Skip to main content
Log in

Genome-wide transcriptome analysis of Arabidopsis response to sulfur dioxide fumigation

  • Original Paper
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

Sulfur dioxide (SO2) supplies the basic sulfur element to promote plant growth, yet at the same time it is a harmful air pollutant. Currently, the mechanisms of plant adaptation to SO2 stress are largely unknown. Pathways of SO2 metabolism, a range of networks of interacting regulatory signals and defense mechanisms triggered in resistance to SO2 stress, have not yet been clarified. We performed transcriptome analysis of Arabidopsis plants fumigated with 30 mg m−3 SO2 for 72 h and untreated controls using microarrays. This identified 2,780 significantly up- or down-regulated genes in plants response to SO2 stress, indicating a possible genome-scale reprogramming of the transcriptome. Significant changes in the transcript abundance of genes that participated in SO2 metabolic pathways indicated that numerous sulfites were involved in sulfur assimilatory pathways directly and away from sulfite oxidative pathways. Furthermore, the up-regulation of components involved in reactive oxygen species generating and scavenging pathways demonstrated altered redox homeostasis. Transcripts encoding key components in nitric oxide biosynthesis pathways were simultaneously up-regulated by SO2 exposure. In addition, transcripts associated with putative biotic stress were also up-regulated. Therefore, SO2 evokes a comprehensive reprogramming of metabolic pathways, consistent with up-regulation of transcripts involved in tolerance and defense mechanisms, in Arabidopsis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ahuja I, Kissen R, Bones AM (2012) Phytoalexins in defense against pathogens. Trends Plant Sci 17:73–90

    Article  PubMed  CAS  Google Scholar 

  • Alves MS, Dadalto SP, Gonçalves AB, de Souza GB, Barros VA, Fietto LG (2014) Transcription factor functional protein–protein interactions in plant defense responses. Proteomes 2:85–106

    Article  Google Scholar 

  • Arasimowicz M, Floryszak-Wieczorek J (2007) Nitric oxide as a bioactive signalling molecule in plant stress responses. Plant Sci 172:876–887

    Article  CAS  Google Scholar 

  • Bai X, Yang L, Tian M, Chen J, Shi J, Yang Y, Hu X (2011) Nitric oxide enhances desiccation tolerance of recalcitrant Antiaris toxicaria seeds via protein S-nitrosylation and carbonylation. PLoS ONE 6:e20714. doi:10.1371/journal.pone.0020714

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Bak S, Beisson F, Bishop G, Hamberger B, Höfer R, Paquette S, Werck-Reichhart D (2011) Cytochromes P450. Arabidopsis Book 9:e0144. doi:10.1199/tab.0144

    Article  PubMed  PubMed Central  Google Scholar 

  • Baxter A, Mittler R, Suzuki N (2014) ROS as key players in plant stress signalling. J Exp Bot 65:1229–1240

    Article  PubMed  CAS  Google Scholar 

  • Besson-Bard A, Gravot A, Richaud P, Auroy P, Duc C, Gaymard F, Taconnat L, Renou JP, Puqin A, Wendehenne D (2009) Nitric oxide contributes to cadmium toxicity in Arabidopsis by promoting cadmium accumulation in roots and by up-regulating genes related to iron uptake. Plant Physiol 149:1302–1315

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Brychkova G, Xia Z, Yang G, Yesbergenova Z, Zhang Z, Davydov O, Fluhr R, Sagi M (2007) Sulfite oxidase protects plants against sulfur dioxide toxicity. Plant J 50:696–709

    Article  PubMed  CAS  Google Scholar 

  • Brychkova G, Grishkevich V, Fluhr R, Sagi M (2013) An essential role for tomato sulfite oxidase and enzymes of the sulfite network in maintaining leaf sulfite homeostasis. Plant Physiol 161:148–164

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Choudhury S, Panda P, Sahoo L, Panda SK (2013) Reactive oxygen species signaling in plants under abiotic stress. Plant Signal Behav 8. doi:10.4161/psb.23681

  • Compier M (2005) Hemicellulose biosynthesis and degradation in tobacco cell walls. PhD Thesis, Wageningen University, The Netherlands

  • Davidian JC, Kopriva S (2010) Regulation of sulfate uptake and assimilation—the same or not the same? Mol Plant 3:314–325

    Article  PubMed  CAS  Google Scholar 

  • Dietz KJ, Jacob S, Oelze ML, Laxa M, Tognetti V, De Miranda SMN, Baier M, Finkemeier I (2006) The function of peroxiredoxins in plant organelle redox metabolism. J Exp Bot 57:1697–1709

    Article  PubMed  CAS  Google Scholar 

  • Dixon DP, Cummins L, Cole DJ, Edwards R (1998) Glutathione-mediated detoxification systems in plants. Curr Opin Plant Biol 1:258–266

    Article  PubMed  CAS  Google Scholar 

  • Dräger B (2006) Tropinone reductases, enzymes at the branch point of tropane alkaloid metabolism. Phytochemistry 67:327–337

    Article  PubMed  Google Scholar 

  • Ellis M, Egelund J, Schultz CJ, Bacic A (2010) Arabinogalactan-proteins: key regulators at the cell surface? Plant Physiol 153:403–419

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Freedman BJ (1980) Sulfur dioxide in foods and beverages: its use as a preservative and its effect on asthma. Br J Dis Chest 74:128–134

    Article  PubMed  CAS  Google Scholar 

  • Gaupels F, Spiazzi-Vandelle E, Yang D, Delledonne M (2011) Detection of peroxynitrite accumulation in Arabidopsis thaliana during the hypersensitive defense response. Nitric Oxide 25:222–228

    Article  PubMed  CAS  Google Scholar 

  • Gholizadeh A (2014) Contribution of lignin and non-lignin dependent responses in protein fraction-interacted plant tissue. J Plant Stud 3. doi:10.5539/jps.v3n1p1

  • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930

    Article  PubMed  CAS  Google Scholar 

  • Giraud E, Ivanova A, Gordon CS, Whelan J, Considine MJ (2012) Sulfur dioxide evokes a large scale reprogramming of the grape berry transcriptome associated with oxidative signalling and biotic defence responses. Plant Cell Environ 35:405–417

    Article  PubMed  CAS  Google Scholar 

  • Grün S, Lindermayr C, Sell S, Durner J (2006) Nitric oxide and gene regulation in plants. J Exp Bot 57:507–516

    Article  PubMed  Google Scholar 

  • Guo FQ, Crawford NM (2005) Arabidopsis nitric oxide synthase 1 is targeted to mitochondria and protects against oxidative damage and dark-induced senescence. Plant Cell 17:3436–3450

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Gupta KJ, Fernie AR, Kaiser WM, Van Dongen JT (2011) On the origins of nitric oxide. Trends Plant Sci 16:160–168

    Article  PubMed  CAS  Google Scholar 

  • Hamisch D, Randewig D, Schliesky S, Bräutigam A, Weber AP, Geffers R, Herschbach C, Rennenberg H, Mendel RR, Hänsch R (2012) Impact of SO2 on Arabidopsis thaliana transcriptome in wildtype and sulfite oxidase knockout plants analyzed by RNA deep sequencing. New Phytol 196:1074–1085

    Article  PubMed  CAS  Google Scholar 

  • Hänsch R, Mendel RR (2005) Sulfite oxidation in plant peroxisomes. Photosynth Res 86:337–343

    Article  PubMed  Google Scholar 

  • Hindawi IJ (1968) Injury by sulfur dioxide, hydrogen fluoride, and chlorine as observed and reflected on vegetation in the field. J Air Pollut Control Assoc 18:307–312

    Article  CAS  Google Scholar 

  • Hogetsu T, Shishikura M (1994) Effects of sulfur dioxide and ozone on intact leaves and isolated mesophyll cells of groundnut plants (Arachis hypogaea L.). J Plant Res 107:229–235

    Article  CAS  Google Scholar 

  • Huang X, Von Rad U, Durner J (2002) Nitric oxide induces transcriptional activation of the nitric oxide-tolerant alternative oxidase in Arabidopsis suspension cells. Planta 215:914–923

    Article  PubMed  CAS  Google Scholar 

  • Jensen JK, Sørensen SO, Harholt J, Geshi N, Sakuragi Y, Møller I, Zandleven J, Bernal AJ, Jensen NB, Sørensen C, Pauly M, Beldman G, Willats WGT, Scheller HV (2008) Identification of a xylogalacturonan xylosyltransferase involved in pectin biosynthesis in Arabidopsis. Plant Cell 20:1289–1302

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Khan MR, Khan MM (2011) Plants response to diseases in sulfur dioxide stressed environment. Plant Pathol J 10:1–12

    Article  CAS  Google Scholar 

  • Khan MS, Haas FH, Samami AA, Gholami AM, Bauer A, Fellenberg K, Reichelt M, Hänsch R, Mendel RR, Meyer AJ, Wirtz M, Hell R (2010) Sulfite reductase defines a newly discovered bottleneck for assimilatory sulfate reduction and is essential for growth and development in Arabidopsis thaliana. Plant Cell 22:1216–1231

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Knabe W (1976) Effects of sulfur dioxide on terrestrial vegetation. Ambio 5:213–218

    CAS  Google Scholar 

  • Kulik A, Noirot E, Grandperret V, Bourque S, Fromentin J, Salloignon P, Truntzer C, Dobrowolska G, Simon-Plas F, Wendehenne D (2014) Interplays between nitric oxide and reactive oxygen species in cryptogein signalling. Plant Cell Environ. doi:10.1111/pce.12295

    PubMed  Google Scholar 

  • Kushwaha AK, Sangwan NS, Tripathi S, Sangwan RS (2013) Molecular cloning and catalytic characterization of a recombinant tropine biosynthetic tropinone reductase from Withania coagulans leaf. Gene 516:238–247

    Article  PubMed  CAS  Google Scholar 

  • Lang C, Popko J, Wirtz M, Hell R, Herschbach C, Kreuzwieser J, Rennenberg H, Mendel RR, Hänsch R (2007) Sulfite oxidase as key enzyme for protecting plants against sulfur dioxide. Plant Cell Environ 30:447–455

    Article  PubMed  CAS  Google Scholar 

  • Lau S, Jürgens G, De Smet I (2008) The evolving complexity of the auxin pathway. Plant Cell 20:1738–1746

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Leustek T, Martin MN, Bick JA, Davies JP (2000) Pathways and regulation of sulfur metabolism revealed through molecular and genetic studies. Annu Rev Plant Physiol Plant Mol Biol 51:141–165

    Article  PubMed  CAS  Google Scholar 

  • Lewandowska M, Sirko A (2008) Recent advances in understanding plant response to sulfur-deficiency stress. Acta Biochim Pol 55:457–471

    PubMed  CAS  Google Scholar 

  • Li L, Yi H (2012a) Differential expression of Arabidopsis defense-related genes in response to sulfur dioxide. Chemosphere 87:718–724

    Article  PubMed  CAS  Google Scholar 

  • Li L, Yi H (2012b) Effect of sulfur dioxide on ROS production, gene expression and antioxidant enzyme activity in Arabidopsis plants. Plant Physiol Biochem 58:46–53

    Article  PubMed  CAS  Google Scholar 

  • Li L, Yi H, Wang L, Li X (2008) Effects of sulfur dioxide on the morphological and physiological biochemical parameters in Arabidopsis thaliana plants. J Agro-Environ Sci 27:525–529

    Google Scholar 

  • Li L, Yi H, Wu D (2010) Enhancement of sulfur-containing antioxidants in Arabidopsis response to sulfur dioxide fumigation. Chin J Appl Environ Biol 16:613–616

    CAS  Google Scholar 

  • Ljung K (2013) Auxin metabolism and homeostasis during plant development. Development 140:943–950

    Article  PubMed  CAS  Google Scholar 

  • Lu Z, Streets DG, Zhang Q, Wang S, Carmichael GR, Cheng YF, Wei C, Chin M, Diehl T, Tan Q (2010) Sulfur dioxide emissions in China and sulfur trends in East Asia since 2000. Atmos Chem Phys 10:6311–6331

    Article  CAS  Google Scholar 

  • Meyer Y, Verdoucq L, Vignols F (1999) Plant thioredoxins and glutaredoxins: identity and putative roles. Trends Plant Sci 4:388–394

    Article  PubMed  Google Scholar 

  • Misra AN, Misra M, Singh R (2010) Nitric oxide biochemistry, mode of action and signaling in plants. J Med Plants Res 4:2729–2739

    CAS  Google Scholar 

  • Misra AN, Misra M, Singh R (2011) Nitric oxide ameliorates stress responses in plants. Plant Soil Environ 57:95–100

    CAS  Google Scholar 

  • Mittler R, Vanderauwera S, Gollery M, Van Breusegem F (2004) Reactive oxygen gene network of plants. Trends Plant Sci 9:490–498

    Article  PubMed  CAS  Google Scholar 

  • Na G, Salt DE (2011) The role of sulfur assimilation and sulfur-containing compounds in trace element homeostasis in plants. Environ Exp Bot 72:18–25

    Article  CAS  Google Scholar 

  • Naidu CK, Suneetha Y (2012) Current knowledge on microarray technology—an overview. Trop J Pharm Res 11:153–164

    Article  CAS  Google Scholar 

  • O’Brien JA, Daudi A, Finch P, Butt VS, Whitelegge JP, Souda P, Ausubel FM, Bolwell GP (2012) A peroxidase-dependent apoplastic oxidative burst in cultured Arabidopsis cells functions in MAMP-elicited defense. Plant Physiol 158:2013–2027

    Article  PubMed  PubMed Central  Google Scholar 

  • Parani M, Rudrabhatla S, Myers R, Weirich H, Smith B, Leaman DW, Goldman SL (2004) Microarray analysis of nitric oxide responsive transcripts in Arabidopsis. Plant Biotechnol J 2:359–366

    Article  PubMed  CAS  Google Scholar 

  • Rakwal R, Agrawal GK, Kubo A, Yonekura M, Tamogami S, Saji H, Iwahashi H (2003) Defense/stress responses elicited in rice seedlings exposed to the gaseous air pollutant sulfur dioxide. Environ Exp Bot 49:223–235

    Article  CAS  Google Scholar 

  • Richter R, Behringer C, Zourelidou M, Schwechheimer C (2013) Convergence of auxin and gibberellin signaling on the regulation of the GATA transcription factors GNC and GNL in Arabidopsis thaliana. PANS. doi:10.1073/pnas.1304250110

    Google Scholar 

  • Rodríguez-Serrano M, Romero-Puertas MC, Pazmiño DM, Testillano PS, Risueño MC, Del Río LA, Sandalio LM (2009) Cellular response of pea plants to cadmium toxicity: cross talk between reactive oxygen species, nitric oxide, and calcium. Plant Physiol 150:229–243

    Article  PubMed  PubMed Central  Google Scholar 

  • Romero LC, Aroca MÁ, Laureano-Marín AM, Moreno I, García I, Gotor C (2014) Cysteine and cysteine-related signaling pathways in Arabidopsis thaliana. Mol Plant 7:264–276

    Article  PubMed  CAS  Google Scholar 

  • Saito K (2000) Regulation of sulfate transport and synthesis of sulfur-containing amino acids. Curr Opin Plant Biol 3:188–195

    Article  PubMed  CAS  Google Scholar 

  • Sakamoto T, Morinaka Y, Inukai Y, Kitano H, Fujioka S (2013) Auxin signal transcription factor regulates expression of the brassinosteroid receptor gene in rice. Plant J 73:676–688

    Article  PubMed  CAS  Google Scholar 

  • Sampedro J, Cosgrove DJ (2005) The expansin superfamily. Genome Biol 6:242

    Article  PubMed  PubMed Central  Google Scholar 

  • Sarowar S, Kim YJ, Kim KD, Hwang BK, Ok SH, Shin JS (2009) Overexpression of lipid transfer protein (LTP) genes enhances resistance to plant pathogens and LTP functions in long-distance systemic signaling in tobacco. Plant Cell Rep 28:419–427

    Article  PubMed  CAS  Google Scholar 

  • Scheler C, Durner J, Astier J (2013) Nitric oxide and reactive oxygen species in plant biotic interactions. Curr Opin Plant Biol 16:534–539

    Article  PubMed  CAS  Google Scholar 

  • Scheller HV, Ulvskov P (2010) Hemicelluloses. Annu Rev Plant Biol 61:263–289

    Article  PubMed  CAS  Google Scholar 

  • Shakeel SN, Wang X, Binder BM, Schaller GE (2013) Mechanisms of signal transduction by ethylene: overlapping and non-overlapping signalling roles in a receptor family. AoB Plants 5. doi:10.1093/aobpla/plt010

  • Showalter AM (2001) Arabinogalactan-proteins: structure, expression and function. Cell Mol Life Sci 58:1399–1417

    Article  PubMed  CAS  Google Scholar 

  • Siddiqui MH, Al-Whaibi MH, Basalah MO (2011) Role of nitric oxide in tolerance of plants to abiotic stress. Protoplasma 248:447–455

    Article  PubMed  CAS  Google Scholar 

  • Smith SJ, van Aardenne J, Klimont Z, Andres RJ, Volke A, Delgado Arias S (2011) Anthropogenic sulfur dioxide emissions: 1850–2005. Atmos Chem Phys 11:1101–1116

    Article  CAS  Google Scholar 

  • Takahashi H, Kopriva S, Giordano M, Saito K, Hell R (2011) Sulfur assimilation in photosynthetic organisms: molecular functions and regulations of transporters and assimilatory enzymes. Annu Rev Plant Biol 62:157–184

    Article  PubMed  CAS  Google Scholar 

  • Thimm O, Bläsing O, Gibon Y, Nagel A, Meyer S, Krüger P, Selbig J, Müller LA, Rhee SY, Stitt M (2004) MAPMAN: a user-driven tool to display genomics data sets onto diagrams of metabolic pathways and other biological processes. Plant J 37:914–939

    Article  PubMed  CAS  Google Scholar 

  • Torres MA, Jones JDG, Dangl JL (2006) Reactive oxygen species signaling in response to pathogens. Plant Physiol 141:373–378

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Vanlerberghe GC (2013) Alternative oxidase: a mitochondrial respiratory pathway to maintain metabolic and signaling homeostasis during abiotic and biotic stress in plants. Int J Mol Sci 14:6805–6847

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Wang T, Park YB, Caporini MA, Rosay M, Zhong L, Cosgrove DJ, Hong M (2013a) Sensitivity-enhanced solid-state NMR detection of expansin’s target in plant cell walls. PNAS. doi:10.1073/pnas.1316290110

    Google Scholar 

  • Wang Y, Loake GJ, Chu C (2013b) Cross-talk of nitric oxide and reactive oxygen species in plant programed cell death. Front Plant Sci 4. doi:10.3389/fpls.2013.00314

  • Ward PL (2009) Sulfur dioxide initiates global climate change in four ways. Thin Solid Films 517:3188–3203

    Article  CAS  Google Scholar 

  • Yarmolinsky D, Brychkova G, Fluhr R, Sagi M (2013) Sulfite reductase protects plants against sulfite toxicity. Plant Physiol 161:725–743

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Yi H, Liu X, Yin J (2012) Involvement of ROS and NO in SO2-induced stomatal movement in Vicia faba Leaves. J Henan Univ (Nat Sci Edn) 42:593–598

    CAS  Google Scholar 

  • Yoo SD, Cho Y, Sheen J (2009) Emerging connections in the ethylene signaling network. Trends Plant Sci 14:270–279

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Zagorchev L, Seal CE, Kranner I, Odjakova M (2013) A central role for thiols in plant tolerance to abiotic stress. Int J Mol Sci 14:7405–7432

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Zaninotto F, La Camera S, Polverari A, Delledonne M (2006) Cross talk between reactive nitrogen and oxygen species during the hypersensitive disease resistance response. Plant Physiol 141:379–383

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Zhao J, Xue MZ, Bai HL, Yi H (2014) Stomatal movement regulation by nitrate reductase-dependent nitric oxide production in Arabidopsis response to sulfur dioxide. Acta Sci Circumst 34:796–800

    CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Natural Science Foundation of China (Grant No. 30470318, No. 30870454 and No. 31371868), Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20070108007 and No. 20121401110007) and Shanxi Scholarship Council of China (Grant No. 2009022 and No. 2012013).

Conflict of interest

The authors have declared that no competing interests exist.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huilan Yi.

Additional information

Communicated by S. Hohmann.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, J., Yi, H. Genome-wide transcriptome analysis of Arabidopsis response to sulfur dioxide fumigation. Mol Genet Genomics 289, 989–999 (2014). https://doi.org/10.1007/s00438-014-0870-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-014-0870-0

Keywords

Navigation