Skip to main content

Computational Detection of MicroRNA Targets

  • Protocol
  • First Online:
miRNomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2257))

Abstract

MicroRNAs (miRNAs) are small noncoding RNAs that are recognized as posttranscriptional regulators of gene expression. These molecules have been shown to play important roles in several cellular processes. MiRNAs act on their target by guiding the RISC complex and binding to the mRNA molecule. Thus, it is recognized that the function of a miRNA is determined by the function of its target (s). By using high-throughput methodologies, novel miRNAs are being identified, but their functions remain uncharted. Target validation is crucial to properly understand the specific role of a miRNA in a cellular pathway. However, molecular techniques for experimental validation of miRNA–target interaction are expensive, time-consuming, laborious, and can be not accurate in inferring true interactions. Thus, accurate miRNA target predictions are helpful to understand the functions of miRNAs. There are several algorithms proposed for target prediction and databases containing miRNA-target information. However, these available computational tools for prediction still generate a large number of false positives and fail to detect a considerable number of true targets, which indicates the necessity of highly confident approaches to identify bona fide miRNA–target interactions. This chapter focuses on tools and strategies used for miRNA target prediction, by providing practical insights and outlooks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lee RC, Feinbaum RL, Ambros V (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75(5):843–854

    Article  CAS  PubMed  Google Scholar 

  2. Wightman B, Ha I, Ruvkun G (1993) Post transcriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell 75(5):855–862

    Article  CAS  PubMed  Google Scholar 

  3. Reinhart BJ, Slack FJ, Basson M et al (2000) The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature 403(6772):901–906

    Article  CAS  PubMed  Google Scholar 

  4. Pasquinelli AE, Reinhart BJ, Slack F et al (2000) Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA. Nature 408(6808):86–89

    Article  CAS  PubMed  Google Scholar 

  5. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116(2):281–297

    Article  CAS  PubMed  Google Scholar 

  6. Sunkar R, Girke T, Jain PK et al (2005) Cloning and characterization of microRNAs from rice. Plant Cell 17(5):1397–1411; ISSN1040-4651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Jia W, Li Z, Lun Z (2008) Discoveries and functions of virus-encoded microRNAs. Chin Sci Bull 53(2):169–177; ISSN1001-6538

    Article  CAS  Google Scholar 

  8. Taylor RS, Tarver JE, Hiscock SJ et al (2014) Evolutionary history of plant microRNAs. Trends Plant Sci 19(3):175–182

    Article  CAS  PubMed  Google Scholar 

  9. Bartel DP (2018) Metazoan microRNAs. Cell 173(1):20–51; ISSN00928674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kloosterman WP, Plasterk RHA (2006) The diverse functions of microRNAs in animal development and disease. Dev Cell 11(4):441–450

    Article  CAS  PubMed  Google Scholar 

  11. Qiu C, Chen G, Cui Q (2012) Towards the understanding of microRNA and environmental factor interactions and their relationships to human diseases. Sci Rep 2:318

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Nachtigall PG, Dias MC, Carvalho RF et al (2015) MicroRNA-499 expression distinctively correlates to target genes sox6 and rod1 pro-files to resolve the skeletal muscle phenotype in nile tilapia. PLoS One 10(3):e0119804

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Sood P, Krek A, Zavolan M et al (2006) Cell-type-specific signatures of microRNAs on target mRNA expression. Proc Natl Acad Sci U S A 103(8):2746–2751

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Im H-I, Kenny PJ (2012) MicroRNAs in neuronal function and dysfunction. Trends Neurosci 35(5):325–334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lujambio A, Lowe SW (2012) The microcosmos of cancer. Nature 482(7385):347–355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Berezikov E (2011) Evolution of microRNA diversity and regulation in animals. Nat Rev Genet 12(12):846–860

    Article  CAS  PubMed  Google Scholar 

  17. Kozomara A, Griffiths-Jones S (2014) miRBase: annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Res 42(Database issue):D68–D73

    Article  CAS  PubMed  Google Scholar 

  18. Jonas S, Izaurralde E (2015) Towards a molecular understanding of microRNA-mediated gene silencing. Nat Rev Genet 16(7):421–433

    Article  CAS  PubMed  Google Scholar 

  19. Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136(2):215–233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Friedman RC, Farh KK-H, Burge CB et al (2009) Most mammalian mRNAs are conserved targets of microRNAs. Genome Res 19(1):92–105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lytle JR, Yario TA, Steitz JA (2007) Target mRNAs are repressed as efficiently by microRNA-binding sites in the 5′ UTR as in the 3′ UTR. Proc Natl Acad Sci U S A 104(23):9667–9672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Forman JJ, Legesse-Miller A, Coller HA (2008) A search for conserved sequences in coding regions reveals that the let-7 microRNA targets dicer within its coding sequence. Proc Natl Acad Sci U S A 105(39):14879–14884

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Br ̈ummer A, Hausser J (2014) MicroRNA binding sites in the coding region of mRNAs: extending the repertoire of post-transcriptionalgene regulation. Bioessays 36(6):617–626

    Article  CAS  Google Scholar 

  24. Lim LP, Lau NC, Garrett-Engele P et al (2005) Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature 433(7027):769–773; ISSN 1476-4687

    Article  CAS  PubMed  Google Scholar 

  25. Baek D, Vill ́en J, Shin C et al (2008) The impact of microRNAs on protein output. Nature 455(7209):64–71; ISSN 1476-4687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Djuranovic S, Nahvi A, Green R (2012) miRNA-mediated gene silencing by translational repression followed by mRNA deadenylation and decay. Science 336(6078):237–240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Huntzinger E, Izaurralde E (2011) Gene silencing by microRNAs:contributions of translational repression and mRNA decay. Nat Rev Genet 12(2):99–110

    Article  CAS  PubMed  Google Scholar 

  28. Rhoades MW, Reinhart BJ, Lim LP et al (2002) Prediction of plant microRNA targets. Cell 110(4):513–520; ISSN 0092-8674

    Article  CAS  PubMed  Google Scholar 

  29. Ding J, Zhou S, Guan J (2012) Finding microRNA targets in plants: current status and perspectives. Genomics Proteomics Bioinformatics 10(5):264–275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Axtell MJ, Meyers BC (2018) Revisiting criteria for plant microRNA annotation in the era of big data. Plant Cell 30(2):272–284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Brousse C, Liu Q, Beauclair L et al (2014) A non-canonical plant microRNA target site. Nucleic Acids Res 42(8):5270–5279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Wang F, Polydore S, Axtell MJ (2015) More than meets the eye? Factors that affect target selection by plant miRNAs and heterochromatic siRNAs. Curr Opin Plant Biol 27:118–124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Lewis BP, Shih I-h, Jones-Rhoades MW et al (2003) Prediction of mammalian microRNA targets. Cell 115(7):787–798; ISSN 0092-8674

    Article  CAS  PubMed  Google Scholar 

  34. Agarwal V, Bell GW, Nam J-W et al (2015) Predicting effective microRNA target sites in mammalian mRNAs. elife 4:e05005

    Article  PubMed Central  Google Scholar 

  35. Hart M, Kern F, Backes C et al (2018) The deterministic role of 5-mers in microRNA-gene targeting. RNA Biol 15(6):819–825

    PubMed  PubMed Central  Google Scholar 

  36. Tay Y, Zhang J, Thomson AM et al (2008) MicroRNAs to nanog, oct4 and sox2 coding regions modulate embryonic stem cell differentiation. Nature 455(7216):1124–1128; ISSN 1476-4687

    Article  CAS  PubMed  Google Scholar 

  37. Nelson PT, Wang W-X, Mao G et al (2011) Specific sequence determinants of miR-15/107 microRNA gene group targets. Nucleic Acids Res 39(18):8163–8172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Chi SW, Hannon GJ, Darnell RB (2012) An alternative mode of microRNA target recognition. Nat Struct Mol Biol 19(3):321–327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Broughton JP, Lovci MT, Huang JL et al (2016) Pairing beyond the seed supports MicroRNA targeting specificity. Mol Cell 64(2):320–333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Betel D, Koppal A, Agius P et al (2010) Comprehensive modeling of microRNA targets predicts functional non-conserved and non-canonical sites. Genome Biol 11(8):R90

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Miranda KC, Huynh T, Tay Y et al (2006) A pattern-based method for the identification of MicroRNA binding sites and their corresponding hetero duplexes. Cell 126(6):1203–1217

    Article  CAS  PubMed  Google Scholar 

  42. Garcia DM, Baek D, Shin C et al (2011) Weak seed-pairing stability and high target-site abundance decrease the proficiency of lsy-6 and other microRNAs. Nat Struct Mol Biol 18(10):1139–1146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Witkos TM, Koscianska E, Krzyzosiak WJ (2011) Practical aspects of microRNA target prediction. Curr Mol Med 11(2):93–109; ISSN 1566-5240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Rehmsmeier M, Steffen P, Hochsmann M et al (2004) Fast and effective prediction of microRNA/target duplexes. RNA 10(10):1507–1517; ISSN 1355-8382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kertesz M, Iovino N, Unnerstall U et al (2007) The role of site accessibility in microRNA target recognition. Nat Genet 39(10):1278–1284

    Article  CAS  PubMed  Google Scholar 

  46. Grimson A, Farh KK-H, Johnston WK et al (2007) MicroRNA targeting specificity in mammals: determinants beyond seed pairing. Mol Cell 27(1):91–105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Sandberg R, Neilson JR, Sarma A et al (2008) Proliferating cells express mRNAs with shortened 3′ untranslated regions and fewer microRNA target sites. Science 320(5883):1643–1647; ISSN 1095-9203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Nielsen CB, Shomron N, Sandberg R et al (2007) Determinants of targeting by endogenous and exogenous microRNAs and siRNAs. RNA 13(11):1894–1910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Arvey A, Larsson E, Sander C et al (2010) Target mRNA abundance dilutes microRNA and siRNA activity. Mol Syst Biol 6:363

    Article  PubMed  PubMed Central  Google Scholar 

  50. Ding J, Li X, Hu H (2016) TarPmiR: a new approach for microRNA target site prediction. Bioinformatics 32(18):2768–2775

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Hamzeiy H, Allmer J, Yousef M (2014) Computational methods for microRNA target prediction. Methods Mol Biol 1107:207–221

    Article  CAS  PubMed  Google Scholar 

  52. Lewis BP, Burge CB, Bartel DP (2005) Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120(1):15–20; ISSN 0092-8674

    Article  CAS  PubMed  Google Scholar 

  53. Enright AJ, John B, Gaul U et al (2003) MicroRNA targets in drosophila. Genome Biol 5(1):R1

    Article  PubMed  PubMed Central  Google Scholar 

  54. Krek A, Gr ̈un D, Poy MN et al (2005) Combinatorial microRNA target predictions. Nat Genet 37(5):495–500; ISSN 1061-4036

    Article  CAS  PubMed  Google Scholar 

  55. Hatlen A, Helmy M, Marco A (2019) PopTargs: a database for studying population evolutionary genetics of human microRNA target sites. Database (Oxford) 2019

    Google Scholar 

  56. Yousef M, Abdallah L, Allmer J (2019) maTE: discovering ex-pressed interactions between microRNAs and their targets. Bioinformatics 35(20):4020–4028

    Article  CAS  PubMed  Google Scholar 

  57. Bradley T, Moxon, S. (2019) FilTar: using RNA-seq data to improve microRNA target prediction accuracy in animals. BioRxiv

    Google Scholar 

  58. Distefano R, Nigita G, Veneziano D et al (2019) isoTar: consensus target prediction with enrichment analysis for MicroRNAs harboring editing sites and other variations. Methods Mol Biol 1970:211–235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Brown J, Phillips AR, Lewis DA et al (2019) Bioinformatics resource manager: a systems biology web tool for microRNA and omics data integration. BMC Bioinformatics 20(1):255; ISSN 1471-2105

    Article  PubMed  PubMed Central  Google Scholar 

  60. Li C, Swartz MD, Yu B, et al (2019) dbMTS: a comprehensive database of putative human microRNA target site SNVs and their functional predictions. BioRxiv

    Google Scholar 

  61. Wong N, Wang X (2015) miRDB: an online resource for microRNA target prediction and functional annotations. Nucleic Acids Res 43(Database issue):D146–D152

    Article  CAS  PubMed  Google Scholar 

  62. Liu W, Wang X (2019) Prediction of functional microRNA targets by integrative modeling of microRNA binding and target expression data. Genome Biol 20(1):18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Borgm ̈astars E, de Weerd HA, Lubovac-Pilav Z et al (2019) miRFA: an automated pipeline for microRNA functional analysis with correlation support from TCGA and TCPA expression data in pancreatic cancer. BMC Bioinformatics 20(1):393

    Article  CAS  Google Scholar 

  64. Marco A (2018) SeedVicious: analysis of microRNA target and near-target sites. PLoS One 13(4):e0195532

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Pla A, Zhong X, Rayner S (2018) miRAW: a deep learning-based approach to predict microRNA targets by analyzing whole microRNA transcripts. PLoS Comput Biol 14(7):e1006185; ISSN 1553-7358

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Maji RK, Khatua S, Ghosh Z (2020) A supervised ensemble approach for sensitive microRNA target prediction. IEEE/ACM Trans Comput Biol Bioinform 17(1):37–46

    Article  CAS  PubMed  Google Scholar 

  67. Ghoshal A, Zhang J, Roth MA et al (2018) A distributed classifier for MicroRNA target prediction with validation through TCGA expression data. IEEE/ACM Trans Comput Biol Bioinform 15(4):1037–1051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Tokar T, Pastrello C, Rossos AEM et al (2018) mirDIP 4.1 - integrative database of human microRNA target predictions. Nucleic Acids Res 46(D1):D360–D370

    Article  CAS  PubMed  Google Scholar 

  69. Fan Y, Siklenka K, Arora SK et al (2016) miRNet - dissecting miRNA-target interactions and functional associations through network-based visual analysis. Nucleic Acids Res 44(W1):W135–W141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Karagkouni D, Paraskevopoulou MD, Chatzopoulos S et al (2018) DIANA-TarBase v8: a decade-long collection of experimentally supported miRNA-gene interactions. Nucleic Acids Res 46(D1):D239–D245

    Article  CAS  PubMed  Google Scholar 

  71. Chou C-H, Shrestha S, Yang C-D et al (2018) miRTarBase update 2018: a resource for experimentally validated microRNA-target interactions. Nucleic Acids Res 46(D1):D296–D302

    Article  CAS  PubMed  Google Scholar 

  72. L’Yi S, Jung D, Oh M et al (2017) miRTarVis+: web-based interactive visual analytics tool for microRNA target predictions. Methods 124:78–88

    Article  PubMed  CAS  Google Scholar 

  73. Davis JA, Saunders SJ, Mann M et al (2017) Combinatorial ensemble miRNA target prediction of co-regulation networks with non-prediction data. Nucleic Acids Res 45(15):8745–8757

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Quillet A, Saad C, Ferry G et al (2019) Improving bioinformatics prediction of microRNA targets by ranks aggregation. Front Genet 10:1330

    Article  CAS  PubMed  Google Scholar 

  75. Dweep H, Gretz N (2015) miRWalk2.0: a comprehensive atlas of microRNA-target interactions. Nat Methods 12(8):697

    Article  CAS  PubMed  Google Scholar 

  76. Van Peer G, De Paepe A, Stock M et al (2017) miSTAR: miRNA target prediction through modeling quantitative and qualitative miRNA binding site information in a stacked model structure. Nucleic Acids Res 45(7):e51

    PubMed  Google Scholar 

  77. Wang X (2016) Improving microRNA target prediction by modeling with unambiguously identified microRNA-target pairs from CLIP-ligation studies. Bioinformatics 32(9):1316–1322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Bandyopadhyay S, Ghosh D, Mitra R et al (2015) MBSTAR: multiple instance learning for predicting specific functional binding sites in microRNA targets. Sci Rep 5:8004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Liu S, Li J-H, Wu J et al (2015) StarScan: a web server for scanning small RNA targets from degradome sequencing data. Nucleic Acids Res 43(W1):W480–W486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Chiu H-S, Llobet-Navas D, Yang X et al (2015) Cupid: simultaneous reconstruction of microRNA-target and ceRNA networks. Genome Res 25(2):257–267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Porto IOP, Mendes-Junior CT, Fel ́ıcio LP et al (2015) MicroRNAs targeting the immunomodulatory HLA-g gene: a new survey searching for microRNAs with potential to regulate HLA-g. Mol Immunol 65(2):230–241

    Article  CAS  PubMed  Google Scholar 

  82. Vlachos IS, Zagganas K, Paraskevopoulou MD et al (2015) Diana-mirpath v3. 0: deciphering microRNA function with experimental support. Nucleic Acids Res 43(W1):W460–W466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Paraskevopoulou MD, Georgakilas G, Kostoulas N et al (2013) DIANA-microT web server v5.0: service integration into miRNA functional analysis workflows. Nucleic Acids Res 41(Web Server issue):W169–W173

    Article  PubMed  PubMed Central  Google Scholar 

  84. Qureshi A, Thakur N, Monga I et al (2014) VIRmiRNA: a comprehensive resource for experimentally validated viral miRNAs and their targets. Database (Oxford) 2014:bau103

    Article  CAS  Google Scholar 

  85. Yang J-H, Li J-H, Shao P et al (2011) starBase: a database for exploring microRNA-mRNA interaction maps from argonaute CLIP-seq and degradome-seq data. Nucleic Acids Res 39(Database issue):D202–D209

    Article  CAS  PubMed  Google Scholar 

  86. Li J-H, Liu S, Zhou H et al (2014) starBase v2.0: decoding miRNA-ceRNA, miRNA-ncRNA and protein-RNA interaction networks from large-scale CLIP-seq data. Nucleic Acids Res 42(Database issue):D92–D97

    Article  CAS  PubMed  Google Scholar 

  87. Dai X, Zhao PX (2011) psRNATarget: a plant small RNA target analysis server. Nucleic Acids Res 39(Web Server issue):W155–W159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Dai X, Zhuang Z, Zhao PX (2018) psRNATarget: a plant small RNA target analysis server (2017 release). Nucleic Acids Res 46(W1):W49–W54

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Fahlgren N, Carrington JC (2010) miRNA target prediction in plants. Methods Mol Biol 592:51–57

    Article  CAS  PubMed  Google Scholar 

  90. Bonnet E, He Y, Billiau K et al (2010) TAPIR, a web server for the prediction of plant microRNA targets, including target mimics. Bioinformatics 26(12):1566–1568

    Article  CAS  PubMed  Google Scholar 

  91. Jan CH, Friedman RC, Ruby JG et al (2011) Formation, regulation and evolution of Caenorhabditis elegans 3′UTRs. Nature 469(7328):97–101

    Article  CAS  PubMed  Google Scholar 

  92. Nam J-W, Rissland OS, Koppstein D et al (2014) Global analyses of the effect of different cellular contexts on microRNA targeting. Mol Cell 53(6):1031–1043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Oliveira AC, Bovolenta LA, Nachtigall PG et al (2017) Combining results from distinct MicroRNA target prediction tools enhances the performance of analyses. Front Genet 8:59

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Yousef M, Najami N, Khalifav W et al (2010) A comparison study between one-class and two-class machine learning for microRNA target detection. J Biomed Sci Eng 3(03):247

    Article  CAS  Google Scholar 

  95. Yousef M, Allmer J, Khalifa W (2016) Feature selection for MicroRNA target prediction - comparison of one-class feature selection methodologies. In: Proceedings of the 9th international joint conference on biomedical engineering systems and technologies. SCITEPRESS - Science and Technology Publications, pp 216–225; ISBN978-989-758-170-0

    Google Scholar 

  96. Yousef M, Khalifa W, Acar IE, et al (2017) Distinguishing between microrna targets from diverse species using sequence motifs and k-mers. In: Proceedings of the 10th international joint conference on biomedical engineering systems and technologies - Volume 3: Bioinformatics, (BIOSTEC 2017). INSTICC, SciTePress, pp 133–139; ISBN 978-989-758-214-1

    Google Scholar 

  97. Yousef M, Jung S, Kossenkov AV et al (2007) Naïve Bayes for microRNA target predictions–machine learning for microRNA targets. Bioinformatics 23(22):2987–2992

    Article  CAS  PubMed  Google Scholar 

  98. Cheng S, Guo M, Wang C et al (2016) MiRTDL: a deep learning approach for miRNA target prediction. IEEE/ACM Trans Comput Biol Bioinform 13(6):1161–1169

    Article  Google Scholar 

  99. Lee, B., Baek, J., Park, S., et al. (2016) Deeptarget: End-to-end learning framework for microrna target prediction using deep recurrent neural networks. In: Proceedings of the 7th ACM international conference on bioinformatics, computational biology, and health informatics, BCB’16, New York, NY, USA. Association for Computing Machinery, pp 434–442; ISBN 9781450342254

    Google Scholar 

  100. Lu T-P, Lee C-Y, Tsai M-H et al (2012) miRSystem: an integrated system for characterizing enriched functions and pathways of microRNA targets. PLoS One 7(8):e42390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Shirdel EA, Xie W, Mak TW et al (2011) NAViGaTing themicronome–using multiple microRNA prediction databases to identify signalling pathway-associated microRNAs. PLoS One 6(2):e17429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Coronnello C, Benos PV (2013) ComiR: combinatorial microRNA target prediction tool. Nucleic Acids Res 41(Web Serverissue):W159–W164

    Article  PubMed  PubMed Central  Google Scholar 

  103. Dweep H, Sticht C, Pandey P et al (2011) miRWalk–database: prediction of possible miRNA binding sites by “walking” the genes of three genomes. J Biomed Inform 44(5):839–847

    Article  CAS  PubMed  Google Scholar 

  104. Xiao F, Zuo Z, Cai G et al (2009) miRecords: an integrated resource for microRNA-target interactions. Nucleic Acids Res 37(Database):D105–D110

    Article  CAS  PubMed  Google Scholar 

  105. Pinzón N, Li B, Martinez L et al (2017) microRNA target prediction programs predict many false positives. Genome Res 27(2):234–245

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  106. Alexiou P, Maragkakis M, Papadopoulos GL et al (2009) Lost in translation: an assessment and perspective for computational microRNA target identification. Bioinformatics 25(23):3049–3055

    Article  CAS  PubMed  Google Scholar 

  107. Wienholds E, Kloosterman WP, Miska E et al (2005) MicroRNA expression in zebrafish embryonic development. Science 309(5732):310–311; ISSN 1095-9203

    Article  CAS  PubMed  Google Scholar 

  108. Pesole G, Liuni S, Grillo G et al (2002) UTRdb and UTRsite:specialized databases of sequences and functional elements of 5′ and 3′untranslated regions of eukaryotic mRNAs. Update 2002. Nucleic Acids Res 30(1):335–340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Le Pera L, Mazzapioda M, Tramontano A (2015) 3USS: a webserver for detecting alternative 3′UTRs from RNA-seq experiments. Bioinformatics 31(11):1845–1847

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  110. Grillo G, Turi A, Licciulli F et al (2010) UTRdb and UTRsite(RELEASE 2010): a collection of sequences and regulatory motifs of the untranslated regions of eukaryotic mRNAs. Nucleic Acids Res 38(Database issue):D75–D80

    Article  CAS  PubMed  Google Scholar 

  111. Kim M, You B-H, Nam J-W (2015) Global estimation of the 3′ untranslated region landscape using RNA sequencing. Methods 83:111–117

    Article  CAS  PubMed  Google Scholar 

  112. Huang Z, Teeling EC (2017) ExUTR: a novel pipeline for large-scale prediction of 3′-UTR sequences from NGS data. BMC Genomics 18(1):847

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  113. Ulitsky I, Shkumatava A, Jan CH et al (2012) Extensive alternative polyadenylation during zebrafish development. Genome Res 22(10):2054–2066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Jambor H, Surendranath V, Kalinka AT et al (2015) Systematic imaging reveals features and changing localization of mRNAs in drosophila development. elife:4

    Google Scholar 

  115. Lakshmanan V, Bansal D, Kulkarni J et al (2016) Genome-wide analysis of polyadenylation events in Schmidtea mediterranea. G3(Bethesda) 6(10):3035–3048

    CAS  Google Scholar 

  116. Ji Z, Lee JY, Pan Z et al (2009) Progressive lengthening of 3′ untranslated regions of mRNAs by alternative polyadenylation during mouse embryonic development. Proc Natl Acad Sci U S A 106(17):7028–7033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Hoffman Y, Bublik DR, Ugalde AP et al (2016) 3′utr shortening potentiates microrna-based repression of pro-differentiation genes in proliferating human cells. PLoS Genet 12(2)

    Google Scholar 

  118. Spies N, Burge CB, Bartel DP (2013) 3′ UTR-isoform choice has limited influence on the stability and translational efficiency of most mRNAs in mouse fibroblasts. Genome Res 23(12):2078–2090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from São Paulo Research Foundation (FAPESP - processes numbers: 2013/06864-7; 2018/26520-4), CAPES (process number 88887.177457/2018-00), and The Brazilian National Council for Scientific and Technological Development (CNPq—process number 167444/2017-4).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Nachtigall, P.G., Bovolenta, L.A. (2022). Computational Detection of MicroRNA Targets. In: Allmer, J., Yousef, M. (eds) miRNomics. Methods in Molecular Biology, vol 2257. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1170-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1170-8_10

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1169-2

  • Online ISBN: 978-1-0716-1170-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics