Skip to main content
Log in

Molecular aspects of atherogenesis: new insights and unsolved questions

  • Published:
Journal of Biomedical Science

Summary

The development of atherosclerotic disease results from the interaction between environment and genetic make up. A key factor in atherogenesis is the oxidative modification of lipids, which is involved in the recruitment of mononuclear leukocytes to the arterial intima – a process regulated by several groups of adhesion molecules and cytokines. Activated leukocytes, as well as endothelial mitochondria, can produce reactive oxygen species (ROS) that are associated with endothelial dysfunction, a cause of reduced nitric oxide (NO) bioactivity and further ROS production. Peroxisome proliferator-activated receptors (PPAR) and liver X receptors (LXR) are nuclear receptors significantly involved in the control of lipid metabolism, inflammation and insulin sensitivity. Also, an emerging role has been suggested for G protein coupled receptors and for the small Ras and Rho GTPases in the regulation of the expression of endothelial NO synthase (eNOS) and of tissue factor, which are involved in thrombus formation and modulation of vascular tone. Further, the interactions among eNOS, cholesterol, oxidated LDL and caveola membranes are probably involved in some molecular changes observed in vascular diseases. Despite the relevance of oxidative processes in atherogenesis, anti-oxidants have failed to significantly improve atherosclerosis (ATS) prevention, while statins have proved to be the most successful drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Goldstein JL, Brown MS. (1979).The LDL receptor locus and the genetics of familial hypercholesterolemia. Annu Rev Genet. 13:259–89

    Article  PubMed  CAS  Google Scholar 

  2. Jukema JW, van Boven AJ, Groenemeijer B, Zwinderman AH, Reiber JH, Bruschke AV, Henneman JA, Molhoek GP, Bruin T, Jansen H, Gagne E, Hayden MR, Kastelein JJ. (1996). The Asp9 Asn mutation in the lipoprotein lipase gene is associated with increased progression of coronary atherosclerosis. REGRESS Study Group, Interuniversity Cardiology Institute, Utrecht, The Netherlands. Regression Growth Evaluation Statin Study. Circulation 94:193–1918

    Google Scholar 

  3. Mailly F, Tugrul Y, Reymer PW, Bruin T, Seed M, Groenemeyer BF, Asplund-Carlson A, Vallance D, Winder AF, Miller GJ. (1995). A common variant in the gene for lipoprotein lipase (Asp9→Asn). Functional implications and prevalence in normal and hyperlipidemic subjects. Arterioscler Thromb Vasc Biol 15:468–78

    PubMed  CAS  Google Scholar 

  4. Pimstone SN, Gagne SE, Gagne C, Lupien PJ, Gaudet D, Williams RR, Kotze M, Reymer PW, Defesche JC, Kastelein JJ. (1995). Mutations in the gene for lipoprotein lipase. A cause for low HDL cholesterol levels in individuals heterozygous for familial hypercholesterolemia. Arterioscler Thromb Vasc Biol 15:1704–12

    PubMed  CAS  Google Scholar 

  5. Dzau VJ, Gibbons GH, Cooke JP, Omoigui N. (1993). Vascular biology and medicine in the 1990s. scope, concepts, potentials and perspectives. Circulation 87:705–19

    PubMed  CAS  Google Scholar 

  6. van den Ende A, van der Hoek YY, Kastelein JJ, Koschinsky ML, Labeur C, Rosseneu M. (1996). Lipoprotein [a]. Adv Clin Chem 32:73–134

    PubMed  Google Scholar 

  7. Ribichini F, Steffenino G, Dellavalle A, Matullo G, Colajanni E, Camilla T, Vado A, Benetton G, Uslenghi E, Piazza A. (1998). Plasma activity and insertion/deletion polymorphism of angiotensin I-converting enzyme. a major risk factor and a marker of risk for coronary stent restenosis. Circulation 97:147–54

    PubMed  CAS  Google Scholar 

  8. Fross P, Blom HJ, Milos R, Goyette P, Sheppard CA, Matthews RG, Boers GJ, den Heijer M, Kluijtmans LA, van den Heuvel LP. (1995). A candidate genetic risk factor for vascular disease. a common mutation in methylenetetrahydrofolate reductase. Nat Genet 10:111–3

    PubMed  Google Scholar 

  9. Kluijtmans LA, Kastelein JJ, Lindemans J, Boers GH, Heil SG, Bruschke AV, Jukema JW, van den Heuvel LP, Trijbels FJ, Boerma GJ, Verheugt FW, Willelms F, Blom HJ. (1997). Thermolabile methylenetetrahydrofolate reductase in coronary artery disease. Circulation 96:2573–7

    PubMed  CAS  Google Scholar 

  10. Lusis AJ. (2000) Atherosclerosis. Nature 407: 233–241

    Article  PubMed  CAS  Google Scholar 

  11. Doevendans PA, Jukema W, Spiering W, Defesche JC, Kastelein JJP. (2001). Molecular genetics and gene expression in atherosclerosis. International Journal of Cardiology 80:161–172

    PubMed  CAS  Google Scholar 

  12. Puddu P, Cravero E, Puddu GM, Muscari A. (2005). Genes and atherosclerosis: at the origin of the predisposition. Int J Clin Pract 59:462–472

    PubMed  CAS  Google Scholar 

  13. Puddu P, Puddu GM, Muscari A. (2003). Peroxisome proliferator–activated receptors: are they involved in atherosclerosis progression? Int J Cardiol 90:133–140

    Article  PubMed  Google Scholar 

  14. Li AC, Glass CK. (2004). PPAR- and LXR-dependent pathways controlling lipid metabolism and the development of atherosclerosis. J Lipid Res. 45:2161–73

    Article  PubMed  CAS  Google Scholar 

  15. Marx N, Duez H, Fruchart JC, Staels B.(2004). Peroxisome proliferator-activated receptors and atherogenesis: regulators of gene expression in vascular cells. Circ Res. 14(94):1168–78

    Article  CAS  Google Scholar 

  16. Neve BP, Fruchart JC, Staels B. (2000). Role of peroxisome proliferator-activated receptors (PPAR) in atherosclerosis. Biochem Pharmacol 60:1245–1250

    Article  PubMed  CAS  Google Scholar 

  17. Duez H, Fruchart JC, Staels B. (2001). PPAR in inflammation, atherosclerosis and thrombosis. J Cardiovasc Risk 8:187–194

    Article  PubMed  CAS  Google Scholar 

  18. Elangbam CS, Tyler RD, Lightfoot RM. (2001). Peroxisome proliferator-activated receptors in atherosclerosis and inflammation-an update. Toxicol Pathol 29:224–231

    Article  PubMed  CAS  Google Scholar 

  19. van Raalte DH, Li M, Pritchard PH, Wasan KM. (2004). Peroxisome proliferator-activated receptor (PPAR)-alpha: a pharmacological target with a promising future. Pharm Res. 21:1531–8

    Article  PubMed  Google Scholar 

  20. Chinetti G, Lestavel S, Fruchart JC, Clavey V, Staels B. (2003). Peroxisome proliferator-activated receptor alpha reduces cholesterol esterification in macrophages. Circ Res. 92:212–7

    Article  PubMed  CAS  Google Scholar 

  21. Israelian-Konaraki Z, Reaven PD. (2005). Peroxisome proliferator-activated receptor-alpha and atherosclerosis: from basic mechanisms to clinical implications. Cardiology. 103:1–9

    Article  PubMed  CAS  Google Scholar 

  22. Collins AR. (2003). Pleiotropic vascular effects of PPARgamma ligands. Drug News Perspect. 16:197–204

    Article  PubMed  CAS  Google Scholar 

  23. Lee DL, Webb RC, Jin L. (2004). Hypertension and RhoA/Rho-kinase signaling in the vasculature: highlights from the recent literature. Hypertension. 44:796–9

    Article  PubMed  CAS  Google Scholar 

  24. Jaye M. (2003). LXR agonists for the treatment of atherosclerosis. Curr Opin Investig Drugs. 4:1053–8

    PubMed  CAS  Google Scholar 

  25. Repa JJ, Berge KE, Pomajzl C, Richardson JA, Hobbs H, Mangelsdorf DJ. (2002). Regulation of ATP-binding cassette sterol transporters ABCG5 and ABCG8 by the liver X receptors alpha and beta. J Biol Chem. 277:18793–800

    Article  PubMed  CAS  Google Scholar 

  26. Repa JJ, Liang G, Ou J, Bashmakov Y, Lobaccaro JM, Shimomura I, Shan B, Brown MS, Goldstein JL, Mangelsdorf DJ. (2000). Regulation of mouse sterol regulatory element-binding protein-1c gene (SREBP-1c) by oxysterol receptors, LXRalpha and LXRbeta. Genes Dev. 14:2819–30

    Article  PubMed  CAS  Google Scholar 

  27. Mak PA, Laffitte BA, Desrumaux C, Joseph SB, Curtiss LK, Mangelsdorf DJ, Tontonoz P, Edwards PA. (2002). Regulated expression of the apolipoprotein E/C-I/C-IV/C-II gene cluster in murine and human macrophages. A critical role for nuclear liver X receptors alpha and beta. J Biol Chem. 277:31900–8

    Article  PubMed  CAS  Google Scholar 

  28. Joseph SB, McKilligin E, Pei L, Watson MA, Collins AR, Laffitte BA, Chen M, Noh G, Goodman J, Hagger GN, Tran J, Tippin TK, Wang X, Lusis AJ, Hsueh WA, Law RE, Collins JL, Willson TM, Tontonoz P. (2002). Synthetic LXR ligand inhibits the development of atherosclerosis in mice. Proc Natl Acad Sci U S A. 99:7604–9

    Article  PubMed  CAS  Google Scholar 

  29. Tangirala RK, Bischoff ED, Joseph SB, Wagner BL, Walczak R, Laffitte BA, Daige CL, Thomas D, Heyman RA, Mangelsdorf DJ, Wang X, Lusis AJ, Tontonoz P, Schulman IG. (2002). Identification of macrophage liver X receptors as inhibitors of atherosclerosis. Proc Natl Acad Sci U S A. 99:11896–901

    Article  PubMed  CAS  Google Scholar 

  30. Schultz JR, Tu H, Luk A, Repa JJ, Medina JC, Li L, Schwendner S, Wang S, Thoolen M, Mangelsdorf DJ, Lustig KD, Shan B. (2000). Role of LXRs in control of lipogenesis. Genes Dev. 14:2831–8

    Article  PubMed  CAS  Google Scholar 

  31. Stocker R, Keaney JF, Jr (2004). Role of oxidative modifications in atherosclerosis. Physiol Rev. 84:1381–478

    Article  PubMed  CAS  Google Scholar 

  32. Navab M, Ananthramaiah GM, Reddy ST, Van Lenten BJ, Ansell BJ, Fonarow GC, Vahabzadeh K, Hama S, Hough G, Kamranpour N, Berliner JA, Lusis AJ, Fogelman AM. (2004). The oxidation hypothesis of atherogenesis: the role of oxidized phospholipids and HDL. J Lipid Res. 2004;45:993–1007

    Article  CAS  Google Scholar 

  33. Madamanchi NR, Vendrov A, Runge MS. (2005). Oxidative stress and vascular disease. Arterioscler Thromb Vasc Biol. 25:29–38

    PubMed  CAS  Google Scholar 

  34. 34. Bergt C, Pennathur S, Fu X, Byun J, O’Brien K, McDonald TO, Singh P, Anantharamaiah GM, Chait A, Brunzell J, Geary RL, Oram JF, Heinecke JW.(2004). The myeloperoxidase product hypochlorous acid oxidizes HDL in the human artery wall and impairs ABCA1-dependent cholesterol transport. Proc Natl Acad Sci U S A. 31(101):13032–7

    Article  Google Scholar 

  35. Chisolm GM, Steinberg D. (2000). The oxidative modification hypothesis of atherogenesis. an overview. Free Radic Biol Med 28:1815–26

    Article  PubMed  CAS  Google Scholar 

  36. Harrison DG. (1997). Cellular and molecular mechanisms of endothelial cell dysfunction. J Clin Invest 100:2153–2157

    PubMed  CAS  Google Scholar 

  37. Guzik TJ, West NEJ, Black E, McDonald D, Ratnatunga C, Pillai R, Channon KM. (2000). Vascular superoxide production by NAD(P)H oxidase. Associaton with endothelial dysfunction and clinical risk factors. Circ Res 86:e85–e90

    PubMed  CAS  Google Scholar 

  38. Rajagopalan S, Kurz S, Munzel T, Tarpey M, Freeman BA, Griendling KK, Harrison DG. (1996). Angiotensin II-mediated hypertension in the rat increases vascular superoxide production via membrane NADH/NADPH oxidase activation. J Clin Invest 97:1916–1923

    Article  PubMed  CAS  Google Scholar 

  39. Ross R. (1993). The pathogenesis of atherosclerosis: a perspective for the 1990s. Nature. 362:801–9

    Article  PubMed  CAS  Google Scholar 

  40. Berliner JA, Heinecke JW. (1996). The role of oxidized lipoproteins in atherogenesis. Free Radic Biol Med. 20:707–27

    Article  PubMed  CAS  Google Scholar 

  41. Freeman BA, White CR, Gutierrez H, Paler-Martinez A, Tarpey MM, Rubbo H. (1995). Oxygen radical-nitric oxide reactions in vascular diseases. Adv Pharmacol. 34:45–69

    PubMed  CAS  Google Scholar 

  42. Alexander RW. (1998). Atherosclerosis as disease of redox-sensitive genes. Trans Am Clin Climatol Assoc. 109:129–45

    PubMed  CAS  Google Scholar 

  43. Ito H, Torii M, Suzuki T. (1995). Decreased superoxide dismutase activity and increased superoxide anion production in cardiac hypertrophy of spontaneously hypertensive rats. Clin Exp Hypertens. 17:803–16

    PubMed  CAS  Google Scholar 

  44. van Jaarsveld H, Kuyl JM, Alberts DW. (1992). Exposure of rats to low concentration of cigarette smoke increases myocardial sensitivity to ischaemia/reperfusion. Basic Res Cardiol. 87:393–9

    Article  PubMed  Google Scholar 

  45. Esposito LA, Melov S, Panov A, Cottrell BA, Wallace DC. (1999). Mitochondrial disease in mouse results in increased oxidative stress. Proc Natl Acad Sci U S A. 96:4820–5

    Article  PubMed  CAS  Google Scholar 

  46. Wallace DC. (1992). Mitochondrial genetics: a paradigm for aging and degenerative diseases? Science 256:628–32

    PubMed  CAS  Google Scholar 

  47. Ballinger SW, Patterson C, Knight-Lozano CA, Burow DL, Conklin CA, Hu Z, Reuf J, Horaist C, Lebovitz R, Hunter GC, McIntyre K, Runge MS. (2002). Mitochondrial integrity and function in atherogenesis. Circulation 106:544–9

    Article  PubMed  CAS  Google Scholar 

  48. Puddu P, Puddu GM, Cravero E, Muscari A. (2005). Mitochondrial dysfunction as an initiating event in atherogenesis - a plausible hypothesis. Cardiology 103:137–141

    Article  PubMed  CAS  Google Scholar 

  49. Ramachandran A, Levonen AL, Brookes PS, Ceaser E, Shiva S, Barone MC, Darley-Usmar V. (2002). Mitochondria, nitric oxide, and cardiovascular dysfunction. Free Radic Biol Med. 33:1465–74

    Article  PubMed  CAS  Google Scholar 

  50. Chance B, Sies H, Boveris A. (1979). Hydroperoxide metabolism in mammalian organs. Physiol Rev. 59:527–605

    PubMed  CAS  Google Scholar 

  51. Papa S, Skulachev VP. (1997). Reactive oxygen species, mitochondria, apoptosis and aging. Mol Cell Biochem. 174:305–19

    Article  PubMed  CAS  Google Scholar 

  52. Shackelford RE, Kaufmann WK, Paules RS. (2000). Oxidative stress and cell cycle checkpoint function. Free Radic Biol Med 28:1387–404

    Article  PubMed  CAS  Google Scholar 

  53. Ballinger SW, Patterson C, Yan CN, Doan R, Burow DL, Young CG, Yakes FM, Van Houten B, Ballinger CA, Freeman BA, Runge MS. (2000). Hydrogen peroxide- and peroxynitrite-induced mitochondrial DNA damage and dysfunction in vascular endothelial and smooth muscle cells. Circ Res. 86:960–6

    PubMed  CAS  Google Scholar 

  54. Yan LJ, Sohal RS. (1998). Mitochondrial adenine nucleotide translocase is modified oxidatively during aging. Proc Natl Acad Sci U S A. 95:12896–901

    Article  PubMed  CAS  Google Scholar 

  55. MacMillan-Crow LA, Crow JP, Thompson JA. (1998). Peroxynitrite-mediated inactivation of manganese superoxide dismutase involves nitration and oxidation of critical tyrosine residues. Biochemistry 37:1613–22

    Article  PubMed  CAS  Google Scholar 

  56. Knight-Lozano CA, Young CG, Burow DL, Hu ZY, Uyeminami D, Pinkerton KE, Ischiropoulos H, Ballinger SW. (2002). Cigarette smoke exposure and hypercholesterolemia increase mitochondrial damage in cardiovascular tissues. Circulation 105:849–54

    Article  PubMed  CAS  Google Scholar 

  57. Dart AM, Chin-Dusting JPF. (1999). Lipids and the endothelium. Cardiovasc Res 43:308–322

    Article  PubMed  CAS  Google Scholar 

  58. Lewis TV, Dart AM, Chin-Dusting JPF. (1999). Endothelium-dependent relaxation by acetylcholine is impaired in hypertriglyceridemic humans with normal levels of plasma LDL cholesterol. J Am Coll Cardiol 33:805–12

    Article  PubMed  CAS  Google Scholar 

  59. Parhami F, Fang ZT, Fogelman AM, Andalibi A, Territo MC, Berliner JA. (1993). Minimally modified low density lipoprotein-induced inflammatory responses in endothelial cells are mediated by cyclic adenosine monophosphate. J Clin Invest 92:471–478

    PubMed  CAS  Google Scholar 

  60. Vora DK, Fang ZT, Liva SM, Tyner TR, Parhami F, Watson AD, Drake TA, Territo MC, Berliner JA. (1997). Induction of P-selectin by oxidized lipoproteins. Separate effects on synthesis and surface expression. Circ Res 80:810–818

    PubMed  CAS  Google Scholar 

  61. Smalley DM, Lin JH, Curtis ML, Kobari Y, Stemerman MB, Pritchard KA, Jr.(1996). Native LDL increase endothelial cell adhesiveness by inducing intercellular adhesion molecule-1. Arterioscler Thromb Vasc Biol 16:585–590

    PubMed  CAS  Google Scholar 

  62. Lin JH, Zhu Y, Liao HL, Kobari Y, Groszek L, Stemerman MB. (1996). Induction of vascular cell adhesion molecule-1 by low-density lipoprotein. Atherosclerosis (1996). 127:185–194

    Article  PubMed  CAS  Google Scholar 

  63. Allen S, Khan S, Al-Mohanna F, Batten P, Yacoub M. (1998). Native low-density lipoprotein-induced calcium transient trigger VCAM-1 and E-selectin expression in cultured human vascular endothelial cells. J Clin Invest 101:1064–1075

    Article  PubMed  CAS  Google Scholar 

  64. Rajavashisth TB, Andalibi A, Territo MC, Berliner JA, Navab M, Fogelman AM, Lusis AJ. (1990). Induction of endothelial cell expression of granulocyte and macrophage colony-stimulating factors by modified low-density lipoproteins. Nature 344:254–247

    Article  PubMed  CAS  Google Scholar 

  65. Johnson-Tidey RR, McGregor JL, Taylor PR, Poston RN. (1994). Increase in the adhesion molecule P-selectin in endothelium overlying atherosclerotic plaques.Coexpression with intercellular adhesion molecule-1. Am J Pathol 144:952–961

    PubMed  CAS  Google Scholar 

  66. Khan BV, Harrison DG, Olbrych MT, Alexander RW, Medford RM. (1996). Nitric oxide regulates vascular cell adhesion molecule 1 gene expression and redox-sensitive transcriptional events in human vascular endothelial cells. Proc Natl Acad Sci USA 93:9114–9119

    Article  PubMed  CAS  Google Scholar 

  67. Sugiyama S, Kugiyama K, Ohgushi M, Fujimoto K, Yasue H. (1994). Lysophosphatidylcholine in oxidized low-density lipoprotein increases endothelial susceptibility to polymorphonuclear leukocyte-induced endothelial dysfunction in porcine coronary arteries. Role of protein kinase C. Circ Res 74:565–575

    PubMed  CAS  Google Scholar 

  68. Maier JA, Barenghi L, Bradamante S, Pagani F. (1994). Modulators of oxidized LDL-induced hyperadhesiveness in human endothelial cells. Biochem Biophys Res Commun 204:673–677

    Article  PubMed  CAS  Google Scholar 

  69. Myers DE, Huang WN, Larkins RG. (1996). Lipoprotein-induced prostacyclin production in endothelial cells and effects of lipoprotein modification. Am J Physiol 271:C1504–1511

    PubMed  CAS  Google Scholar 

  70. Haug C, Schmid-Kotsas A, Zorn U, Schuett S, Gross HJ, Gruenert A, Bachem MG. (2001). Endothelin-1 synthesis and endothelin b receptor expression in human coronary artery smooth muscle cells and monocyte-derived macrophages is up-regulated by low density lipoproteins. J Mol Cell Cardiol 33:1701–12

    Article  PubMed  CAS  Google Scholar 

  71. He Y, Kwan WC, Steinbrecher UP. (1996). Effects of oxidized low density lipoprotein on endothelin secretion by cultured endothelial cells and pacrophages. Atherosclerosis 119:107–118

    Article  PubMed  CAS  Google Scholar 

  72. Lindner V, Lappi DA, Baird A, Majack RA, Reidy MA. (1991). Role of basic fibroblast growth factor in vascular lesion formation. Circ Res 68:106–113

    PubMed  CAS  Google Scholar 

  73. Stiko-Rahm A, Hultgardh-Nilsson A, Regnstrom J, Hamsten A, Nilsson J. (1992). Native and oxidized LDL enhances production of PDGF AA and the surface expression of PDGF receptors in cultured human smooth muscle cells. Arterioscler Thromb 12:1099–1109

    PubMed  CAS  Google Scholar 

  74. Kohno M, Yokokawa K, Yasunari K, Minami M, Kano H, Hanehira T, Yoshikawa J. (1998). Induction by lysophosphatidylcholine, a major phospholipid component of atherogenic lipoproteins, of human coronary artery smooth muscle cell migration. Circulation 98:353–359

    PubMed  CAS  Google Scholar 

  75. Kim JG, Taylor WR, Parthasarathy S. (1999). Demonstration of the presence of lipid peroxide-modified proteins in human atherosclerotic lesions using a novel lipid peroxidemodified anti-peptide antibody. Atherosclerosis 143:335–340

    Article  PubMed  CAS  Google Scholar 

  76. Mertens A, Holvoet P. (2001). Oxidized LDL and HDL. antagonists in atherothrombosis. FASEB J 15:2073–2084

    Article  PubMed  CAS  Google Scholar 

  77. Thorin E, Hamilton CA, Dominiczak MH, Reid JL. (1994). Chronic exposure of cultured bovine endothelial cells to oxidized LDL abolishes prostacyclin release. Arterioscler Thromb 14:453–459

    PubMed  CAS  Google Scholar 

  78. Li LX, Chen JX, Liao DF, Yu L. (1998). Probucol inhibits oxidized-low density lipoprotein-induced adhesion of monocytes to endothelial cells by reducing P-selectin synthesis in vitro. Endothelium 6:1–8

    PubMed  CAS  Google Scholar 

  79. Frei B, Gaziano JM. (1993). Content of antioxidants, preformed lipid hydroperoxides and cholesterol as predictors of the susceptibility of human LDL to metal ion-dependent and-independent oxidation. J Lipid Res 34:2135–2145

    PubMed  CAS  Google Scholar 

  80. Penn MS, Vui MZ, Winokur AL, Bethea J, Hamilton TA, DiCorleto PE, Chisolm GM. (2000). Smooth muscle cell surface tissue factor pathway activation by oxidized low-density lipoprotein requires cellular lipid peroxidation. Blood 96:30556–3063

    Google Scholar 

  81. Ishii H, Kizaki K, Horie S, Kazama M. (1996). Oxidized low density lipoprotein reduces thrombomodulin transcription in cultured human endothelial cells through degradation of the lipoprotein in lysosomes. J Biol Chem 271:8458–8465

    Article  PubMed  CAS  Google Scholar 

  82. Kockx MM. (1998). Apoptosis in the atherosclerotic plaque. quantitative and qualitative aspects. Arterioscler Thromb Vasc Biol 18:1519–1522

    PubMed  CAS  Google Scholar 

  83. Heermeier K, Leicht W, Palmetshofer A, Ullrich M, Wanner C, Galle J. (2001). Oxidized LDL suppresses NF-kappaB and overcomes protection from apoptosis in activated endothelial cells. J Am Soc Nephrol 12:456–463

    PubMed  CAS  Google Scholar 

  84. Metzler B, Hu Y, Dietrich H, Xu Q. (2000). Increased expression and activation of stress-activated protein kinases/c-Jun NH (2)-terminal protein kinases in atherosclerotic lesions coincide with p53. Am J Pathol 156:1875–1886

    PubMed  CAS  Google Scholar 

  85. Carlos TM, Harlan JM. (1994). Leukocyte-endothelial adhesion molecules. Blood 84:2068–101

    PubMed  CAS  Google Scholar 

  86. Frenette P, Wagner D. (1996). Adhesion molecules. New Engl J Med 334:1526–29

    Article  PubMed  CAS  Google Scholar 

  87. Vora DK, Fang ZT, Liva SM, Tyner TR, Parhami F, Watson AD, Drake TA, Territo MC, Berliner JA. (1997). Induction of P-selectin by oxidized lipoproteins. Separate effects on synthesis and surface expression. Circ Res 80:810–18

    PubMed  CAS  Google Scholar 

  88. Dong ZM, Chapman SM, Brown AA, Frenette PS, Hynes RO, Wagner DD. (1998). The combined role of P- and E-selectins in atherosclerosis. J Clin Invest 102:145–52

    PubMed  CAS  Google Scholar 

  89. Frenette PS, Wagner DD. (1997). Insights into selectin function from knockout mice. Thromb Haemost 78:60–64

    PubMed  CAS  Google Scholar 

  90. Johnson RC, Chapman SM, Dong ZM, Ordovas JM, Mayadas TN, Herz J, Hynes RO, Schaefer EJ, Wagner DD. (1997). Absence of P-selectin delays fatty streak formation in mice. J Clin Invest 99:1037–43

    PubMed  CAS  Google Scholar 

  91. Cybulsky MI, Gimbrone MA , Jr.(1991). Endothelial expression of a mononuclear leukocyte adhesion molecule during atherogenesis. Science 251:788–91

    PubMed  CAS  Google Scholar 

  92. Li H, Cybulsky MI, Gimbrone MA Jr, Libby P. (1991). An atherogenic diet rapidly induces VCAM-1, a cytokine regulatable mononuclear leukocyte adhesion molecule, in rabbit endothelium. Arterioscler Thromb (1993). 13:197–204

    Google Scholar 

  93. Iiyama K, Hajra L, Iiyama M, Li H, Di Chiara M, Medoff BD, Cybulsky MI. (1999). Patterns of vascular cell adhesion molecule-1 and intercellular adhesion molecule-1 expression in rabbit and mouse atherosclerotic lesions and at sites predisposed to lesion formation. Circ Res 85:199–207

    PubMed  CAS  Google Scholar 

  94. Gurtner GC, Davis V, Li H, McCoy MJ, Sharpe A, Cybulsky MI. (1995). Targeted disruption of the murine VCAM1 gene. essential role of VCAM-1 in choriooallantoic fusion and placentation. Genes Dev 9:1–14

    PubMed  CAS  Google Scholar 

  95. Gu L, Okada Y, Clinton SK, Gerard C, Sukhova GK, Libby P, Rollins BJ. (1998). Absence of monocyte chemoattractant protein-1 reduces atherosclerosis in low-density lipoprotein-deficient mice. Mol Cell 2:275–81

    Article  PubMed  CAS  Google Scholar 

  96. Cook-Mills JM, Johnson JD, Deem TL, Ochi A, Wang L, Zheng Y. (2004). Calcium mobilization and Rac1 activation are required for VCAM-1 (vascular cell adhesion molecule-1) stimulation of NADPH oxidase activity. Biochem J. 378:539–47

    Article  PubMed  CAS  Google Scholar 

  97. Eriksson EE. (2004). Mechanisms of leukocyte recruitment to atherosclerotic lesions: future prospects. Curr Opin Lipidol. 15:553–558

    Article  PubMed  CAS  Google Scholar 

  98. Witztum JL, Berliner JA. (2004). Oxodized phospholipids and isoprostanes in atherosclerosis. Curr Opin Lipidol (1998). 9:441–48

    Article  PubMed  CAS  Google Scholar 

  99. Gimbrone MA Jt, Nagel T, Topper JN. (1997). Biomechanical activation. an emerging paradigm in endothelial adhesion biology. J Clin Invest 100:S61–65

    PubMed  Google Scholar 

  100. Collins T. (1993). Endothelial nuclear factor-kappa B and the initiation of the atherosclerotic lesion. Lab Invest 68:499–508

    PubMed  CAS  Google Scholar 

  101. Boring L, Gosling J, Cleary M, Charo IF. (1998). Decreased lesion formation in CCR2-/-mice reveals a role for chemokines in the initiation of atherosclerosis. Nature 394:894–97

    Article  PubMed  CAS  Google Scholar 

  102. Watson AD, Leitinger N, Navab M, Faull KF, Horkko S, Witztum JL, Palinski W, Schwenke D, Salomon RG, Sha W, Subbanagounder G, Fogelman AM, Berliner JA. (1997). Structural identification by mass spectrometry of oxidized phospholipids in minimally oxidized low density lipoprotein that induce monocyte/endothelial interactions and evidence for their presence in vivo. J Biol Chem 272:13 597–607

    Article  PubMed  CAS  Google Scholar 

  103. Wheeler AP, Ridley AJ. (2004). Why three Rho proteins? RhoA, RhoB, RhoC, and cell motility. Exp Cell Res 301:43–9

    Article  PubMed  CAS  Google Scholar 

  104. Van Aelst L, D’Souza-Schorey C. (1997). Rho GTPases and signaling networks. Genes Dev. 11:2295–322

    PubMed  CAS  Google Scholar 

  105. Scita G, Tenca P, Frittoli E, Tocchetti A, Innocenti M, Giardina G, Di Fiore PP. (2000). Signaling from Ras to Rac and beyond: not just a matter of GEFs. EMBO J. 19:2393–8

    Article  PubMed  CAS  Google Scholar 

  106. Danesh F.R., Sadeghi M.M., Amro N., Philips C., Zeng L., Lin S., Sahai A. and Kanwar Y.S., 3-Hydroxy-3-methylglutaryl CoA reductase inhibitors prevent high glucose-induced proliferation of mesangial cells via modulation of Rho GTPase/ p21 signaling pathway: Implications for diabetic nephropathy. Proc. Natl. Acad. Sci. USA 99: 8301–8305, 2002 (Epub 2002 Jun 04)

  107. Eto M, Kozai T, Cosentino F, Joch H, Luscher TF. (2002). Statin prevents tissue factor expression in human endothelial cells: role of Rho/Rho-kinase and Akt pathways. Circulation. 105:1756–9

    Article  PubMed  CAS  Google Scholar 

  108. Endres M, Laufs U. (2004). Effects of statins on endothelium and signaling mechanisms. Stroke 35:2708–11

    Article  PubMed  CAS  Google Scholar 

  109. Ruiz-Velasco N, Dominguez A (2004). Vega.Statins upregulate CD36 expression in human monocytes, an effect strengthened when combined with PPAR-gamma ligands Putative contribution of Rho GTPases in statin-induced CD36 expression. Biochem Pharmacol. 67:303–313

    Article  PubMed  CAS  Google Scholar 

  110. Bhattacharya M, Babwah AV, Ferguson SS. (2004). Small GTP-binding protein-coupled receptors. Biochem Soc Trans 2004;32:1040–4

    Article  PubMed  CAS  Google Scholar 

  111. Laufs U, Liao JK. (1998). Post-transcriptional regulation of endothelial nitric oxide synthase mRNA stability by Rho GTPase. J Biol Chem. 273:24266–71

    Article  PubMed  CAS  Google Scholar 

  112. Laufs U, Endres M, Stagliano N, Amin-Hanjani S, Chui DS, Yang SX, Simoncini T, Yamada M, Rabkin E, Allen PG, Huang PL, Bohm M, Schoen FJ, Moskowitz MA, Liao JK. (2000). Neuroprotection mediated by changes in the endothelial actin cytoskeleton. J Clin Invest. 106:15–24

    PubMed  CAS  Google Scholar 

  113. Goldstein JL, Brown MS. (1990). Regulation of the mevalonate pathway. Nature. 343:425–30

    Article  PubMed  CAS  Google Scholar 

  114. Park HJ, Kong D, Iruela-Arispe L, Begley U, Tang D, Galper JB. (2002). 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors interfere with angiogenesis by inhibiting the geranylgeranylation of RhoA. Circ Res. 91:143–50

    Article  PubMed  CAS  Google Scholar 

  115. Wassmann S, Laufs U, Baumer AT, Muller K, Konkol C, Sauer H, Bohm M, Nickenig G. (2001). Inhibition of geranylgeranylation reduces angiotensin II-mediated free radical production in vascular smooth muscle cells: involvement of angiotensin AT1 receptor expression and Rac1 GTPase. Mol Pharmacol. 59:646–54

    PubMed  CAS  Google Scholar 

  116. Wagner AH, Kohler T, Ruckschloss U, Just I, Hecker M. (2000). Improvement of nitric oxide-dependent vasodilatation by HMG-CoA reductase inhibitors through attenuation of endothelial superoxide anion formation. Arterioscler Thromb Vasc Biol. 20:61–9

    PubMed  CAS  Google Scholar 

  117. Gorlach A, Brandes RP, Nguyen K, Amidi M, Dehghani F, Busse R. (2000). A gp91phox containing NADPH oxidase selectively expressed in endothelial cells is a major source of oxygen radical generation in the arterial wall. Circ Res. 87:26–32

    PubMed  CAS  Google Scholar 

  118. Ishibashi T, Nagata K, Ohkawara H, Sakamoto T, Yokoyama K, Shindo J, Sugimoto K, Sakurada S, Takuwa Y, Teramoto T, Maruyama Y. (2002). Inhibition of Rho/Rho-kinase signaling downregulates plasminogen activator inhibitor-1 synthesis in cultured human monocytes. Biochim Biophys Acta. 1590:123–30

    Article  PubMed  CAS  Google Scholar 

  119. Marrero MB, Venema VJ, Ju H, He H, Liang H, Caldwell RB, Venema RC. (1999). Endothelial nitric oxide synthase interactions with G-protein–coupled receptors. Biochem J 343:335–40

    Article  PubMed  CAS  Google Scholar 

  120. Tsutsui M, Shimokawa H, Tanaka S, Kuwaoka I, Hase K, Nogami N, Nakanishi K, Okamatsu S. (1994). Endothelial Gi protein in human coronary arteries. Eur Heart J 15:1261–6

    PubMed  CAS  Google Scholar 

  121. Yang CM, Chien CS, Hsiao LD, Pan SL, Wang CC, Chiu CT, Lin CC. (2001). Mitogenic effect of oxidized low-density lipoprotein on vascular smooth muscle cells mediated by activation of Ras/Raf/MEK/MAPK pathway. Br J Pharmacol 132:1531–41

    Article  PubMed  CAS  Google Scholar 

  122. Yang CM, Chiu CT, Wang CC, Chien CS, Hsiao LD, Lin CC, Tu MT, Pan SL. (2000). Activation of mitogen-activated protein kinase by oxidized low-density lipoprotein in canine cultured vascular smooth muscle cells. Cell Signal 12:205–14

    Article  PubMed  CAS  Google Scholar 

  123. Zhao D, Letterman J, Schreiber BM. (2001). b-migrating very low density lipoprotein (bVLDL) activates smooth muscle cell mitogen-activated protein (MAP) kinase via G protein-coupled receptor-mediated transactivation of the epidermal growth factor (EGF) receptor. J Biol Chem 276:30579–30588

    Article  PubMed  CAS  Google Scholar 

  124. Uittenbogaard A, Smart EJ. (2000). Palmitoylation of caveolin-1 is required for cholesterol binding, chaperone complex formation, and rapid transport of cholesterol to caveolae. J Biol Chem 275:255595–9

    Google Scholar 

  125. Everson WV, Smart EJ. (2001). Influence of caveolin, cholesterol and lipoproteins on nitric oxide synthase. Implications for vascular disease. Trends Cardiovasc Med 11:246–250

    Article  PubMed  CAS  Google Scholar 

  126. Uittenbogaard A, Ying Y, Smart EJ. (1998). Characterization of a cytosolic heat-shock protein-caveolin chaperone complex. Involvement in cholesterol trafficking. J Biol Chem 273:6525–32

    Article  PubMed  CAS  Google Scholar 

  127. Stein O, Stein Y. (1999). Atheroprotective mechanisms of HDL. Atherosclerosis 144:285–303

    Article  PubMed  CAS  Google Scholar 

  128. Von Eckardstein A, Assmann G. (2000). Prevention of coronary heart disease by raising of high density lipoprotein cholesterol?. Curr Opin Lipidol 11:627–637

    Article  PubMed  CAS  Google Scholar 

  129. Toikka JO, Ahotupa M, Viikari JS, Niinikoski H, Taskinen M, Irjala K, Hartiala JJ, Raitakari OT. (1999). Constantly low HDL-cholesterol concentration relates to endothelial dysfunction and increased in vivo LDL-oxidation in healthy young men. Atherosclerosis 147:133–138

    Article  PubMed  CAS  Google Scholar 

  130. Krause BR, Auerbach BJ. (2001). Reverse cholesterol transport and future pharmacological approaches to the treatment of atherosclerosis. Curr Opin Investig Drugs 2:375–81

    PubMed  CAS  Google Scholar 

  131. von Eckardstein A, Nofer JR, Assmann G. (2001). High density lipoproteins and arteriosclerosis. Role of cholesterol efflux and reverse cholesterol transport. Arterioscler Thromb Vasc Biol 21:13–27

    PubMed  Google Scholar 

  132. Fazio S. (1997). Increased atherogenesis in mice reconstituted with apolipoprotein E null macrophages. Proc Natl Acad Sci USA 94:4647–4652

    Article  PubMed  CAS  Google Scholar 

  133. Ohgami N, Nagai R, Miyazaki A, Ikemoto M, Arai H, Horiuchi S, Nakayama H. (2001). Scavenger receptor class B type-I-mediated reverse cholesterol transport is inhibited by advanced glycation end products. J Biol Chem 276:13348–55

    Article  PubMed  CAS  Google Scholar 

  134. Wade DP, Owen JS. (2001). Regulation of the cholesterol efflux gene, ABCA1. Lancet 357:161–163

    Article  PubMed  CAS  Google Scholar 

  135. Wang N, Silver DL, Thiele C, Tall AR. (2001). ATP-binding cassette transporter A1 (ABCA1) functions as a cholesterol efflux regulatory protein. J Biol Chem 276:23742–23747

    Article  PubMed  CAS  Google Scholar 

  136. Frank PG, Galbiati F, Volonte D, Razani B, Cohen DE, Marcel YL, Lisanti MP. (2001). Influence of caveolin-1 on cellular cholesterol efflux mediated by high-density lipoproteins. Am J Physiol Cell Physiol 280:C1204–14

    PubMed  CAS  Google Scholar 

  137. Oliver WR Jr, Shenk JL, Snaith MR, Russell CS, Plunket KD, Bodkin NL, Lewis MC, Winegar DA, Sznaidman ML, Lambert MH, Xu HE, Sternbach DD, Kliewer SA, Hansen BC, Willson TM. (2001). A selective peroxisome proliferator-activated receptor delta agonist promotes reverse cholesterol transport. Proc Natl Acad Sci USA 98:5306–11

    Article  PubMed  CAS  Google Scholar 

  138. Fazio S, Linton MF. (2001). The inflamed plaque.cytokine production and cellular cholesterol balance in the vessel wall. Am J Cardiol 88:12E–15E

    Article  PubMed  CAS  Google Scholar 

  139. Yamashita S, Hirano K, Sakai N, Matsuzawa Y. (2000). Molecular biology and pathophysiological aspects of plasma cholesteryl ester transfer protein. Biochim Biophys Acta 1529:257–75

    PubMed  CAS  Google Scholar 

  140. Krieger M. (1999). Charting the fate of the good cholesterol. identification and characterization of the high density lipoprotein receptor SR-BI. Annu Rev Biochem 68:523–558

    Article  PubMed  CAS  Google Scholar 

  141. Trigatti B, Rigotti A, Krieger M. (2000). The role of high-density lipoprotein receptor SR-BI in cholesterol metabolism. Curr Opin Lipidol 11:123–132

    Article  PubMed  CAS  Google Scholar 

  142. Curtiss LK, Boisvert WA. (2000). Apolipoprotein E and atherosclerosis. Curr Opin Lipidol 11:243–251

    Article  PubMed  CAS  Google Scholar 

  143. Tall AR, Jiang XC, Luo Y, Silver D. (2000). George Lyman Duff Memorial Lecture. lipid transfer proteins, HDL metabolism and atherogenesis. Arterioscler Thromb Vasc Biol 20:1185–1188

    PubMed  CAS  Google Scholar 

  144. Cohen J, Vega GL, Grundy SM. (1999). Hepatic lipase. new insights from genetic and metabolic studies. Curr Opin Lipidol 10:259–268

    Article  PubMed  CAS  Google Scholar 

  145. Thuren T. (2000). Hepatic lipase and HDL metabolism. Curr Opin Lipidol 11:277–284

    Article  PubMed  CAS  Google Scholar 

  146. Rader D, Jaye M. (2000). Endothelial lipase. a new member of the triglyceride lipase gene family. Curr Opin Lipidol 11:141–148

    Article  PubMed  CAS  Google Scholar 

  147. VonEckardstein A, Huang Y, Assmann G. (1994). Physiological role and clinical relevance of high-density lipoprotein subclasses. Curr Opin Lipidol 5:404–416

    PubMed  CAS  Google Scholar 

  148. Barrans A, Jaspard B, Barbaras R, Chap H, Perret B, Collet X. (1996). Pre-b HDL. structure and metabolism. Biochim Biophys Acta 1300:73–85

    PubMed  Google Scholar 

  149. Fielding C, Fielding PE. (1995). Molecular physiology of reverse cholesterol transport. J Lipid Res 36:211–228

    PubMed  CAS  Google Scholar 

  150. Moestrup SK, Kozyraki R. (2000). Cubilin, a high density lipoprotein receptor. Curr Opin Lipidol 11:133–140

    Article  PubMed  CAS  Google Scholar 

  151. Kozyraki R, Fyfe J, Kristiansen M, Gerdes C, Jacobsen C, Cui SY, Christensen EI, Aminoff M, de la Chapelle A, Krahe R et al.(1999) The intrinsic factor-vitamin B-12 receptor, cubilin, is a high-affinity apolipoprotein A-I receptor facilitating endocytosis of high-density lipoprotein. Nat Med 5:656–661

    Article  PubMed  CAS  Google Scholar 

  152. Hammad SM, Steffansson S, Twal WO, Drake CJ, Fleming P, Remaley A, Brewer HB Jr, Argraves WS. (1999). Cubilin, the endocytic receptor for intrinsic factor-vitamin B (12) complex, mediates high-density lipoprotein holoparticle endocytosis. Proc Natl Acad Sci USA . 96:10158–10163

    Article  PubMed  CAS  Google Scholar 

  153. Dhaliwal BS, Steinbrecher UP. (2000). Cholesterol delivered to macrophages by oxidized low density lipoprotein is sequestered in lysosomes and fails to efflux normally. J Lipid Res 41:1658–1665

    PubMed  CAS  Google Scholar 

  154. Aviram M, Rosenblat M. (2004). Paraoxonases 1, 2, and 3, oxidative stress, and macrophage foam cell formation during atherosclerosis development. Free Radic Biol Med. 37:1304–16

    Article  PubMed  CAS  Google Scholar 

  155. Becker AE, de Boer OJ, van der Wal AC. (2001). The role of inflammation and infection in coronary artery disease. Annu Rev Med 52:289–97

    Article  PubMed  CAS  Google Scholar 

  156. Van der Wal AC, Piek JJ, de Boer OJ, Koch KT, Teeling P, van der Loos CM, Becker AE. (1998). Recent activation of the plaque immune response in coronary lesions underlying acute coronary syndromes. Heart 80:14–18

    PubMed  CAS  Google Scholar 

  157. Libby P. (2000). Changing concepts of atherogenesis. J Int Med 247:349–358

    Article  CAS  Google Scholar 

  158. Libby P. (1995). Molecular bases of the acute coronary syndromes. Circulation 91:2844–2850

    PubMed  CAS  Google Scholar 

  159. Herman MP, Sukhova GK, Kisiel W, Foster D, Kehry MR, Libby P, Schonbeck U. (2001). Tissue factor pathway inhibitor-2 is a novel inhibitor of matrix metalloproteinases with implications for atherosclerosis. J Clin Invest 107:1117–26

    PubMed  CAS  Google Scholar 

  160. Mach F, Schonbeck U, Bonnefoy JY, Pober JS, Libby P. (1997). Activation of monocyte/macrophage functions related to acute atheroma complication by ligation of CD-40. induction of collagenase, stromelysin and tissue factor. Circulation 96:396–399

    PubMed  CAS  Google Scholar 

  161. Schonbeck U, Mach F, Sukhova GK, Herman M, Graber P, Kehry MR, Libby P. (2000). CD40 ligation induces tissue factor expression in human vascular smooth muscle cells. Am J Pathol 156:7–14

    PubMed  CAS  Google Scholar 

  162. Marx N, Mackman N, Schonbeck U, Yilmaz N, Hombach VV, Libby P, Plutzky J. (2001). PPARalpha activators inhibit tissue factor expression and activity in human monocytes. Circulation 103:213–219

    PubMed  CAS  Google Scholar 

  163. Yusuf S, Dagenais G, Pogue J, Bosch J, Sleight P. (2000). Vitamin E supplementation and cardiovascular events in high-risk patients. The Heart Outcomes Prevention Evaluation Study Investigators. N Engl J Med 342:154–60

    Article  PubMed  CAS  Google Scholar 

  164. Heart Protection Study Collaborative Group.(2002). MRC/BHF Heart Protection Study of antioxidant vitamin supplementation in 20,536 high-risk individuals: a randomised placebo-controlled trial. Lancet 360:23–33

    Google Scholar 

  165. Ricciarelli R, Zingg JM, Azzi A. (2001). Vitamin E. protective role of a Janus molecule. FASEB J (2001). 15:2314–2325

    Article  PubMed  CAS  Google Scholar 

  166. Heinecke JW. (2001). Is the emperor wearing clothes? Clinical trials of vitamin E and the LDL oxidation hypothesis. Arterioscler Thromb Vasc Biol 21:1261–1264

    PubMed  CAS  Google Scholar 

  167. Keaney JF, Jr.(2000). Atherosclerosis. from lesion formation to plaque activation and endothelial dysfunction. Mol Aspects Med 21:99–166

    Article  PubMed  CAS  Google Scholar 

  168. Libby P. (2001). Current concepts of the pathogenesis of the acute coronary syndromes. Circulation 104:365–372

    PubMed  CAS  Google Scholar 

  169. Jessup W, Kritharides L, Stocker R. (2004). Lipid oxidation in atherogenesis: an overview. Biochem Soc Trans. 32:134–8

    Article  PubMed  CAS  Google Scholar 

  170. Stocker R, Keaney JF, Jr.(2004). Role of oxidative modifications in atherosclerosis. Physiol Rev. 84:1381–478

    Article  PubMed  CAS  Google Scholar 

  171. Vaughan CJ, Gotto AM, Basson CT. (2000). The evolving role of statins in the management of atherosclerosis. J Am Coll Cardiol . 35:1–10

    Article  PubMed  CAS  Google Scholar 

  172. Puddu P, Puddu GM, Muscari A. (2001). Current thinking in statin therapy. Acta Cardiol 56:225–231

    PubMed  CAS  Google Scholar 

  173. Puddu P, Puddu GM, Muscari A. (2001). HMG-CoA reductase inhibitors. is the endothelium the main target? Cardiology 95:9–13

    Article  PubMed  CAS  Google Scholar 

  174. Ambrosi P, Villani P, Habib G, Bouvenot G. (2003). The statins: new properties. Therapie. 58:15–21

    Article  PubMed  Google Scholar 

  175. Parissis J, Korovesis S, Kalivas P, Giagitzoglou E, Katritsis D. (2000). Short-term atorvastatin therapy reduces monocyte-related inflammatory markers in the serum of hypercholesterolaemic patients. Eur Heart J 21:154

    Article  PubMed  Google Scholar 

  176. Chase AJ, Newby AC. (2000). Cerivastatin inhibits metalloproteinase production by human vascular smooth muscle cells in response to inflammatory stimuli, a possible mechanism for plaque stabillisation. Eur Heart J 21:152

    Google Scholar 

  177. Sinkiewicz W, Hoffman A, Blazejewski J, Bujak R, Budzynski J, Zbikowska M, Palgan K. (2000). The serum immunoglobulin IgE, interleukin-4 and soluble form receptor CD23 dynamic changes in patients with hypercholesterolaemia II B treated with pravastatin. Eur Heart J 21:155

    Google Scholar 

  178. Paul A, Calleja L, Camps J, Osada J, Vilella E, Ferré N, Mayayo E, Joven J. (2000). The continuous administration of aspirin attenuates atherosclerosis in apolipoprotein E-deficient mice. Life Sci 68:457–465

    Article  PubMed  CAS  Google Scholar 

  179. Fuster V, Dyken ML, Vokonas PS, Hennekens C. (1993). Aspirin as a therapeutic agent in cardiovascular disease. Circulation 87:659–75

    PubMed  CAS  Google Scholar 

  180. Jukema JW. (1999). Matching treatment to the genetic basis of (lipid) disorder in patients with coronary artery disease. Heart 82:126–127

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Muscari.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Puddu, G., Cravero, E., Arnone, G. et al. Molecular aspects of atherogenesis: new insights and unsolved questions. J Biomed Sci 12, 839–853 (2005). https://doi.org/10.1007/s11373-005-9024-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11373-005-9024-z

Keywords

Navigation