Skip to main content

Advertisement

Log in

MicroRNA target prediction: theory and practice

  • Original Paper
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

The present study is one of the few that includes tissue samples in the evaluation of target prediction algorithms designed to detect microRNA (miRNA) sequences that might interact with particular messenger RNA (mRNA) sequences. Twelve different target prediction tools were used to find miRNA sequences that might interact with CCL20 gene expression. Different algorithms predicted controversial miRNA sequences for CCL20 regulation due to a different weighting of parameters. Hsa-miR-21 and hsa-miR-145 suggested by four or more programs were chosen for further investigation. Possible real interaction of these miRNA sequences with CCL20 gene expression was monitored using luciferase assays and expression analyses of tissue samples of colorectal adenocarcinoma by either qRT-PCR or ELISA. Folding status of seed-binding sites in complete mRNA and 3′UTR of CCL20 was predicted. Prediction of miRNA expression was attempted based on CCL20 expression data. Eight of the target prediction tools forecasted a role for hsa-miR-21 and four mentioned hsa-miR-145 in CCL20 gene regulation. Laboratory experimentation showed that CCL20 may serve as a target of hsa-miR-21 but not hsa-miR-145. Expression of the molecules resulted in no clear assertion. Folding of seed-binding sites was predicted to be relatively constant for the complete mRNA and 3′UTR. Predicting miRNA expression based on target gene expression was impossible. This might be attributable to the fact that effects of miRNA activity may oscillate between gene product repression and activation. Additional systematic studies are needed to address this issue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Arndt GM, Dossey L, Cullen LM, Lai A, Druker R, Eisbacher M, Zhang C, Tran N, Fan H, Retzlaff K, Bittner A, Raponi M (2009) Characterization of global microRNA expression reveals oncogenic potential of miR-145 in metastatic colorectal cancer. BMC Cancer 9:374. doi:10.1186/1471-2407-9-374

    Article  PubMed Central  PubMed  Google Scholar 

  • Asangani IA, Rasheed SA, Nikolova DA, Leupold JH, Colburn NH, Post S, Allgayer H (2008) MicroRNA-21 (miR-21) post-transcriptionally downregulates tumor suppressor Pdcd4 and stimulates invasion, intravasation and metastasis in colorectal cancer. Oncogene 27:2128–2136

    Article  CAS  PubMed  Google Scholar 

  • Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297

    Article  CAS  PubMed  Google Scholar 

  • Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136:2133–2152. doi:10.1016/j.cell.2009.01.002

    Article  Google Scholar 

  • Bernhart SH, Tafer H, Mückstein U, Flamm C, Stadler PF, Hofacker IL (2006) Partition function and base pairing probabilities of RNA heterodimers. Algorithms Mol Biol 1:3

    Article  PubMed Central  PubMed  Google Scholar 

  • Bloomston M, Frankel WL, Petrocca F, Volinia S, Alder H, Hagen JP, Liu CG, Bhatt D, Taccioli C, Croce CM (2007) MicroRNA expression patterns to differentiate pancreatic adenocarcinoma from normal pancreas and chronic pancreatitis. JAMA 297:1901–1908

    Article  CAS  PubMed  Google Scholar 

  • Busch A, Richter AS, Backofen R (2008) I nta RNA: efficient prediction of bacterial sRNA targets incorporating target site accessibility and seed regions. Bioinformatics 24:2849–2856. doi:10.1093/bioinformatics/btn544

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bustin SA (2000) Absolute quantification of mRNA using real-time reverse transcription polymerase chain reaction assays. J Mol Endocrinol 25:169–193

    Article  CAS  PubMed  Google Scholar 

  • Cao B, Ji T, Zhou B, Zou J, Jiao GQ (2013) Predicting the target genes of microRNA based on microarray data. Genet Mol Res 12:6059–6066

    Article  CAS  PubMed  Google Scholar 

  • Coleman MP, Forman D, Bryant H, Butler J, Rachet B, Maringe C, Nur U, Tracey E, Coory M, Hatcher J, McGahan CE, Turner D, Marrett L, Gjerstorff ML, Johannesen TB, Adolfsson J, Lambe M, Lawrence G, Meechan D, Morris EJ, Middleton R, Steward J, Richards MA (2011) Cancer survival in Australia, Canada, Denmark, Norway, Sweden, and the UK, 1995–2007 (the International Cancer Benchmarking Partnership): an analysis of population-based cancer registry data. Lancet 377:127–138. doi:10.1016/S0140-6736(10)62231-3

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cooper GF, Herskovits E (1992) A Bayesian method for the induction of probabilistic networks from data. Mach Learn 4:309–347

    Google Scholar 

  • Cormen TH, Leiserson CE, Rivest RL (1990) Introduction to algorithms. McGraw-Hill, New York

    Google Scholar 

  • Cristianini N, Shawe-Taylor J (2000) Support vector machines and other kernel-based learning methods. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Do CB, Foo CS, Batzoglou S (2008) A max-margin model for efficient simultaneous alignment and folding of RNA sequences. Bioinformatics 24(i68–76):i68–i76. doi:10.1093/bioinformatics/btn177

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Enright AJ, John B, Gaul U, Tuschl T, Sander C, Marks DS (2003) MicroRNA targets in Drosophila. Genome Biol 5:R1

    Article  PubMed Central  PubMed  Google Scholar 

  • Friedman RC, Farh KK, Burge CB, Bartel DP (2009) Most mammalian mRNAs are conserved targets of microRNAs. Genome Res 19:92–105. doi:10.1101/gr.082701.108

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fu X, Xue C, Huang Y, Xie Y, Li Y (2010) The activity and expression of microRNAs in prostate cancers. Mol BioSyst 6:2561–2572. doi:10.1039/c0mb00100g

    Article  CAS  PubMed  Google Scholar 

  • Fusco M, Pezzi A, Benatti P, Roncucci L, Chiodini P, Di Maio G, Di Napoli R, de Leon MP (2010) Clinical features and colorectal cancer survival: an attempt to explain differences between two different Italian regions. Eur J Cancer 46:142–149. doi:10.1016/j.ejca.2009.07.005

    Article  PubMed  Google Scholar 

  • Gaidatzis D, van Nimwegen E, Hausser J, Zavolan M (2007) Inference of miRNA targets using evolutionary conservation and pathway analysis. BMC Bioinform 8:69

    Article  Google Scholar 

  • Gee HE, Buffa FM, Camps C, Ramachandran A, Leek R, Taylor M, Patil M, Sheldon H, Betts G, Homer J, West C, Ragoussis J, Harris AL (2011) The small-nucleolar RNAs commonly used for microRNA normalisation correlate with tumour pathology and prognosis. Br J Cancer 104:1168–1177. doi:10.1038/sj.bjc.6606076

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Griffiths-Jones S, Saini HK, van Dongen S, Enright AJ (2008) mi RB ase: tools for microRNA genomics. Nucleic Acids Res 36:D154–D158

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Grimson A, Farh KK, Johnston WK, Garrett-Engele P, Lim LP, Bartel DP (2007) MicroRNA targeting specificity in mammals: determinants beyond seed pairing. Mol Cell 27:91–105

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gruber AR, Lorenz R, Bernhart SH, Neuböck R, Hofacker IL (2008) The Vienna RNA websuite. Nucleic Acids Res 36:W70–W74

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Guo J, Miao Y, Xiao B, Huan R, Jiang Z, Meng D, Wang Y (2009) Differential expression of microRNA species in human gastric cancer versus non-tumorous tissues. J Gastroenterol Hepatol 24:652–657. doi:10.1111/j.1440-1746.2008.05666.x

    Article  CAS  PubMed  Google Scholar 

  • Heikham R, Shankar R (2010) Flanking region sequence information to refine microRNA target predictions. J Biosci 35:105–118

    Article  CAS  PubMed  Google Scholar 

  • Huang HY, Chien CH, Jen KH, Huang HD (2006) R eg RNA: an integrated web server for identifying regulatory RNA motifs and elements. Nucleic Acids Res 34:W429–W434

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jain V, Raut DK (2011) Medical literature search dot com. Indian J Dermatol Venereol Leprol 77:135–140. doi:10.4103/0378-6323.77451

    Article  PubMed  Google Scholar 

  • Jiang Q, Wang Y, Hao Y, Juan L, Teng M, Zhang X, Li M, Wang G, Liu Y (2009) mi R2D isease: a manually curated database for microRNA deregulation in human disease. Nucleic Acids Res 37:D98–D104. doi:10.1093/nar/gkn714

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jin Y, Chen Z, Liu X, Zhou X (2013) Evaluating the microRNA targeting sites by luciferase reporter gene assay. Methods Mol Biol 936:117–127

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • John B, Enright AJ, Aravin A, Tuschl T, Sander C, Marks DS (2005) Human microRNA targets. PLoS Biol 3:e264

    Article  Google Scholar 

  • Kanungo T, Mount DM, Netanyahu NS, Piatko C, Silverman R, Wu AY (2002) An efficient k-means clustering algorithm: analysis and implementation. IEEE Trans Pattern Anal Mach Intell 24:881–892

    Article  Google Scholar 

  • Kertesz M, Iovino N, Unnerstall U, Gaul U, Segal E (2007) The role of site accessibility in microRNA target recognition. Nat Genet 39:1278–1284

    Article  CAS  PubMed  Google Scholar 

  • Krek A, Grün D, Poy MN, Wolf R, Rosenberg L, Epstein EJ, MacMenamin P, da Piedade I, Gunsalus KC, Stoffel M, Rajewsky N (2005) Combinatorial microRNA target predictions. Nat Genet 37:495–500

    Article  CAS  PubMed  Google Scholar 

  • Laubert T, Bader FG, Oevermann E, Jungbluth T, Unger L, Roblick UJ, Bruch HP, Mirow L (2010) Intensified surveillance after surgery for colorectal cancer significantly improves survival. Eur J Med Res 15:25–30

    Article  PubMed Central  PubMed  Google Scholar 

  • Liang Z, Zhou H, Zheng H, Wu J (2011) Expression levels of microRNAs are not associated with their regulatory activities. Biol Direct 6:43. doi:10.1186/1745-6150-6-43

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lim LP, Lau NC, Garrett-Engele P, Grimson A, Schelter JM, Castle J, Bartel DP, Linsley PS, Johnson JM (2005) Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature 433:769–773

    Article  CAS  PubMed  Google Scholar 

  • Long D, Lee R, Williams P, Chan CY, Ambros V, Ding Y (2007) Potent effect of target structure on microRNA function. Nat Struct Mol Biol 14:287–294

    Article  CAS  PubMed  Google Scholar 

  • Long D, Chan CY, Ding Y (2008) Analysis of microRNA-target interactions by a target structure based hybridization model. Pac Symp Biocomput. 2008:64–74

    Google Scholar 

  • Maragkakis M, Reczko M, Simossis VA, Alexiou P, Papadopoulos GL, Dalamagas T, Giannopoulos G, Goumas G, Koukis E, Kourtis K, Vergoulis T, Koziris N, Sellis T, Tsanakas P, Hatzigeorgiou AG (2009) DIANA-micro T web server: elucidating microRNA functions through target prediction. Nucleic Acids Res 37:W273–W276. doi:10.1093/nar/gkp292

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Marín RM, Vanícek J (2011) Efficient use of accessibility in microRNA target prediction. Nucleic Acids Res 39:19–29. doi:10.1093/nar/gkq768

    Article  PubMed Central  PubMed  Google Scholar 

  • Mehrkhani F, Nasiri S, Donboli K, Meysamie A, Hedayat A (2009) Prognostic factors in survival of colorectal cancer patients after surgery. Colorectal Dis 11:157–161. doi:10.1111/j.1463-1318.2008.01556.x

    Article  CAS  PubMed  Google Scholar 

  • Miranda KC, Huynh T, Tay Y, Ang YS, Tam WL, Thomson AM, Lim B, Rigoutsos I (2006) A pattern-based method for the identification of microRNA binding sites and their corresponding heteroduplexes. Cell 126:1203–1217

    Article  CAS  PubMed  Google Scholar 

  • Muzza M, Degl’innocenti D, Colombo C, Perrino M, Ravasi E, Rossi S, Cirello V, Beck-Peccoz P, Borrello MG, Fugazzola L (2009) The tight relationship between papillary thyroid cancer, autoimmunity and inflammation: clinical and molecular studies. Clin Endocrinol (Oxf) 72:702–708. doi:10.1111/j.1365-2265.2009.03699.x

    Article  Google Scholar 

  • Nicolas FE (2011) Experimental validation of microRNA targets using a luciferase reporter system. Methods Mol Biol 732:139–152. doi:10.1007/978-1-61779-083-6_11

    Article  CAS  PubMed  Google Scholar 

  • Nielsen CB, Shomron N, Sandberg R, Hornstein E, Kitzman J, Burge CB (2007) Determinants of targeting by endogenous and exogenous microRNAs and siRNAs. RNA 13:1894–1910

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • O’Neill LA, Sheedy FJ, McCoy CE (2011) MicroRNAs: the fine-tuners of Toll-like receptor signalling. Nat Rev Immunol 11:163–175. doi:10.1038/nri2957

    Article  PubMed  Google Scholar 

  • Raghavan P (1997) Information retrieval algorithms: a survey. In: Proceedings 8th Ann ACM-SIAM Symposium Discrete Algorithms, pp 11–18

  • Rajewsky N (2006) microRNA target predictions in animals. Nat Genet 38(Suppl):S8–S13

    Article  CAS  PubMed  Google Scholar 

  • Rehmsmeier M, Steffen P, Hochsmann M, Giegerich R (2004) Fast and effective prediction of microRNA/target duplexes. RNA 10:1507–1517

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rubie C, Kempf K, Hans J, Su T, Tilton B, Georg T, Brittner B, Ludwig B, Schilling M (2005) Housekeeping gene variability in normal and cancerous colorectal, pancreatic, esophageal, gastric and hepatic tissues. Mol Cell Probes 19:101–109

    Article  CAS  PubMed  Google Scholar 

  • Rubie C, Frick VO, Wagner M, Rau B, Weber C, Kruse B, Kempf K, Tilton B, König J, Schilling M (2006) Enhanced expression and clinical significance of CC-chemokine MIP-3 alpha in hepatocellular carcinoma. Scand J Immunol 63:468–477

    Article  CAS  PubMed  Google Scholar 

  • Rubie C, Frick VO, Ghadjar P, Wagner M, Grimm H, Vicinus B, Justinger C, Graeber S, Schilling MK (2010) CCL20/CCR6 expression profile in pancreatic cancer. J Trans Med 8:45. doi:10.1186/1479-5876-8-45

    Article  Google Scholar 

  • Rusinov V, Baev V, Minkov IN, Tabler M (2005) MicroInspector: a web tool for detection of miRNA binding sites in an RNA sequence. Nucleic Acids Res 33:696–700

    Article  Google Scholar 

  • Sato K, Hamada M, Asai K, Mituyama T (2009) CENTROIDFOLD: a web server for RNA secondary structure prediction. Nucleic Acids Res 37:W277–W280. doi:10.1093/nar/gkp367

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Schaefer A, Jung M, Mollenkopf HJ, Wagner I, Stephan C, Jentzmik F, Miller K, Lein M, Kristiansen G, Jung K (2010) Diagnostic and prognostic implications of microRNA profiling in prostate carcinoma. Int J Cancer 126:1166–1176. doi:10.1002/ijc.24827

    CAS  PubMed  Google Scholar 

  • Selbach M, Schwanhausser B, Thierfelder N, Fang Z, Khanin R, Rajewsky N (2008) Widespread changes in protein synthesis induced by microRNAs. Nature 455:58–63. doi:10.1038/nature07228

    Article  CAS  PubMed  Google Scholar 

  • Sethupathy P, Megraw M, Hatzigeorgiou AG (2006) A guide through present computational approaches for the identification of mammalian microRNA targets. Nat Methods 3:881–886

    Article  CAS  PubMed  Google Scholar 

  • Shibuya H, Iinuma H, Shimada R, Horiuchi A, Watanabe T (2010) Clinicopathological and prognostic value of microRNA-21 and microRNA-155 in colorectal cancer. Oncology 79:313–320. doi:10.1159/000323283

    Article  CAS  PubMed  Google Scholar 

  • Slaby O, Svoboda M, Fabian P, Smerdova T, Knoflickova D, Bednarikova M, Nenutil R, Vyzula R (2007) Altered expression of miR-21, miR-31, miR-143 and miR-145 is related to clicopathologic features of colorectal cancer. Oncology 72:397–402. doi:10.1159/000113489

    Article  CAS  PubMed  Google Scholar 

  • Sobin LH, Fleming ID (1997) TNM classification of malignant tumors, Fifth edition (1997). Union Internationale Contre le Cancer and the American Joint Committee on Cancer. Cancer 80:1803–1804

    Article  CAS  PubMed  Google Scholar 

  • Stark A, Brennecke J, Bushati N, Russell RB, Cohen SM (2005) Animal microRNAs confer robustness to gene expression and have a significant impact on 3′UTR evolution. Cell 123:1133–1146

    Article  CAS  PubMed  Google Scholar 

  • Sturm M, Hackenberg M, Langenberger D, Frishman D (2010) T arget S py: a supervised machine learning approach for microRNA target prediction. BMC Bioinform 11:292. doi:10.1186/1471-2105-11-292

    Article  Google Scholar 

  • Tarang S, Weston MD (2014) Macros in microRNA target identification: a comparative analysis of in silico, in vitro, and in vivo approaches to microRNA target identification. RNA Biol 11:1–11. doi:10.4161/rna.28649

    Article  Google Scholar 

  • Teichler S, Illmer T, Roemhild J, Ovcharenko D, Stiewe T, Neubauer A (2011) MicroRNA29a regulates the expression of the nuclear oncogene Ski. Blood 118:1899–1902. doi:10.1182/blood-2010-09-306258

    Article  CAS  PubMed  Google Scholar 

  • Vasudevan S (2012) Posttranscriptional upregulation by microRNAs. Wiley Interdiscip Rev RNA 3:311–330. doi:10.1002/wrna.121

    Article  CAS  PubMed  Google Scholar 

  • Vicinus B, Rubie C, Faust SK, Frick VO, Ghadjar P, Wagner M, Graeber S, Schilling MK (2012) miR-21 functionally interacts with the 3′UTR of chemokine CCL20 and down-regulates CCL20 expression in miR-21 transfected colorectal cancer cells. Cancer Lett 316:105–112. doi:10.1016/j.canlet.2011.10.031

    Article  CAS  PubMed  Google Scholar 

  • Wagner M, Breiner T, Betz T, Bernhardt I, Pütz N, Weichert F, Shamaa A, Brochhausen M, Awad S, Richards T, Groh A, Linder R, Landes CA (2008) Virtuelles Gewebe. Quaoaring [Virtual tissue: Quaoaring]. Pathologe 29(Suppl 2):123–128. doi:10.1007/s00292-008-1045-8

    Article  PubMed  Google Scholar 

  • Wang X, El Naga IM (2008) Prediction of both conserved and nonconserved microRNA targets in animals. Bioinformatics 24:325–332

    Article  PubMed  Google Scholar 

  • White NM, Chow TF, Mejia-Guerrero S, Diamandis M, Rofael Y, Faragalla H, Mankaruous M, Gabril M, Girgis A, Yousef GM (2010) Three dysregulated miRNAs control kallikrein 10 expression and cell proliferation in ovarian cancer. Br J Cancer 102:1244–1253. doi:10.1038/sj.bjc.6605634

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wong RJ (2010) Marked variations in proximal colon cancer survival by race/ethnicity within the US. J Clin Gastroenterol 44:625–630. doi:10.1097/MCG.0b013e3181c64a7a

    PubMed  Google Scholar 

  • Xi Y, Formentini A, Chien M, Weir DB, Russo JJ, Ju J, Kornmann M, Ju J (2006) Prognostic Values of microRNAs in colorectal cancer. Biomark Insights 2:113–121

    PubMed  Google Scholar 

  • Yang L, Belaguli N, Berger DH (2009) MicroRNA and colorectal cancer. World J Surg 33:638–646

    Article  PubMed  Google Scholar 

  • Yao T, Lin Z (2012) MiR-21 is involved in cervical squamous cell tumorigenesis and regulates CCL20. Biochim Biophys Acta 1822:248–260. doi:10.1016/j.bbadis.2011.09.018

    Article  CAS  PubMed  Google Scholar 

  • Yekta S, Shih IH, Bartel DP (2004) MicroRNA-directed cleavage of HOXB8 mRNA. Science 304:594–596

    Article  CAS  PubMed  Google Scholar 

  • Zuker M (2003) MF old web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 31:3406–3415

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zuker M, Stiegler P (1981) Optimal computer folding of large RNA sequences using thermodynamics and auxiliary information. Nucleic Acids Res 9:133–148

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank Weichert.

Additional information

Communicated by S. Hohmann.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wagner, M., Vicinus, B., Frick, V.O. et al. MicroRNA target prediction: theory and practice. Mol Genet Genomics 289, 1085–1101 (2014). https://doi.org/10.1007/s00438-014-0871-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-014-0871-z

Keywords

Navigation