    Article  PubMed Central  PubMed  Google Scholar 

  • Ray S, Agarwal P, Arora R, Kapoor S, Tyagi AK (2007) Expression analysis of calcium-dependent protein kinase gene family during reproductive development and abiotic stress conditions in rice (Oryza sativa L. ssp. indica). Mol Genet Genomics 278:493–505

    Article  CAS  PubMed  Google Scholar 

  • Rechsteiner M, Rogers SW (1996) PEST sequences and regulation by proteolysis. Trends Biochem Sci 21:267–271

    Article  CAS  PubMed  Google Scholar 

  • Reddy AS, Ali GS, Celesnik H, Day IS (2011) Coping with stresses: roles of calcium-andcalcium/calmodulin-regulated gene expression. Plant Cell 23:2010–2032

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Remington DL, Vision TJ, Guilfoyle TJ, Reed JW (2004) Contrasting modes of diversification in the Aux/IAA and ARF gene families. Plant Physiol 135:1738–1752

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ruszala EM, Beerling DJ, Franks PJ, Chater C, Casson SA, Gray JE, Hetherington AM (2011) Land plants acquired active stomatal control early in their evolutionary history. Curr Biol 21:1030–1035

    Article  CAS  PubMed  Google Scholar 

  • Sairam RK, Kumutha D, Ezhilmathi K, Deshmukh PS, Srivastava GC (2008) Physiology and biochemistry of waterlogging tolerance in plants. Biol Plantarum 52:401–412

    Article  CAS  Google Scholar 

  • Sanders D, Pelloux J, Brownlee C, Harper JF (2002) Calcium at the crossroads of signaling. Plant Cell 14:401–417

    Google Scholar 

  • Snedden WA, Fromm H (2001) Calmodulin as a versatile calcium signal transducer in plants. New Phytol 151:35–66

    Article  CAS  Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  CAS  PubMed  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Trewavas AJ, Rodrigues C, Rato C, Malho R (2002) Cyclic nucleotides: the current dilemma. Curr Opin Plant Biol 5:425–429

    Article  CAS  PubMed  Google Scholar 

  • Wan H, Wei Yuan, Bo K, Shen J, Pang X, Chen J (2013) Genome-wide analysis of NBS-encoding disease resistance genes in Cucumis sativus and phylogenetic study of NBS-encoding genes in Cucurbitaceae crops. BMC Genomics 14:109

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Xu X, Wang H, Qi X, Xu Q, Chen X (2014) Waterlogging-induced increase in fermentation and related gene expression in the root of cucumber (Cucumis sativus L.). Sci Hortic 179:388–395

    Article  CAS  Google Scholar 

  • Yang X, Tuskan GA, Cheng MZ (2006) Divergence of the Dof gene families in poplar, Arabidopsis, and rice suggests multiple modes of gene evolution after duplication. Plant Physiol 142:820–830

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang XS, Choi JH (2001) Molecular evolution of calmodulin-like domain protein kinases (CDPKs) in plants and protists. J Mol Evol 53:214–224

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Liu WZ, Zhang Y, Deng M, Niu F, Yang B, Wang X, Wang B, Liang W, Deyholos MK, Jiang YQ (2014) Identification, expression and interaction analyses of calcium-dependent protein kinase (CPK) genes in canola (Brassica napus L.). BMC Genom 15:211

    Article  Google Scholar 

  • Zhu SY, Yu XC, Wang XJ, Zhao R, Li Y, Fan RC, Shang Y, Du SY, Wang XF, Wu FQ, Xu YH, Zhang XY, Zhang DP (2007) Two calcium-dependent protein kinases, CPK4 and CPK11, regulate abscisic acid signal transduction in Arabidopsis. Plant Cell 19:3019–3036

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zuo R, Hu R, Chai G, Xu M, Qi G, Kong Y, Zhou G (2013) Genome-wide identification, classification, and expression analysis of CDPK and its closely related gene families in poplar (Populus trichocarpa). Mol Biol Rep 40:2645–2662

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Martin Agyei Yeboah (West Africa Centre for Crop Improvement WACCI) for his critical reading of the manuscript. This research was supported by the National Natural Science Foundation of China (Nos. 31372087 and 31201640).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuehao Chen.

Additional information

Communicated by L. Xiong.

X. Xu and M. Liu have contributed equally to this work.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, X., Liu, M., Lu, L. et al. Genome-wide analysis and expression of the calcium-dependent protein kinase gene family in cucumber. Mol Genet Genomics 290, 1403–1414 (2015). https://doi.org/10.1007/s00438-015-1002-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-015-1002-1

Keywords

Navigation