Skip to main content

Advertisement

Log in

Novel Point Mutations in Mitochondrial MT-CO2 Gene May Be Risk Factors for Coronary Artery Disease

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

A wide range of genetic and environmental interactions are involved in the development of coronary artery disease (CAD). Considerable evidence suggests that mitochondrial DNA mutations are associated with heart failure. In this work, we examined the possible mutations in hotspot mitochondrial genes and their association with Iranian patients with coronary artery disease. In this case-control study, nucleotide variations were investigated in 109 patients with coronary atherosclerosis and 105 control subjects with no family history of cardiovascular disease. The molecular analysis of related mitochondrial genes was performed by polymerase chain reaction sequencing. Our results showed 25 nucleotide variations (10 missense mutations, 9 synonymous polymorphisms, and 6 variants in tRNA genes) that for the first time were presented in coronary artery disease. Our results suggest that novel heteroplasmic m.8231 C>A mutation is involved in CAD (p = 0.007). These nucleotide variations suggest the role of mitochondrial mutations as a predisposing factor which in combination with environmental risk factors may affect the pathogenesis of coronary atherosclerosis. So, further investigation is needed for a better understanding of the pathogenesis and predisposing effects of these variations on the disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Fuster, V., Kelly, B. B., & Vedanthan, R. (2011). Promoting global cardiovascular health: moving forward. Circulation, 123(15), 1671–1678.

    Article  Google Scholar 

  2. Lozano, R., Naghavi, M., Foreman, K., et al. (2012). Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet, 380(9859), 2095–2128.

  3. Kwon, T. G., Kim, K. W., Park, H. W., Jeong, J. H., Kim, K. Y., & Bae, J. H. (2009). Prevalence and significance of carotid plaques in patients with coronary atherosclerosis. Korean Circulation Journal, 39(8), 317–321.

    Article  CAS  Google Scholar 

  4. Elseweidy, M. M., Amin, R. S., Atteia, H. H., El-Zeiky, R. R., & Al-Gabri, N. A. (2018). New insight on a combination of policosanol and 10-dehydrogingerdione phytochemicals as inhibitors for platelet activation biomarkers and atherogenicity risk in dyslipidemic rabbits: role of CETP and PCSK9 inhibition. Applied Biochemistry and Biotechnology, 186(4), 805–815.

    Article  CAS  Google Scholar 

  5. Hajar, R. (2017). Risk factors for coronary artery disease: historical perspectives. Heart views: The Official Journal of the Gulf Heart Association, 18(3), 109–114.

    Article  Google Scholar 

  6. Hamrefors, V. (2017). Common genetic risk factors for coronary artery disease: new opportunities for prevention? Clinical Physiology and Functional Imaging, 37(3), 243–254.

    Article  Google Scholar 

  7. Heidari, M. M., Khatami, M., Hadadzadeh, M., et al. (2016). Polymorphisms in NOS3, MTHFR, APOB and TNF-alpha genes and risk of coronary atherosclerotic lesions in Iranian patients. Research in Cardiovascular Medicine, 5, e29134.

    Article  Google Scholar 

  8. Martinez, P. F., & Okoshi, M. P. (2018). Genetic risk in coronary artery disease. Arquivos Brasileiros de Cardiologia, 111(1), 62–63.

    PubMed  PubMed Central  Google Scholar 

  9. O’Donnell, C. J., & Nabel, E. G. (2011). Genomics of cardiovascular disease. The New England Journal of Medicine, 365(22), 2098–2109.

    Article  Google Scholar 

  10. Volobueva, A., Grechko, A., Yet, S. F., Sobenin, I., Orekhov, A. (2019). Changes in mitochondrial genome associated with predisposition to atherosclerosis and related disease. Biomolecules, 9.

  11. Weakley, S. M., Jiang, J., Kougias, P., Lin, P. H., Yao, Q., Brunicardi, F. C., Gibbs, R. A., & Chen, C. (2010). Role of somatic mutations in vascular disease formation. Expert Review of Molecular Diagnostics, 10(2), 173–185.

    Article  CAS  Google Scholar 

  12. Heidari, M. M., Derakhshani, M., Sedighi, F., & Forusan-nia, S. K. (2017). Mutation analysis of the mitochondrial tRNA genes in Iranian coronary atherosclerosis patients. Iranian Journal of Public Health, 46(10), 1379–1385.

    PubMed  PubMed Central  Google Scholar 

  13. Tafti, M. F., Khatami, M., Rezaei, S., Heidari, M. M., & Hadadzadeh, M. (2018). Novel and heteroplasmic mutations in mitochondrial tRNA genes in Brugada syndrome. Cardiology Journal, 25(1), 113–119.

    Article  Google Scholar 

  14. Chistiakov, D. A., Sobenin, I. A., Bobryshev, Y. V., & Orekhov, A. N. (2012). Mitochondrial dysfunction and mitochondrial DNA mutations in atherosclerotic complications in diabetes. World Journal of Cardiology, 4, 148–156.

    Article  Google Scholar 

  15. Singh, R. B., Mengi, S. A., Xu, Y. J., Arneja, A. S., & Dhalla, N. S. (2002). Pathogenesis of atherosclerosis: a multifactorial process. Experimental and Clinical Cardiology, 7(1), 40–53.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Jackson, A. O., Regine, M. A., Subrata, C., & Long, S. (2018). Molecular mechanisms and genetic regulation in atherosclerosis. International Journal of Cardiology Heart & Vasculature, 21, 36–44.

    Article  Google Scholar 

  17. Shokolenko, I. N., & Alexeyev, M. F. (2015). Mitochondrial DNA: a disposable genome? Biochimica et Biophysica Acta, 1852(9), 1805–1809.

    Article  CAS  Google Scholar 

  18. Shadel, G. S. (2008). Expression and maintenance of mitochondrial DNA: new insights into human disease pathology. The American Journal of Pathology, 172(6), 1445–1456.

    Article  CAS  Google Scholar 

  19. Duran, J., Martinez, A., Adler, E. (2019). Cardiovascular manifestations of mitochondrial disease. Biology, 8.

  20. Sobenin, I. A., Sazonova, M. A., Postnov, A. Y., Bobryshev, Y. V., & Orekhov, A. N. (2012). Mitochondrial mutations are associated with atherosclerotic lesions in the human aorta. Clinical & Developmental Immunology, 2012, 832464.

    Article  Google Scholar 

  21. Gil Borlado, M. C., Moreno Lastres, D., Gonzalez Hoyuela, M., et al. (2010). Impact of the mitochondrial genetic background in complex III deficiency. PLoS One, 5.

  22. Jonckheere, A. I., Smeitink, J. A., & Rodenburg, R. J. (2012). Mitochondrial ATP synthase: architecture, function and pathology. Journal of Inherited Metabolic Disease, 35(2), 211–225.

    Article  CAS  Google Scholar 

  23. Kytovuori, L., Lipponen, J., Rusanen, H., Komulainen, T., Martikainen, M. H., & Majamaa, K. (2016). A novel mutation m.8561C>G in MT-ATP6/8 causing a mitochondrial syndrome with ataxia, peripheral neuropathy, diabetes mellitus, and hypergonadotropic hypogonadism. Journal of Neurology, 263(11), 2188–2195.

    Article  CAS  Google Scholar 

  24. Sazonova, M. A., Sinyov, V. V., Ryzhkova, A. I., et al. (2017). Role of mitochondrial genome mutations in pathogenesis of carotid atherosclerosis. Oxidative Medicine and Cellular Longevity, 2017, 6934394.

    Article  Google Scholar 

  25. Scheffler, K., Krohn, M., Dunkelmann, T., et al. (2012). Mitochondrial DNA polymorphisms specifically modify cerebral beta-amyloid proteostasis. Acta Neuropathologica, 124, 199–208.

    Article  CAS  Google Scholar 

  26. Li H, Slone J, Fei L, Huang T. (2019). Mitochondrial DNA variants and common diseases: a mathematical model for the diversity of age-related mtDNA mutations. Cells, 8.

  27. Madamanchi, N. R., Vendrov, A., & Runge, M. S. (2005). Oxidative stress and vascular disease. Arteriosclerosis, Thrombosis, and Vascular Biology, 25, 29–38.

    Article  CAS  Google Scholar 

  28. Andreu, A. L., Checcarelli, N., Iwata, S., Shanske, S., & DiMauro, S. (2000). A missense mutation in the mitochondrial cytochrome b gene in a revisited case with histiocytoid cardiomyopathy. Pediatric Research, 48(3), 311–314.

    Article  CAS  Google Scholar 

  29. Dautant, A., Meier, T., Hahn, A., Tribouillard-Tanvier, D., di Rago, J. P., & Kucharczyk, R. (2018). ATP synthase diseases of mitochondrial genetic origin. Frontiers in Physiology, 9, 329.

    Article  Google Scholar 

  30. Kanungo, S., Morton, J., Neelakantan, M., Ching, K., Saeedian, J., & Goldstein, A. (2018). Mitochondrial disorders. Annals of translational medicine, 6, 475.

    Article  CAS  Google Scholar 

  31. Rak, M., Benit, P., Chretien, D., et al. (2016). Mitochondrial cytochrome c oxidase deficiency. Clinical Science, 130(6), 393–407.

    Article  CAS  Google Scholar 

  32. Baker, L. A., Watt, I. N., Runswick, M. J., Walker, J. E., & Rubinstein, J. L. (2012). Arrangement of subunits in intact mammalian mitochondrial ATP synthase determined by cryo-EM. Proceedings of the National Academy of Sciences of the United States of America, 109, 11675–11680.

    Article  CAS  Google Scholar 

  33. Walker, J. E., & Dickson, V. K. (2006). The peripheral stalk of the mitochondrial ATP synthase. Biochimica et Biophysica Acta, 1757(5-6), 286–296.

    Article  CAS  Google Scholar 

  34. Hejzlarova, K., Kaplanova, V., Nuskova, H., et al. (2015). Alteration of structure and function of ATP synthase and cytochrome c oxidase by lack of Fo-a and Cox3 subunits caused by mitochondrial DNA 9205delTA mutation. The Biochemical Journal, 466(3), 601–611.

    Article  CAS  Google Scholar 

  35. Jesina, P., Tesarova, M., Fornuskova, D., et al. (2004). Diminished synthesis of subunit a (ATP6) and altered function of ATP synthase and cytochrome c oxidase due to the mtDNA 2 bp microdeletion of TA at positions 9205 and 9206. The Biochemical Journal, 383(Pt. 3), 561–571.

    Article  CAS  Google Scholar 

  36. Jonckheere, A. I., Hogeveen, M., Nijtmans, L., et al. (2009). A novel mitochondrial ATP8 gene mutation in a patient with apical hypertrophic cardiomyopathy and neuropathy. BMJ Case Reports, 2009.

  37. Noer, A. S., Sudoyo, H., Lertrit, P., Thyagarajan, D., Utthanaphol, P., Kapsa, R., Byrne, E., & Marzuki, S. (1991). A tRNA(Lys) mutation in the mtDNA is the causal genetic lesion underlying myoclonic epilepsy and ragged-red fiber (MERRF) syndrome. American Journal of Human Genetics, 49(4), 715–722.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Emmanuele, V., Sotiriou, E., Rios, P. G., Ganesh, J., Ichord, R., Foley, A. R., Akman, H. O., & Dimauro, S. (2013). A novel mutation in the mitochondrial DNA cytochrome b gene (MTCYB) in a patient with mitochondrial encephalomyopathy, lactic acidosis, and strokelike episodes syndrome. Journal of Child Neurology, 28(2), 236–242.

    Article  Google Scholar 

  39. Zarrouk Mahjoub, S., Mehri, S., Ourda, F., Finsterer, J., & Ben, A. S. (2012). Novel m.15434C>A (p.230L>I) mitochondrial Cytb gene missense mutation associated with dilated cardiomyopathy. ISRN Cardiology, 2012, 251723.

    Article  Google Scholar 

  40. DiMauro, S., & Hirano, M. (2005). Mitochondrial encephalomyopathies: an update. Neuromuscular Disorders : NMD, 15(4), 276–286.

    Article  Google Scholar 

  41. Yoon, K. L., Aprille, J. R., & Ernst, S. G. (1991). Mitochondrial tRNA(thr) mutation in fatal infantile respiratory enzyme deficiency. Biochemical and Biophysical Research Communications, 176(3), 1112–1115.

    Article  CAS  Google Scholar 

  42. Mayr-Wohlfart, U., Paulus, C., Henneberg, A., & Rodel, G. (1996). Mitochondrial DNA mutations in multiple sclerosis patients with severe optic involvement. Acta Neurologica Scandinavica, 94(3), 167–171.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank all the patients for providing blood samples for scientific research, also, the Especial Afshar Hospital (Yazd, Iran).

Author information

Authors and Affiliations

Authors

Contributions

All authors have materially participated in the research and/or article preparation and have approved the final article.

Corresponding author

Correspondence to Mohammad Mehdi Heidari.

Ethics declarations

The study was approved by Yazd University Human Research Ethics Committee.

Conflict of Interest

The authors declare that they have no conflicts of interest.

Financial Disclosure

There is no financial disclosure.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heidari, M.M., Mirfakhradini, F.S., Tayefi, F. et al. Novel Point Mutations in Mitochondrial MT-CO2 Gene May Be Risk Factors for Coronary Artery Disease. Appl Biochem Biotechnol 191, 1326–1339 (2020). https://doi.org/10.1007/s12010-020-03275-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-020-03275-0

Keywords

Navigation