Skip to main content
Log in

Genome-wide identification and characterization of aquaporin genes (AQPs) in Chinese cabbage (Brassica rapa ssp. pekinensis)

  • Original Paper
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

Aquaporins (AQPs) are members of a superfamily of integral membrane proteins and play a significant role in the transportation of small molecules across membranes. However, currently little is known about the AQP genes in Chinese cabbage (Brassica rapa ssp. pekinensis). In this study, a genome-wide analysis was carried out to identify the AQP genes in Chinese cabbage. In total, 53 non-redundant AQP genes were identified that were located on all of the 10 chromosomes. The number of AQP genes in Chinese cabbage was greater than in Arabidopsis. They were classified into four subfamilies, including PIP, TIP, NIP, and SIP. Thirty-three groups of AQP orthologous genes were identified between Chinese cabbage and Arabidopsis, but orthologs corresponding to AtNIP1;1 and AtPIP2;8 were not detected. Seventeen groups of paralogous genes were identified in Chinese cabbage. Three-dimensional models of the AQPs of Chinese cabbage were constructed using Phyre2, and ar/R selectivity filters were analyzed comparatively between Chinese cabbage and Arabidopsis. Generally, gene structure was conserved within each subfamily, especially in the SIP subfamily. Intron loss events have occurred during the evolution of the PIP, TIP, and NIP subfamilies. The expression of AQP genes in Chinese cabbage was analyzed in different organs. Most AQP genes were downregulated in response to salt stress. This work shows that the AQP genes of Chinese cabbage have undergone triplication and subsequent biased gene loss.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ahmad P, Azooz MM, Prasad MNV (2013) Ecophysiology and responses of plants under salt stress. In: Bhardwaj R (ed) Aquaporins: role under salt stress in plants. Springer, New York, pp 213–248

    Google Scholar 

  • Alexandersson E, Fraysse L, Sjövall-Larsen S, Gustavsson S, Fellert M, Karlsson M, Johanson U, Kjellbom P (2005) Whole gene family expression and drought stress regulation of aquaporins. Plant Mol Biol 59:469–484

    Article  CAS  PubMed  Google Scholar 

  • Ayadi M, Cavez D, Miled N, Chaumont F, Masmoudi K (2011) Identification and characterization of two plasma membrane aquaporins in durum wheat (Triticum turgidum L. subsp. durum) and their role in abiotic stress tolerance. Plant Physiol Biochem 49:1029–1039

    Article  CAS  PubMed  Google Scholar 

  • Baiges I, Schäffner AR, Affenzeller MJ, Mas A (2002) Plant aquaporins. Physiol Plant 115:175–182

    Article  CAS  PubMed  Google Scholar 

  • Bailey TL, Elkan C (1994) Fitting a mixture model by expectation maximization to discover motifs in biopolymers. Proceedings of the second international conference on intelligent systems for molecular biology. AAAI Press, Menlo Park, pp 28–36

    Google Scholar 

  • Bailey TL, Williams N, Misleh C, Li WW (2006) MEME: discovering and analyzing DNA and protein sequence motifs. Nucleic Acids Res 34:369–373

    Article  Google Scholar 

  • Bienert GP, Bienert MD, Jahn TP, Boutry M, Chaumont F (2011) Solanaceae XIPs are plasma membrane aquaporins that facilitate the transport of many uncharged substrates. Plant J 66:307–317

    Article  Google Scholar 

  • Bots M, Vergeldt F, Wolters-Arts M, Weterings K, van As H, Mariani C (2005) Aquaporins of the PIP2 class are required for efficient anther dehiscence in tobacco. Plant Physiol 137:1049–1056

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chaumont F, Barrieu F, Wojcik E, Chrispeels MJ, Jung R (2001) Aquaporins constitute a large and highly divergent protein family in maize. Plant Physiol 125:1206–1215

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cheng F, Wu J, Fang L, Wang X (2012) Syntenic gene analysis between Brassica rapa and other Brassicaceae species. Front Plant Sci 3:198

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cheng F, Mandáková T, Wu J, Xie Q, Lysak MA, Wang X (2013) Deciphering the diploid ancestral genome of the mesohexaploid Brassica rapa. Plant Cell 25:1541–1554

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chenna R, Sugawara H, Koike T, Lopez R, Gibson TJ, Higgins DG, Thompson JD (2003) Multiple sequences alignment with the Clustal series of programs. Nucleic Acids Res 31:3497–3500

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Danielson JAH, Johanson U (2008) Unexpected complexity of the aquaporin gene family in the moss Physcomitrella patens. BMC Plant Biol 8:45

    Article  PubMed Central  PubMed  Google Scholar 

  • Denker BM, Smith BL, Kuhajda FP, Agre P (1988) Identification, purification, and partial characterization of a novel Mr 28,000 integral membrane protein from erythrocytes and renal tubules. J Biol Chem 263:15634–15642

    CAS  PubMed  Google Scholar 

  • Dynowski M, Mayer M, Moran O, Ludewig U (2008) Molecular determinants of ammonia and urea conductance in plant aquaporin homologs. FEBS Lett 582:2458–2462

    Article  CAS  PubMed  Google Scholar 

  • Fu D, Libson A, Miercke LJW, Weitzman C, Nollert P, Krucinski J, Stroud RM (2000) Structure of a glycerol-conducting channel and the basis for its selectivity. Science 290:481–486

    Article  CAS  PubMed  Google Scholar 

  • Fujiyoshi Y, Mitsuoka K, de Groot BL, Philippsen A, Grubmüller H, Agre P, Engel A (2002) Structure and function of water channels. Curr Opin Struct Biol 12:509–515

    Article  CAS  PubMed  Google Scholar 

  • Gao YP, Young L, Bonham-Smith P, Gusta LV (1999) Characterization and expression of plasma and tonoplast membrane aquaporins in primed seed of Brassica napus during germination under stress conditions. Plant Mol Biol 40:635–644

    Article  CAS  PubMed  Google Scholar 

  • Ge FW, Tao P, Zhang Y, Wang JB (2014) Characterization of AQP gene expressions in Brassica napus during seed germination and in response to abiotic stresses. Biol Plant 58:274–282

    Article  CAS  Google Scholar 

  • Gomes D, Agasse A, Thiébaud P, Delrot S, Gerós H, Chaumont F (2009) Aquaporins are multifunctional water and solute transporters highly divergent in living organisms. BBA Biomembranes 1788:1213–1228

    Article  CAS  PubMed  Google Scholar 

  • Gonen T, Walz T (2006) The structure of aquaporins. Q Rev Biophys 39:361–396

    Article  CAS  PubMed  Google Scholar 

  • Gonen T, Sliz P, Kistler J, Cheng Y, Walz T (2004) Aquaporin-0 membrane junctions reveal the structure of a closed water pore. Nature 429:193–197

    Article  CAS  PubMed  Google Scholar 

  • Gupta AB, Sankararamakrishnan R (2009) Genome-wide analysis of major intrinsic proteins in the tree plant Populus trichocarpa: characterization of XIP subfamily of aquaporins from evolutionary perspective. BMC Plant Biol 9:134

    Article  PubMed Central  PubMed  Google Scholar 

  • Hachez C, Zelazny E, Chaumont F (2006) Modulating the expression of aquaporin genes in planta: a key to understand their physiological functions? Biochim Biophys Acta 1758:1142–1156

    Article  CAS  PubMed  Google Scholar 

  • Harries WEC, Akhavan D, Miercke LJW, Khademi S, Stroud RM (2004) The channel architecture of aquaporin 0 at a 2.2-A resolution. Proc Natl Acad Sci USA 101:14045–14050

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Heymann JB, Engel A (2000) Structural clues in the sequences of the aquaporins. J Mol Biol 295:1039–1053

    Article  CAS  PubMed  Google Scholar 

  • Higuchi T, Suga S, Tsuchiya T, Hisada H, Morishima S, Okada Y, Maeshima M (1998) Molecular cloning, water channel activity and tissue specific expression of two isforms of radish vacuolar aquaporin. Plant Cell Physiol 39:905–913

    Article  CAS  PubMed  Google Scholar 

  • Ishibashi K, Kondo S, Hara S, Morishita Y (2011) The evolutionary aspects of aquaporin family. Am J Physiol Regul Integr Comp Physiol 300:566–576

    Article  Google Scholar 

  • Ishikawa F, Suga S, Uemura T, Sato MH, Maeshima M (2005) Novel type aquaporin SIPs are mainly localized to the ER membrane and show cell-specific expression in Arabidopsis thaliana. FEBS Lett 579:5814–5820

    Article  CAS  PubMed  Google Scholar 

  • Jang JY, Kim DG, Kim YO, Kim JS, Kang H (2004) An expression analysis of a gene family encoding plasma membrane aquaporins in response to abiotic stresses in Arabidopsis thaliana. Plant Mol Biol 54:713–725

    Article  CAS  PubMed  Google Scholar 

  • Jansson S, Douglas CJ (2007) Populus: a model system for plant biology. Annu Rev Plant Biol 58:435–458

    Article  CAS  PubMed  Google Scholar 

  • Javot H, Lauvergeat V, Santoni V (2003) Role of a single aquaporin isoform in root water uptake. Plant Cell 15:509–522

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Johanson U, Gustavsson S (2002) A new subfamily of major intrinsic proteins in plants. Mol Biol Evol 19:456–461

    Article  CAS  PubMed  Google Scholar 

  • Johanson U, Karlsson M, Johansson I, Gustavsson S, Sjovall S, Fraysse L, Weig AR, Kjellbom P (2001) The complete set of genes encoding major intrinsic proteins in Arabidopsis provides a framework for a new nomenclature for major intrinsic proteins in plants. Plant Physiol 126:1358–1369

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Katsuhara M, Koshio K, Shibasaka M, Hayashi Y, Hayakawa T, Kasamo K (2003) Over-expression of a barely aquaporin increased the shoot/root ratio and raised salt sensitivity in transgenic rice plants. Plant Cell Physiol 44:1378–1383

    Article  CAS  PubMed  Google Scholar 

  • Katsuhara M, Rhee JY, Sugimoto G, Chung GC (2011) Early response in water relations influenced by NaCl reflects tolerance or sensitivity of barley plants to salinity stress via aquaporins. Soil Sci Plant Nutr 57:50–60

    Article  CAS  Google Scholar 

  • Kelley LA, Sternberg MJ (2009) Protein structure prediction on the Web: a case study using the Phyre server. Nat Protoc 4:363–371

    Article  CAS  PubMed  Google Scholar 

  • Lagercrantz U (1998) Comparative mapping between Arabidopsis thaliana and Brassica nigra indicates that Brassica genomes have evolved through extensive genome replication accompanied by chromosome fusions and frequent rearrangements. Genetics 150:1217–1228

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lee JK, Kozono D, Remis J, Kitagawa Y, Agre P, Stroud RM (2005) Structural basis for conductance by the archaeal aquaporin AqpM at 1.68 A. Proc Natl Acad Sci USA 102:18932–18937

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lee SC, Lim MH, Kim JA, Lee SI, Kim JS, Jin M, Kwon SJ, Mun JH, Kim YK, Kim HU, Hur Y, Park BS (2008) Transcriptome analysis in Brassica rapa under the abiotic stresses using Brassica 24 K oligo microarray. Mol Cells 26:595–605

    CAS  PubMed  Google Scholar 

  • Li GW, Peng YH, Yu X, Zhang MH, Cai WM, Sun WN, Su WA (2008) Transport functions and expression analysis of vacuolar membrane aquaporins in response to various stresses in rice. J Plant Physiol 165:1879–1888

    Article  CAS  PubMed  Google Scholar 

  • Liu LH, Ludewig U, Gassert B, Frommer WB, von Wiren N (2003) Urea transport by nitorgen-regulated tonoplast intrinsic proteins in Arabidopsis. Plant Physiol 133:1220–1228

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Luu DT, Maurel C (2005) Aquaporins in a challenging environment: molecular gears for adjusting plant water status. Plant, Cell Environ 28:85–96

    Article  CAS  Google Scholar 

  • Lysak MA, Koch MA, Pecinka A, Schubert I (2005) Chromosome triplication found across the tribe Brassiceae. Genome Res 15:516–525

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ma JF, Tamai K, Yamaji N, Mitani N, Konishi S, Katsuhara M, Ishiguro M, Murata Y, Yano M (2006) A silicon transporter in rice. Nature 440:688–691

    Article  CAS  PubMed  Google Scholar 

  • Maeshima M, Ishikawa F (2008) ER membrane aquaporins in plants. Pflug Arch Eur J Phy 456:709–716

    Article  CAS  Google Scholar 

  • Maurel C (2007) Plant aquaporins: novel functions and regulation properties. FEBS Lett 581:2227–2236

    Article  CAS  PubMed  Google Scholar 

  • Maurel C, Verdoucq L, Luu DT, Santoni V (2008) Plant aquaporins: membrane channels with multiple integrated functions. Annu Rev Plant Biol 59:595–624

    Article  CAS  PubMed  Google Scholar 

  • Mitani-Ueno N, Yamaji N, Zhao FJ, Ma JF (2011) The aromatic/arginine selectivity filter of NIP aquaporins plays a critical role in substrate selectivity for silicon, boron, and arsenic. J Exp Bot 62:4391–4398

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Newby ZER, O’Connell JD III, Robles-Colmenares Y, Khademi S, Miercke LJW, Stroud RM (2008) Crystal structure of the aquaglyceroporin PfAQP from the malarial parasite Plasmodium falciparum. Nature Struct Mol Biol 15:619–625

    Article  CAS  Google Scholar 

  • Nguyen MX, Moon S, Jung KH (2013) Genome–wide expression analysis of rice aquaporin genes and development of a functional gene network mediated by aquaporin expression in roots. Planta 238:669–681

    Article  CAS  PubMed  Google Scholar 

  • Parkin IA, Gulden SM, Sharpe AG, Lukens L, Trick M, Osborn TC, Lydiate DJ (2005) Segmental structure of the Brassica napus genome based on comparative analysis with Arabidopsis thaliana. Genetics 171:765–781

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Peng YH, Lin WL, Cai WM, Arora R (2007) Overexpression of a Panax ginseng tonoplast aquaporin alters salt tolerance, drought tolerance and cold acclimation ability in transgenic Arabidopsis plants. Planta 226:729–740

    Article  CAS  PubMed  Google Scholar 

  • Perez Di Giorgio J, Soto G, Alleva K, Jozefkowicz C, Amodeo G, Muschietti JP, Ayub ND (2014) Prediction of aquaporin function by integrating evolutionary and functional analyses. J Membrane Biol 247:107–125

    Article  CAS  Google Scholar 

  • Petrov DA, Lozovskaya ER, Hartl DL (1996) High intrinsic rate of DNA loss in Drosophila. Nature 384:346–349

    Article  CAS  PubMed  Google Scholar 

  • Preston GM, Agre P (1991) Isolation of the cDNA for erythrocyte integral membrane protein of 28 kilodaltons: member of an ancient channel family. Proc Natl Acad Sci USA 88:11110–11114

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Roy SW, Penny D (2007) Patterns of intron loss and gain in plants: intron-loss-dominated evolution and genome-wide comparison of O. Sativa and A. thaliana. Mol Biol Evol 24:171–181

    Article  CAS  PubMed  Google Scholar 

  • Saeed AI, Sharov V, White J, Li J, Liang W, Bhagabati N, Braisted J, Klapa M, Currier T, Thiagarajan M, Sturn A, Snuffin M, Rezantsev A, Popov D, Ryltsov A, Kostukovich E, Borisovsky I, Liu Z, Vinsavich A, Trush V, Quackenbush J (2003) TM4: a free, open-source system for microarray data management and analysis. Biotechniques 34:374–378

    CAS  PubMed  Google Scholar 

  • Sakurai J, Ishikawa F, Yamaguchi T, Uemura M, Maeshima M (2005) Identification of 33 rice aquaporin genes and analysis of their expression and function. Plant Cell Physiol 46:1568–1577

    Article  CAS  PubMed  Google Scholar 

  • Sakurai J, Ahamed A, Murai M, Maeshima M, Uemura M (2008) Tissue and cell-specific localization of rice aquaporins and their water transport activities. Plant Cell Physiol 49:30–39

    Article  CAS  PubMed  Google Scholar 

  • Savage DF, Egea PF, Robles-Colmenares Y, O’Connell JD III, Stroud RM (2003) Architecture and selectivity in aquaporins: 2.5 a structure of aquaporin Z. PLoS Biol 1:334–340

    Article  CAS  Google Scholar 

  • Schmid M, Davison TS, Henz SR, Pape UJ, Demar M, Vingron M, Scholkopf B, Weigel D, Lohmann JU (2005) A gene expression map of Arabidopsis thaliana development. Nat Genet 37:501–506

    Article  CAS  PubMed  Google Scholar 

  • Siefritz F, Otto B, Bienert GP, van der Krol A, Kaldenhoff R (2004) The plasma membrane aquaporin NtAQP1 is a key component of the leaf unfolding mechanism in tobacco. Plant J 37:147–155

    Article  CAS  PubMed  Google Scholar 

  • Soto G, Alleva K, Mazzella MA, Amodeo G, Muschietti JP (2008) AtTIP1;3 and AtTIP5;1, the only highly expressed Arabidopsis pollen-specific aquaporins, transport water and urea. FEBS Lett 582:4077–4082

    Article  CAS  PubMed  Google Scholar 

  • Sui H, Han BG, Lee JK, Walian P, Jap BK (2001) Structural basis of water-specific transport through the AQP1 water channel. Nature 414:872–878

    Article  CAS  PubMed  Google Scholar 

  • Takano J, Wada M, Ludewig U, Schaaf G, von Wiren N, Fujiwara T (2006) The Arabidopsis major intrinsic protein NIP5;1 is essential for efficient boron uptake and plant development under boron limitation. Plant Cell 18:1498–1509

    Article  PubMed Central  PubMed  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tang H, Lyons E (2012) Unleashing the genome of Brassica rapa. Front Plant Sci 3:172

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tang H, Woodhouse MR, Cheng F, Schnable JC, Pedersen BS, Conant G, Wang X, Freeling M, Pires JC (2012) Altered patterns of fractionation and exon deletions in Brassica rapa support a two-step model of paleohexaploidy. Genetics 190:1563–1574

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tao P, Huang X, Li B, Wang W, Yue Z, Lei J, Zhong X (2014) Comparative analysis of alternative splicing, alternative polyadenylation and the expression of the two KIN genes from cytoplasmic male sterility cabbage (Brassica oleracea L. var. capitata L.). Mol Genet Genomics. doi:10.1007/s00438-014-0815-7

    Google Scholar 

  • Thornton JW, DeSalle R (2000) Gene family evolution and homology: genomics meets phylogenetics. Annu Rev Genom Hum G 1:41–73

    Article  CAS  Google Scholar 

  • Tong C, Wang X, Yu J, Wu J, Li W, Huang J, Dong C, Hua W, Liu S (2013) Comprehensive analysis of RNA-seq data reveals the complexity of the transcriptome in Brassica rapa. BMC Genom 14:689

    Article  CAS  Google Scholar 

  • Törnroth-Horsefield S, Wang Y, Hedfalk K, Johanson U, Karlsson M, Tajkhorshid E, Neutze R, Kjellbom P (2006) Structural mechanism of plant aquaporin gating. Nature 439:688–694

    Article  PubMed  Google Scholar 

  • Uehlein N, Kaldenhoff R (2008) Aquaporins and plant leaf movements. Ann Bot 101:1–4

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Vera-Estrella R, Barkla BJ, Amezcua-Romero JC, Pantoja O (2012) Day/night regulation of aquaporins uring the CAM cycle in Mesembryanthemum crystallinum. Plant, Cell Environ 5:485–501

    Article  Google Scholar 

  • Wallace IS, Roberts DM (2004) Homology modeling of representative subfamilies of Arabidopsis major intrinsic proteins. Classification based on the aromatic/arginine selectivity filter. Plant Physiol 135:1059–1068

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wang X, Wang H, Wang J, Sun R, Wu J, Liu S, Bai Y, Mun J, Bancroft I, Cheng F, Huang S, Li X, Hua W, Wang J, Wang X, Freeling M, Pires JC, Paterson AH, Chalhoub B, Wang B, Hayward A, Sharpe AG, Park B, Weisshaar B, Liu B, Li B, Liu B, Tong C, Song C, Duran C, Peng C, Geng C, Koh C, Lin C, Edwards D, Mu D, Shen D, Eleni S, Li F, Fraser F, Conant G, Lassalle G, King GJ, Bonnema G, Tang H, Wang H, Belcram H, Zhou H, Hirakawa H, Abe H, Guo H, Wang H, Jin H, Parkin IAP, Batley J, Kim J, Just J, Li J, Xu J, Deng J, Kim JA, Li J, Yu J, Meng J, Wang J, Min J, Poulain J, Wang J, Hatakeyama K, Wu K, Wang L, Fang L, Trick M, Links MG, Zhao M, Jin M, Ramchiary N, Drou N, Berkman PJ, Cai Q, Huang Q, Li R, Tabata S, Cheng S, Zhang S, Zhang S, Huang S, Sato S, Sun S, Kwon S, Choi S, Lee T, Fan W, Zhao X, Tan X, Xu X, Wang Y, Qiu Y, Yin Y, Li Y, Du Y, Liao Y, Lim Y, Narusaka Y, Wang Y, Wang Z, Li Z, Wang Z, Xiong Z, Zhang Z (2011) The genome of the mesopolyploid crop species Brassica rapa. Nat Genet 43:1035–1039

    Article  CAS  PubMed  Google Scholar 

  • Wudick MM, Luu DT, Maurel C (2009) A look inside: localization patterns and functions of intracellular plant aquaporins. New Phytol 184:289–302

    Article  CAS  PubMed  Google Scholar 

  • Zelazny E, Borst JW, Muylaert M, Batoko H, Hemminga MA, Chaumont F (2007) FRET imaging in living maize cells reveals that plasma membrane aquaporins interact to regulate their subcellular localization. Proc Natl Acad Sci USA 104:12359–12364

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhu C, Schraut D, Hartung W, Schaffner AR (2005) Differential responses of maize MIP genes to salt stress and ABA. J Exp Bot 56:2971–2981

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (31301788, 31372058), the Grand Science and Technology Special Project of Zhejiang Province (2012C12903-3-8), and the China Postdoctoral Science Foundation (2013M540500).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinmin Zhong.

Additional information

Communicated by S. Hohmann.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tao, P., Zhong, X., Li, B. et al. Genome-wide identification and characterization of aquaporin genes (AQPs) in Chinese cabbage (Brassica rapa ssp. pekinensis). Mol Genet Genomics 289, 1131–1145 (2014). https://doi.org/10.1007/s00438-014-0874-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-014-0874-9

Keywords

Navigation