Skip to main content
Log in

MicroRNA and Colorectal Cancer

  • Published:
World Journal of Surgery Aims and scope Submit manuscript

Abstract

MicroRNAs are small 19 to 22 nucleotide sequences of RNA that participate in the regulation of cell differentiation, cell cycle progression, and apoptosis. MicroRNAs act much like small interfering RNA, annealing with RISC, to cleave messenger RNA, and microRNAs exert translational inhibition that is incompletely understood. They are important factors in tumorigenesis and have been the subject of research in many types of cancers, including colon cancer. MicroRNAs may be abnormally down-regulated or up-regulated in colon-cancer tissue. Artificial dysregulation of certain microRNAs will trigger tumorigenesis or apoptosis depending on which microRNA is manipulated. Although the natural mechanisms for the dysregulation of microRNAs is still largely unknown, one theory tested in colon cancers proposes that DNA hypermethylation leads to down-regulation of certain microRNAs. Specific microRNA expression patterns help characterize specific cancers and may be used as a prognostication factor and in following patient response to 5-fluorouracil chemotherapy. This article reviews the existing literature pertaining to the study of microRNA in colorectal cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Lee RC, Feinbaum RL, Ambros V (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75:843–854

    Article  PubMed  CAS  Google Scholar 

  2. Reinhart BJ, Slack FJ, Basson M et al (2000) The 21 nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature 403:901–906

    Article  PubMed  CAS  Google Scholar 

  3. Brennecke J, Hipfner DR, Stark A et al (2003) Bantam encodes a developmentally regulated microRNA that controls cell proliferation and regulates the proapoptotic gene hid in Drosophila. Cell 113:25–36

    Article  Google Scholar 

  4. Lagos-Quintana M, Rauhut R, Yalcin A et al (2002) Identification of tissue-specific microRNAs from mouse. Curr Biol 12:735–739

    Article  PubMed  CAS  Google Scholar 

  5. Calin GA, Dumitru CD, Shimizu M et al (2002) Frequent deletions and down-regulation of micro- RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci USA 99:15524–15529

    Article  PubMed  CAS  Google Scholar 

  6. Hannon GJ (2002) RNA interference. Nature 418:244–251

    Article  PubMed  CAS  Google Scholar 

  7. Meister G, Tuschl T (2004) Mechanisms of gene silencing by double stranded RNA. Nature 431:343–349

    Article  PubMed  CAS  Google Scholar 

  8. Ambros V (2004) The functions of animal microRNAs. Nature 431:350–355

    Article  PubMed  CAS  Google Scholar 

  9. Bartel DP (2004) MicroRNA: genomics, biogenesis, mechanisms, and functions. Cell 116:281–297

    Article  PubMed  CAS  Google Scholar 

  10. Lagos-Quintana M, Rauhut R, Lendeckel W et al (2001) Identification of novel genes coding for small expressed RNAs. Science 294:853–858

    Article  PubMed  CAS  Google Scholar 

  11. Lee Y, Jeon K, Lee JT et al (2002) MicroRNA maturation: stepwise processing and subcellular localization. EMBO J 21:4663–4670

    Article  PubMed  CAS  Google Scholar 

  12. Basyuk E. Suavet F, Doglio A et al (2003) Human let-7 stem-loop precursors harbors features of RNase III cleavage products. Nucleic Acids Res 31:6593–6597

    Article  Google Scholar 

  13. Lee Y, Ahn C, Han J et al (2003) The nuclear RNase III Drosha initiates microRNA processing. Nature 425:415–419

    Article  PubMed  CAS  Google Scholar 

  14. Yi R, Qin Y, Mascara IG, Cullen BR (2003) Exportin-5 mediates the nuclear export of premicroRNA and short hairpin RNAs. Genes Dev 17:3011–3016

    Article  PubMed  CAS  Google Scholar 

  15. Bohnsack MT, Czaplinski K, Görlich D (2001) Exportin 5 is a RanGTP-dependent dsRNA-binding protein that mediates nuclear export of pre-miRNA. RNA 10:185–191

    Article  Google Scholar 

  16. Hutvágner G, McLachlan J, Pasquinelli AE et al (2001) A cellular function for the RNA interference enzyme Dicer in small temporal RNA maturation. Science 293:834–838

    Article  PubMed  Google Scholar 

  17. Hammond SM, Bernstein E, Beach D et al (2000) An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells. Nature 404:293–296

    Article  PubMed  CAS  Google Scholar 

  18. Hammond SM, Boettcher S, Caudy AA et al (2001) Argonaute2, a link between genetic and biochemical analyses of RNAi. Science 293:1146–1150

    Article  PubMed  CAS  Google Scholar 

  19. Mourelatos Z, Dostie J, Pauhkin S et al (2002) miRNPs: a novel class of ribonucleoproteins containing numerous microRNAs. Genes Dev 16:720–728

    Article  PubMed  CAS  Google Scholar 

  20. Hutvágner G, Zamore PD (2002) A microRNA in a multiple-turnover RNAi enzyme complex. Science 297:2056–2060

    Article  PubMed  Google Scholar 

  21. Zeng Y, Wagner EJ, Cullen BR (2003) MicroRNAs and small interfering RNAs can inhibit mRNA expression by similar mechanisms. Proc Natl Acad Sci USA 100:9779–9784

    Article  PubMed  CAS  Google Scholar 

  22. Olsen PH, Ambros V (1999) The lin-4 regulatory RNA controls developmental timing in C. elegans by blocking LIN-14 protein synthesis after the initiation of translation. Dev Biol 216:671–680

    Article  PubMed  CAS  Google Scholar 

  23. Kim J, Krichevsky A, Grad Y et al (2004) Identification of many microRNAs that copurify with polyribosomes in mammalian neurons. Proc Natl Acad Sci USA 101:360–365

    Article  PubMed  CAS  Google Scholar 

  24. Liu J, Valencia-Sanchex MA, Hannon GJ et al (2005) MicroRNA-dependent localization of targeted mRNAs to mammalian P-bodies. Nat Cell Biol 7:719–723

    Article  CAS  Google Scholar 

  25. Sheth U, Parker R (2003) Decapping and decay of messenger RNA occur in cytoplasmic processing bodies. Science 300:805–808

    Article  PubMed  CAS  Google Scholar 

  26. Ingelfinger D, Arndt-Jovin DJ, Luhrmann R et al (2002) The human LSm1-7 proteins colocalize with the mRNA-degrading enzymes Dcp1/2 and Xrnl in distinct cytoplasmic foci. RNA 8:1489–1501

    PubMed  CAS  Google Scholar 

  27. van Dijk E, Cougot N, Meyer S et al (2002) Human Dcp 2: a catalytically active mRNA decapping enzyme located in specific cytoplasmic structures. EMBO J 21:6915–6924

    Article  PubMed  Google Scholar 

  28. Cummins JM, He Y, Leary RJ et al (2006) The colorectal microRNAome. Proc Natl Acad Sci USA 103:3687–3692

    Article  PubMed  CAS  Google Scholar 

  29. Xi Y, Edwards JR, Ju J (2007) Investigation of miRNA biology by bioinformatic tools and impact of miRNA in colorectal cancer: regulatory relationship of c-Myc and p53 with miRNAs. Cancer Inform 3:245–253

    PubMed  Google Scholar 

  30. Schlabach MR, Luo J, Solimini NL et al (2008) Cancer proliferation gene discovery through functional genomics. Science 319:620–624

    Article  PubMed  CAS  Google Scholar 

  31. Croce CM, Calin GA (2005) miRNA, Cancer and stem cell division. Cell 122:6–7

    Article  PubMed  CAS  Google Scholar 

  32. Metzler M, Wilda M, Busch K et al (2004) High expression of precursor microRNA 155/BIC RNA in children with Burkitt lymphoma. Genes Chrom Cancer 39:167–169

    Article  PubMed  CAS  Google Scholar 

  33. Eis PS, Tam W, Sun L et al (2005) Accumulation of miR-155 and BIC RNA in human B cell lymphomas. Proc Natl Acad Sci USA 103:3627–3632

    Article  Google Scholar 

  34. Takamizawa J, Konishi H, Yanagisawa K et al (2005) Reduced expression of the let-7 microRNA in human lung cancers in association with shortened postoperative survival. Cancer Res 64:3753–3756

    Article  Google Scholar 

  35. Michael MZ, O’ Connor SM, t Pellekaan NG et al (2003) Reduced accumulation of specific microRNAs in colorectal neoplasia. Mol Cancer Res 1:882–891

    PubMed  CAS  Google Scholar 

  36. Volinia S, Calin GA, Liu CG et al (2006) miRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci USA 103:2257–2261

    Article  PubMed  CAS  Google Scholar 

  37. Akao Y, Nakagawa Y, Naoe T (2006) MicroRNAs 143 and 145 are possible common onco-microRNAs in human cancers. Oncol Rep 16:845–850

    PubMed  CAS  Google Scholar 

  38. Shi B, Sepp-Lorenzino L, Prisco M et al (2007) Micro RNA 145 targets the insulin receptor substrate-1 and inhibits the growth of colon cancer cells. J Biol Chem 282:32582–32590

    Article  PubMed  CAS  Google Scholar 

  39. Akao Y, Nakagawa Y, Naoe T (2006) Let-7 microRNA functions as a potential growth suppressor in human colon cancer cells. Biol Pharm Bull 29:903–906

    Article  PubMed  CAS  Google Scholar 

  40. Fang WJ, Lin CZ, Zhang HH et al (2007) Detection of let-7a microRNA by real-time PCR in colorectal cancer: a single-centre experience from China. J Int Med Res 3:716–723

    Google Scholar 

  41. Brueckner B, Stresemann C, Kuner R et al (2007) The human let-7a–3 locus contains an epigenetically regulated microRNA gene with oncogenic function. Cancer Res 67:1419–1423

    Article  PubMed  CAS  Google Scholar 

  42. Sampson VB, Rong NH, Han J et al (2007) MicroRNA let-7a down-regulates MYC and reverts MYC-induced growth in Burkitt lymphoma cells. Cancer Res 67:9762–9770

    Article  PubMed  CAS  Google Scholar 

  43. Tazawa H, Tsuchiya N, Izumiya M et al (2007) Tumor-suppressive miR-34a induces senescence-like growth arrest through modulation of the E2F pathway in human colon cancer cells. Proc Natl Acad Sci USA 104:15472–15477

    Article  PubMed  CAS  Google Scholar 

  44. Bandres E, Cubedo E, Agirre X et al (2006) Identification by real-time PCR of 13 mature microRNAs differentially expressed in colorectal cancer and non-tumoral tissues. Mol Cancer 5:29

    Article  PubMed  CAS  Google Scholar 

  45. Xi Y, Shalgi R, Fodstad O et al (2006) Differentially regulated micro-RNAs and actively translated messenger RNA transcripts by tumor suppressor p53 in colon cancer. Clin Cancer Res 12:2014–2024

    Article  PubMed  CAS  Google Scholar 

  46. Lamy P, Andersen CL, Dyrskjøt L et al (2006) Are microRNAs located in genomic regions associated with cancer? Br L Cancer 95:1415–1418

    Article  CAS  Google Scholar 

  47. Lujambio A, Ropero S, Ballestar E et al (2007) Genetic unmasking of an epigenetically silenced microRNA in human cancer cells. Cancer Res 67:1424–1429

    Article  PubMed  CAS  Google Scholar 

  48. Han L, Witmer PD, Casey E et al (2007) DNA methylation regulates MicroRNA expression. Cancer Biol Ther 6:1284–1288

    Article  PubMed  CAS  Google Scholar 

  49. Grady WM, Parkin RK, Mitchell PS et al (2008) Epigenetic silencing of the intronic microRNA hsa-miR-342 and its host gene EVL in colorectal cancer. Oncogene 27:3880–3888

    Article  PubMed  CAS  Google Scholar 

  50. Landi D, Gemignani F, Naccarati A et al (2008) Polymorphisms within micro-RNA binding sites and risk of sporadic colorectal cancer. Carcinogenesis 29:579–584

    Article  PubMed  CAS  Google Scholar 

  51. Kulshreshtha R, Ferracin M, Wojcik SE et al (2007) A microRNA signature of hypoxia. Mol Cell Biol 27:1859–1867

    Article  PubMed  CAS  Google Scholar 

  52. Harris AL (2002) Hypoxia—a key regulatory factor in tumour growth. Nat Rev Cancer 2:38–47

    Article  PubMed  CAS  Google Scholar 

  53. Calin GA, Ferracin M, Cimmino A et al (2005) A microRNA signature associated with prognosis and progression in chronic lymphocytic leukemia. N Engl J Med 353:1793–1801

    Article  PubMed  CAS  Google Scholar 

  54. Yanaihara N, Caplen N, Bowman E et al (2006) Unique microRNA molecular profiles in lung cancer diagnosis and prognosis and prognosis. Cancer Cell 9:189–198

    Article  PubMed  CAS  Google Scholar 

  55. Xi Y, Formentini A, Chien M et al (2006) Prognostic values of microRNAs in colorectal cancer. Biomark Insights 2:113–121

    PubMed  Google Scholar 

  56. Asangani IA, Rasheed SA, Nikolova DA et al (2008) MicroRNA-21 (miR-21) post-transcriptionally downregulates tumor suppressor Pdcd4 and stimulates invasion, intravasation, and metastasis in colorectal cancer. Oncogene 27:2128–2136

    Article  PubMed  CAS  Google Scholar 

  57. Schetter AJ, Leung SY, Sohn JJ et al (2008) MicroRNA expression profiles associated with prognosis and therapeutic outcome in colon adenocarcinoma. JAMA 299:425–436

    Article  PubMed  CAS  Google Scholar 

  58. Slaby O, Svoboda M, Fabian P et al (2007) Altered expression of miR-21, miR-31, miR-143 and miR-145 is related to clinicopathologic features of colorectal cancer. Oncology 72:397–402

    Article  PubMed  CAS  Google Scholar 

  59. Lanza G, Ferracin M, Gafà R et al (2007) mRNA/microRNA gene expression profile in microsatellite unstable colorectal cancer. Mol Cancer 6:54

    Article  PubMed  Google Scholar 

  60. Rossi L, Bonmassar E, Faraoni I (2007) Modification of miR gene expression pattern in human colon cancer cells following exposure to 5-fluorouracil in vitro. Pharmacol Res 56:248–253

    Article  PubMed  CAS  Google Scholar 

  61. Meng F, Henson R, Lang M et al (2006) Involvement of human micro-RNA in growth and response to chemotherapy in human choangiocarcinoma cell lines. Gastroenterology 130:2113–2129

    Article  PubMed  CAS  Google Scholar 

  62. Matsumoto K, Akao Y, Yi K et al (2004) Preferential target is mitrochondria in α-mangostin-induced apoptosis in human leukemia HL60 cells. Bioorg Med Chem 12:5799–5806

    Article  PubMed  CAS  Google Scholar 

  63. Niu Z, Li A, Zhang S, Schwartz R (2007) Serum response factor micromanaging cardiogenesis. Curr Opin Cell Biol 19:618–627

    Article  CAS  Google Scholar 

  64. Gao X, Sedgwick T, Shi Y et al (1998) Distinct functions are implicated for the GATA-4,-5, and -6 transcription factors in the regulation of intestine epithelial cell differentiation. Mol Cell Biol 18:2901–2911

    CAS  Google Scholar 

  65. Haveri H, Westerholm-Ormio M, Lindfors K et al (2008) Transcription factors GATA-4 and GATA-6 in normal and neoplastic human gastrointestinal mucosa. BMC Gastroenterol 8:9

    Article  Google Scholar 

Download references

Acknowledgements

The symposium was supported by a grant from the National Institutes of Health (R13 CA132572 to Changyi Chen).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David H. Berger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, L., Belaguli, N. & Berger, D.H. MicroRNA and Colorectal Cancer. World J Surg 33, 638–646 (2009). https://doi.org/10.1007/s00268-008-9865-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00268-008-9865-5

Keywords

Navigation