Skip to main content

Advertisement

Log in

Evidence for the presence of somatic mitochondrial DNA mutations in right atrial appendage tissues of coronary artery disease patients

  • Original Paper
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

Coronary artery disease (CAD) is a multifactorial disease with the underlying involvement of environment, life style and nuclear genetics. However, the role of extranuclear genetic material in terms of somatically acquired mutations in mitochondrial tRNA and protein coding genes in the initiation or progression of CAD is not well defined. Hence, in the present study, right atrial appendage tissues and matched blood samples of 150 CAD patients were screened for mutations in nucleotide regions encompassing the Cytochrome c oxidase subunit II (MT-CO2), tRNA lysine (MT-TK), ATP synthase F0 subunit 8 (MT-ATP8) and Cytochrome b (MT-CYB) genes of mitochondrial DNA. We have found 9 different somatic mutations in 6 % of the CAD patients. Out of these mutations, 4 each were localized in MT-TK gene (T8324A, A8326G, A8331G and A8344G) and MT-CYB genes (T15062C, C15238A, T15378G and C15491G) in addition to one mutation in non-coding region 7 (A8270T) of mitochondrial genome. In addition, we noticed that majority (85.3 %) of CAD patients showed double repeats of germ-line “CCCCCTCTA” intergenic sequence between MT-CO2 and MT-TK genes. Our in-silico investigations of missense mutations revealed that they may alter the free energy and stability of polypeptide chains of MT-CYB protein of complex III of mitochondrial respiratory chain. Based on our study findings, we hypothesize that the somatically acquired variations in MT-TK and MT-CYB genes may negatively impact the energy metabolism of cardiomyocytes in right atrial appendage tissues and contribute in the cardiac dysfunction among CAD patients. In conclusion, our findings may be likely to have potential implications in understanding the disease pathophysiology, diagnosis as well as for the better therapeutic management of CAD patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Anderson S, Bankier AT, Barrell BG, de Bruijn MH, Coulson AR, Drouin J, Eperon IC, Nierlich DP, Roe BA, Sanger F, Schreier PH, Smith AJ, Staden R, Young IG (1981) Sequence and organization of the human mitochondrial genome. Nature 290:457–465

    Article  CAS  PubMed  Google Scholar 

  • Andreassi MG (2003) Coronary atherosclerosis and somatic mutations: an overview of the contributive factors for oxidative DNA damage. Mutat Res 543:67–86

    Article  CAS  PubMed  Google Scholar 

  • Andreu AL, Checcarelli N, Iwata S, Shanske S, DiMauro S (2000) A missense mutation in the mitochondrial cytochrome b gene in a revisited case with histiocytoid cardiomyopathy. Pediatr Res 48:311–314

    Article  CAS  PubMed  Google Scholar 

  • Banaganapalli B, Mulakayala C, Pulaganti M, Mulakayala N, Anuradha CM, Suresh Kumar C, Shaik NA, Yousuf Al-Aama J, Gudla D (2013) Experimental and computational studies on newly synthesized resveratrol derivative: a new method for cancer chemoprevention and therapeutics? OMICS 17:568–583

    Article  CAS  PubMed  Google Scholar 

  • Corral-Debrinski M, Shoffner JM, Lott MT, Wallace DC (1992) Association of mitochondrial DNA damage with aging and coronary atherosclerotic heart disease. Mutat Res 275:169–180

    Article  CAS  PubMed  Google Scholar 

  • Enriquez JA, Chomyn A, Attardi G (1995) MtDNA mutation in MERRF syndrome causes defective aminoacylation of tRNA(Lys) and premature translation termination. Nat Genet 10:47–55

    Article  CAS  PubMed  Google Scholar 

  • Feigenbaum A, Bai RK, Doherty ES, Kwon H, Tan D, Sloane A, Cutz E, Robinson BH, Wong LJ (2006) Novel mitochondrial DNA mutations associated with myopathy, cardiomyopathy, renal failure, and deafness. Am J Med Genet A 140:2216–2222

    Article  PubMed  Google Scholar 

  • Frahm T, Mohamed SA, Bruse P, Gemund C, Oehmichen M, Meissner C (2005) Lack of age-related increase of mitochondrial DNA amount in brain, skeletal muscle and human heart. Mech Ageing Dev 126:1192–1200

    Article  CAS  PubMed  Google Scholar 

  • Hanna MG, Nelson I, Sweeney MG, Cooper JM, Watkins PJ, Morgan-Hughes JA, Harding AE (1995) Congenital encephalomyopathy and adult-onset myopathy and diabetes mellitus: different phenotypic associations of a new heteroplasmic mtDNA tRNA glutamic acid mutation. Am J Hum Genet 56:1026–1033

    CAS  PubMed Central  PubMed  Google Scholar 

  • Helm M, Florentz C, Chomyn A, Attardi G (1999) Search for differences in post-transcriptional modification patterns of mitochondrial DNA-encoded wild-type and mutant human tRNALys and tRNALeu(UUR). Nucleic Acids Res 27:756–763

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Howell N, Kubacka I, Smith R, Frerman F, Parks JK, Parker WD Jr (1996) Association of the mitochondrial 8344 MERRF mutation with maternally inherited spinocerebellar degeneration and Leigh disease. Neurology 46:219–222

    Article  CAS  PubMed  Google Scholar 

  • Jia Z, Wang X, Qin Y, Xue L, Jiang P, Meng Y, Shi S, Wang Y, Qin Mo J, Guan MX (2013) Coronary heart disease is associated with a mutation in mitochondrial tRNA. Hum Mol Genet 22:4064–4073

    Article  CAS  PubMed  Google Scholar 

  • Jin Y, Yu Q, Zhou D, Chen L, Huang X, Xu G, Huang J, Gao X, Gao Y, Shen L (2012) The mitochondrial DNA 9-bp deletion polymorphism is a risk factor for hepatocellular carcinoma in the Chinese population. Genet Test Mol Biomark 16:330–334

    Article  CAS  Google Scholar 

  • Komandur S, Venkatasubramanian S, Alluri RV, Rao P, Hasan Q (2011) Mitochondrial insertion–deletion polymorphism: role in disease pathology. Genet Test Mol Biomark 15:361–364

    Article  CAS  Google Scholar 

  • Levinger L, Morl M, Florentz C (2004) Mitochondrial tRNA 3’ end metabolism and human disease. Nucleic Acids Res 32:5430–5441

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lloyd RE, McGeehan JE (2013) Structural analysis of mitochondrial mutations reveals a role for bigenomic protein interactions in human disease. PLoS ONE 8:e69003

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Martinet W, Knaapen MW, De Meyer GR, Herman AG, Kockx MM (2002) Elevated levels of oxidative DNA damage and DNA repair enzymes in human atherosclerotic plaques. Circulation 106:927–932

    Article  CAS  PubMed  Google Scholar 

  • Masoodi TA, Rao Talluri V, Shaik NA, Al-Aama JY, Hasan Q (2012) Functional genomics based prioritization of potential nsSNPs in EPHX1, GSTT1, GSTM1 and GSTP1 genes for breast cancer susceptibility studies. Genomics 99:330–339

    Article  CAS  PubMed  Google Scholar 

  • Massie R, Wong LJ, Milone M (2010) Exercise intolerance due to cytochrome b mutation. Muscle Nerve 42:136–140

    Article  CAS  PubMed  Google Scholar 

  • Masucci JP, Davidson M, Koga Y, Schon EA, King MP (1995) In vitro analysis of mutations causing myoclonus epilepsy with ragged-red fibers in the mitochondrial tRNA(Lys)gene: two genotypes produce similar phenotypes. Mol Cell Biol 15:2872–2881

    CAS  PubMed Central  PubMed  Google Scholar 

  • Miller FJ, Rosenfeldt FL, Zhang C, Linnane AW, Nagley P (2003) Precise determination of mitochondrial DNA copy number in human skeletal and cardiac muscle by a PCR-based assay: lack of change of copy number with age. Nucleic Acids Res 31:e61

    Article  PubMed Central  PubMed  Google Scholar 

  • Molnar MJ, Perenyi J, Siska E, Nemeth G, Nagy Z (2009) The typical MERRF (A8344G) mutation of the mitochondrial DNA associated with depressive mood disorders. J Neurol 256:264–265

    Article  PubMed  Google Scholar 

  • Park HW, Ahn Y, Jeong MH, Cho JG, Park JC, Kang JC, Shin MG, Shin JH, Suh SP, Ryang DW, Kim NH, Choi JB, Kim HR (2007) Chronic atrial fibrillation associated with somatic mitochondrial DNA mutations in human atrial tissue. J Clin Pathol 60:948–950

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Perez F, Anne O, Debruxelles S, Menegon P, Lambrecq V, Lacombe D, Martin-Negrier ML, Brochet B, Goizet C (2009) Leber’s optic neuropathy associated with disseminated white matter disease: a case report and review. Clin Neurol Neurosurg 111:83–86

    Article  CAS  PubMed  Google Scholar 

  • Puddu GM, Cravero E, Arnone G, Muscari A, Puddu P (2005) Molecular aspects of atherogenesis: new insights and unsolved questions. J Biomed Sci 12:839–853

    Article  CAS  PubMed  Google Scholar 

  • Roy A, Kucukural A, Zhang Y (2010) I-TASSER: a unified platform for automated protein structure and function prediction. Nat Protoc 5:725–738

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Russell LK, Finck BN, Kelly DP (2005) Mouse models of mitochondrial dysfunction and heart failure. J Mol Cell Cardiol 38:81–91

    Article  CAS  PubMed  Google Scholar 

  • Santorelli FM, Tanji K, Shanske S, Krishna S, Schmidt RE, Greenwood RS, DiMauro S, De Vivo DC (1998) The mitochondrial DNA A8344G mutation in Leigh syndrome revealed by analysis in paraffin-embedded sections: revisiting the past. Ann Neurol 44:962–964

    Article  CAS  PubMed  Google Scholar 

  • Shaik NA, Lone WG, Khan IA, Vaidya S, Rao KP, Kodati VL, Hasan Q (2011) Detection of somatic mutations and germline polymorphisms in mitochondrial DNA of uterine fibroids patients. Genet Test Mol Biomark 15:537–541

    Article  CAS  Google Scholar 

  • Shaik NA, Kaleemuddin M, Banaganapalli B, Khan F, Shaik NS, Ajabnoor G, Al-Harthi SE, Bondogji N, Al-Aama JY, Elango R (2013) Structural and functional characterization of pathogenic non-synonymous genetic mutations of human IDE by in-silico methods. CNS Neurol Disord Drug Targets

  • Silvestri G, Ciafaloni E, Santorelli FM, Shanske S, Servidei S, Graf WD, Sumi M, DiMauro S (1993) Clinical features associated with the A → G transition at nucleotide 8344 of mtDNA (“MERRF mutation”). Neurology 43:1200–1206

    Article  CAS  PubMed  Google Scholar 

  • Sissler M, Helm M, Frugier M, Giege R, Florentz C (2004) Aminoacylation properties of pathology-related human mitochondrial tRNA(Lys) variants. RNA 10:841–853

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sobenin IA, Chistiakov DA, Bobryshev YV, Postnov AY, Orekhov AN (2013) Mitochondrial mutations in atherosclerosis: new solutions in research and possible clinical applications. Curr Pharm Des 19:5942–5953

    Article  CAS  PubMed  Google Scholar 

  • Stagnaro S, Caramel S (2013) The inherited real risk of coronary artery disease. Eur J Clin Nutr 67:683

    Article  CAS  PubMed  Google Scholar 

  • Vallance HD, Jeven G, Wallace DC, Brown MD (2004) A case of sporadic infantile histiocytoid cardiomyopathy caused by the A8344G (MERRF) mitochondrial DNA mutation. Pediatr Cardiol 25:538–540

    Article  CAS  PubMed  Google Scholar 

  • Wong LJ, Liang MH, Kwon H, Park J, Bai RK, Tan DJ (2002) Comprehensive scanning of the entire mitochondrial genome for mutations. Clin Chem 48:1901–1912

    CAS  PubMed  Google Scholar 

  • Yasukawa T, Hino N, Suzuki T, Watanabe K, Ueda T, Ohta S (2000) A pathogenic point mutation reduces stability of mitochondrial mutant tRNA(Ile). Nucleic Acids Res 28:3779–3784

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zeviani M, Di Donato S (2004) Mitochondrial disorders. Brain 127:2153–2172

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank the patients and their physicians for collaboration with the study. We are grateful to our colleagues in Kamineni Hospitals, Hyderabad for their assistance. Authors also acknowledge Mohammed Kaleemuddin, Researcher at Princess Al-Jawhara Al-Brahim Centre of Excellence in Research of Hereditary Disorders for contributing his part in bioinformatics analysis of the present work. The authors declare that they have no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kavitha Matam.

Additional information

Communicated by S. Hohmann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Matam, K., Shaik, N.A., Aggarwal, S. et al. Evidence for the presence of somatic mitochondrial DNA mutations in right atrial appendage tissues of coronary artery disease patients. Mol Genet Genomics 289, 533–540 (2014). https://doi.org/10.1007/s00438-014-0828-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-014-0828-2

Keywords

Navigation