Skip to main content
Log in

Regulation of gene expression by chromosome 5A during cold hardening in wheat

  • Original Paper
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

Cold hardening is necessary to achieve the genetically determined maximum freezing tolerance and to reduce yield losses in winter cereals. The aim of the present study was to determine a set of genes with an important role in this process, by comparing of chromosome 5A substitution lines with different levels of freezing tolerance, since chromosome 5A is a major regulator of this trait. During 21 days of treatment at 2°C, 303 genes were up-regulated, while 222 were down-regulated at most sampling points, and 156 at around half of them (out of the 10,297 unigenes studied). The freezing-tolerant substitution line exhibited 1.5 times as many differentially expressed genes than the sensitive one. The transcription of 78 genes (39 up-regulated) proved to be chromosome 5A-dependent. These genes encoded proteins involved in transcriptional regulation, defence processes and carbohydrate metabolism. Three of the chromosome 5A-related genes, coding for a cold-responsive, a Ca-binding and an embryo and meristem-related protein, were genetically mapped and characterized in further detail. The present experimental system was appropriate for the selection of chromosome 5A-related genes involved in short- and long-term cold acclimation in wheat. By modifying the expression of these genes it may be possible to improve freezing tolerance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abe H, Urao T, Ito T, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2003) Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signalling. Plant Cell 15:63–78

    Article  CAS  PubMed  Google Scholar 

  • Altpeter F, Varshney A, Abderhalden O, Douchkov D, Sautter C, Kumlehn J, Dudler R, Schweizer P (2005) Stable expression of a defence-related gene in wheat epidermis under transcriptional control of a novel promoter confers pathogen resistance. Plant Mol Biol 57:271–283

    Article  CAS  PubMed  Google Scholar 

  • Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  CAS  PubMed  Google Scholar 

  • Baga M, Chodaparambil SV, Limin ASE, Pecar M, Fowler DB, Chibbar RN (2007) Identification of quantitative trait loci and associated candidate genes for low-temperature tolerance in cold-hardy winter wheat. Funct Integr Genom 7:53–68

    Article  CAS  Google Scholar 

  • Beissbart T, Speed TP (2003) GOstat: find statistically overrepresented gene ontologies within a group of genes. Bioinformatics 20:1464–1465

    Article  Google Scholar 

  • Cattivelli L, Baldi P, Crosatti C, Di Fonzo N, Faccioli P, Grossi M, Mastrangelo AM, Pecchioni N, Stanca AM (2002) Chromosome regions and stress-related sequences involved in resistance to abiotic stress in Triticeae. Plant Mol Biol 48:649–655

    Article  CAS  Google Scholar 

  • Chinnusamy V, Zhu J, Zhu JK (2006) Gene regulation during cold acclimation in plants. Physiol Plant 126:52–61

    Article  CAS  Google Scholar 

  • Conesa A, Götz S, Garcia-Gómez JM, Terol J, Talón M, Robles M (2005) Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinf Appl Note 21:3674–3676

    CAS  Google Scholar 

  • Costa JM, Corey A, Hayes PM, Jobet C, Kleinhofs A, Kopisch-Obusch A, Kramer SF, Kudrna D, Li M, Riera-Lizarazu O, Sato K, Szucs P, Toojinda T, Vales MI, Wolfe RI (2001) Molecular mapping of the Oregon Wolfe Barleys: a phenotypically polymorphic doubled-haploid population. Theor Appl Genet 103:415–424

    Article  CAS  Google Scholar 

  • Danyluk J, Ndijido AK, Breton G, Limin AE, Fowler BD, Sarhan F (2003) TaVRT-1, a putative transcription factor associated with vegetative to reproductive transition in cereals. Plant Physiol 132:1849–1860

    Article  CAS  PubMed  Google Scholar 

  • Dubcovsky J, Luo MC, Dvorak J (1995) Linkage relationships among stress-induced genes in wheat. Theor Appl Genet 91:795–801

    Article  CAS  Google Scholar 

  • Fowler S, Thomashow MF (2002) Arabidopsis transcriptome profiling indicates that multiple regulatory pathways are activated during cold acclimation in addition to the CBF cold response pathway. Plant Cell 14:1675–1690

    Article  CAS  PubMed  Google Scholar 

  • Foyer CH, Noctor G (2005) Redox homeostasis and antioxidant signalling: a metabolic link between stress perception and physiological responses. Plant Cell 17:1866–1875

    Article  CAS  PubMed  Google Scholar 

  • Francia E, Barabaschi D, Tondelli A, Laido G, Rizza F, Stanca AM, Busconi M, Fogher C, Stockinger EJ, Pecchioni N (2007) Fine mapping of a HvCBF gene cluster at the frost resistance locus Fr-H2 in barley. Theor Appl Genet 115:1083–1091

    Article  CAS  PubMed  Google Scholar 

  • Galiba G (2002) Mapping of genes regulating abiotic stress tolerance in cereals. Acta Agron Hung 50:235–247

    Article  CAS  Google Scholar 

  • Galiba G, Quarrie SA, Sutka J, Morgounov A, Snape JW (1995) RFLP mapping of the vernalization (Vrn1) and frost resistance (Fr1) genes on chromosome 5A of wheat. Theor Appl Genet 90:1174–1179

    Article  CAS  Google Scholar 

  • Galiba G, Kerepesi I, Snape JW, Sutka J (1997) Location of a gene regulating cold induced carbohydrate production on chromosome 5A of wheat. Theor Appl Genet 95:265–270

    Article  CAS  Google Scholar 

  • Galiba G, Vágújfalvi A, Li CX, Soltész A, Dubcovsky J (2009) Regulatory genes involved in the determination of frost tolerance in temperate cereals. Plant Sci 176:12–19

    Article  CAS  Google Scholar 

  • Gana JA, Sutton F, Kenefick DG (1997) cDNA structure and expression pattern of a low-temperature-specific wheat gene tacr7. Plant Mol Biol 34:643–650

    Article  CAS  PubMed  Google Scholar 

  • Graner A, Jahoor A, Schondelmaier J, Siedler H, Pillen K, Fischbeck G, Wenzel G, Hermann RG (1991) Construction of an RFLP map in barley. Theor Appl Genet 83:250–256

    Article  Google Scholar 

  • Gulick P, Drouin S, Yu Z, Danyluk J, Poisson G, Monroy AF, Sarhan F (2005) Transcriptome comparison of winter and spring wheat responding to low temperature. Genome 48:913–923

    CAS  PubMed  Google Scholar 

  • Hannah MA, Heyer AG, Hincha DK (2005) A global survey of gene regulation during cold acclimation in Arabidopsis thaliana. PloS Genet 1:179–196

    Article  CAS  Google Scholar 

  • Herman EM, Rotter K, Premakumar R, Elwinger G, Bae R, Ehele-King L, Chen S, Livingston DP III (2006) Additional freeze hardiness in wheat acquired by exposure to -3°C is associated with extensive physiological, morphological, and molecular changes. J Exp Bot 14:3601–3618

    Article  Google Scholar 

  • Horvath DP, Schaffer R, West M, Wisman E (2003) Arabidopsis microarrays identify conserved and differentially expressed genes involved in shoot growth and development from distantly related plant species. Plant J 34:125–134

    Article  CAS  PubMed  Google Scholar 

  • Kaplan F, Kopka J, Haskell DW, Zhao W, Schiller KC, Gatzke N, Sung DY, Guy CL (2004) Exploring the temperature-stress metabolome of Arabidopsis. Plant Physiol 136:4159–4168

    Article  CAS  PubMed  Google Scholar 

  • Karsai I, Szűcs P, Mészáros K, Filichkina T, Hayes PM, Skinner JS, Láng L, Bedő Z (2005) The Vrn-H2 locus is a major determinant of flowering time in a facultative winter growth habit barley (Hordeum vulgare L.) mapping population. Theor Appl Genet 110:1456–1458

    Article  Google Scholar 

  • Karsai I, Szűcs P, Mészáros K, Puskás Z, Bedő Z (2007) Barley (Hordeum vulgare L.) Marker linkage map: a case study of various marker types and of mapping population structure. Cereal Res Commun 35:1551–1562

    Article  CAS  Google Scholar 

  • Keddie JS, Carroll BJ, Thomas CM, Reyes MEC, Klimyuk V, Holtan H, Gruissem W, Jones JDG (1998) Transposon tagging of the Defective embryo and meristems gene of tobacco. Plant Cell 10:877–887

    Article  CAS  PubMed  Google Scholar 

  • Kellős T, Tímár I, Szilágyi V, Szalai G, Galiba G, Kocsy G (2008) Stress hormones and abiotic stresses have different effects on antioxidants in maize lines with different sensitivity. Plant Biol 10:563–572

    Google Scholar 

  • Kleinhofs A, Kilian A, Saghai Maroof MA, Biyashev RM, Hayes P, Chen FQ, Lapitan N, Fenwich A, Blake TK, Kanazin V, Ananiev E, Dahleen L, Kudrna D, Bollinger J, Knapp SJ, Liu B, Sorrells M, Heun M, Franckowiak JD, Hoffman D, Skadsen R, Steffenson BJ (1993) A molecular, isozyme and morphological map of barley (Hordeum vulgare) genome. Theor Appl Genet 86:705–712

    Article  CAS  Google Scholar 

  • Kocsy G, Szalai G, Vágújfalvi A, Stéhli L, Orosz G, Galiba G (2000) Genetic study of glutathione accumulation during cold hardening in wheat. Planta 210:295–301

    Article  CAS  PubMed  Google Scholar 

  • Mayer KFX, Taudien S, Martis M, Simkova H, Suchankova P, Gundlach H, Wicker T, Petzold A, Felder M, Steuernagel B, Scholz U, Graner A, Platzer M, Dolezel J, Stein N (2009) Gene content and virtual gene order of barley chromosome 1H. Plant Physiol 151:496–505

    Article  CAS  PubMed  Google Scholar 

  • Miller AK, Galiba G, Dubcovsky J (2006) A cluster of 11 CBF transcription factors is located at the frost tolerance locus Fr-A m 2 in Triticum monococcum. Mol Genet Genom 275:193–206

    Article  CAS  Google Scholar 

  • Monroy AF, Dryanova A, Malette B, Oren DH, Farajalla MR, Liu WC, Danyluk J, Ubayasena LWC, Kane K, Scoles GJ, Sarhan F, Gulick PJ (2007) Regulatory gene candidates and gene expression analysis of cold acclimation in winter and spring wheat. Plant Mol Biol 64:409–423

    Article  CAS  PubMed  Google Scholar 

  • Nakashima K, Yamaguchi-Shinozaki K (2006) Regulons involved in osmotic stress-responsive and cold stress–responsive gene expression in plants. Physiol Plant 126:62–71

    Article  CAS  Google Scholar 

  • Nogueira FTS, De Rosa VE, Menossi M Jr, Ulian EC, Arruda P (2003) RNA expression profiles and data mining of sugarcane response to low temperature. Plant Physiol 132:1811–1824

    Article  CAS  PubMed  Google Scholar 

  • Ozturk ZN, Talamé V, Deyholos M, Michalowsky CB, Galbraith DW, Gozukirmizi N, Tuberosa R, Bohnert HJ (2002) Monitoring large-scale changes in transcript abundance in drought- and salt-stressed barley. Plant Mol Biol 48:551–573

    Article  CAS  Google Scholar 

  • Rabbani A, Maruyama K, Abe H, Khan MA, Katsura K, Ito Y, Yoshiwara K, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2003) Monitoring expression profiles of rice genes under cold, drought, and high-salinity stresses and abscisic acid application using cDNA microarray and RNA gel-blot analyses. Plant Physiol 133:1755–1767

    Article  CAS  PubMed  Google Scholar 

  • Ramalingam J, Pathan MS, Feril O, Miftahudin Ross K, Ma X-F, Mahmoud AA, Layton J, Rodriguez-Milla MA, Chikmawati T, Valliyodan B, Skinner R, Matthews DE, Gustafson JP, Nguyen HT (2006) Structural and functional analysis of the wheat genomes based on expressed sequence tags (ESTs) related to abiotic stresses. Genome 49:1324–1340

    Article  CAS  PubMed  Google Scholar 

  • Renaut J, Hausman JF, Wisniewski ME (2006) Proteomics and low temperature studies: bridging the gap between gene expression and metabolism. Physiol Plant 126:97–109

    Article  CAS  Google Scholar 

  • Saeed AI, Sharov V, White J, Li J, Liang W, Bhagabati N, Braisted J, Klapa M, Currier T, Thiagarajan M, Sturn A, Snuffin M, Rezantsev A, Popov D, Ryltsov A, Kostukovich E, Borisovsky I, Liu Z, Vinsavich A, Trush V, Quackenbush J (2003) TM4: a free, open-source system for microarray data management and analysis. Biotechniques 34:374–378

    CAS  PubMed  Google Scholar 

  • Sanchez de la Hoz P, Vicente-Carbajosa J, Mena M, Carbonero P (1992) Homologous sucrose synthase genes in barley (Hordeum vulgare) are located in chromosome 7H (syn. 1) and 2H. Evidence for a gene translocation? FEBS Lett 21:46–50

    Article  Google Scholar 

  • Schweizer P (2008) Tissue-specific expression of a defence-related peroxidase in transgenic wheat potentiates cell death in pathogen-attacked leaf epidermis. Mol Plant Pathol 9:45–57

    CAS  PubMed  Google Scholar 

  • Scrase-Field SAMG, Knight MR (2003) Calcium: just a chemical switch? Curr Opin Plant Biol 6:500–506

    Article  CAS  PubMed  Google Scholar 

  • Seki M, Narusaka M, Abe H, Kasuga M, Yamaguochi-Shinozaki K, Carninci P, Hayashizaki Y, Shinozaki K (2001) Monitoring the expression pattern of 1300 Arabidopsis genes under drought and cold stresses by using a full length cDNA microarray. Plant Cell 13:61–72

    Article  CAS  PubMed  Google Scholar 

  • Sorrells ME, La Rota M, Bermudez-Kandianis CE, Greene RA, Kantety R, Munkvold JD, Miftahudin Mahmoud A, Ma X, Gustafson PJ, Qi LL, Echalier B, Gill BS, Matthews DE, Lazo GR, Chao S, Anderson OD, Edwards H, Linkiewicz AM, Dubcovsky J, Akhunov ED, Dvorak J, Zhang D, Nguyen HT, Peng J, Lapitan NL, Gonzalez-Hernandez JL, Anderson JA, Hossain K, Kalavacharla V, Kianian SF, Choi DW, Close TJ, Dilbirligi M, Gill KS, Steber C, Walker-Simmons MK, McGuire PE, Qualset CO (2003) Comparative DNA sequence analysis of wheat and rice genomes. Genome Res 13:1818–1827

    CAS  PubMed  Google Scholar 

  • Sreenivasulu N, Sopory SK, Kavi Kishor PB (2007) Deciphering the regulatory mechanisms of abiotic stress tolerance in plants by genomic approaches. Gene 388:1–13

    Article  CAS  PubMed  Google Scholar 

  • Stein N, Prasad M, Scholz U, Thiel T, Zhang H, Wolf M, Kota R, Varshney RK, Perovic D, Grosse I, Graner A (2007) A 1,000-loci transcript map of the barley genome: new anchoring points for integrative grass genomics. Theor Appl Genet 114:823–839

    Article  CAS  PubMed  Google Scholar 

  • Sutka J (1994) Genetic control of frost tolerance in wheat (Triticum aestivum L.) Euphytica 77:277–282

    Google Scholar 

  • Svensson JT, Crosatti C, Campoli C, Bassi R, Stanca AM, Close TJ, Cattivelli L (2006) Transcriptome analysis of cold acclimation in barley Albina and Xantha mutants. Plant Physiol 141:257–270

    Article  CAS  PubMed  Google Scholar 

  • Szalai G, Kellős T, Galiba G, Kocsy G (2009) Glutathione as an antioxidant and regulatory molecule in plants subjected to abiotic stresses. J Plant Growth Regul 28:66–80

    Article  CAS  Google Scholar 

  • Thiel T, Graner A, Waugh R, Grosse I, Close TJ, Stein N (2009) Evidence and evolutionary analysis of ancient whole-genome duplication in barley predating the divergence from rice. BMC Evol Biol 9:209

    Article  PubMed  Google Scholar 

  • Thomashow MF (1999) Plant cold acclimation, freezing tolerance genes and regulatory mechanisms. Annu Rev Plant Physiol Plant Mol Biol 50:571–599

    Article  CAS  PubMed  Google Scholar 

  • Tischner T, Kőszegi B, Veisz O (1997) Climatic programmes used in the Martonvásár phytotron most frequently in recent years. Acta Agron Hung 45:85–104

    Google Scholar 

  • Usadel B, Bläsing OE, Gibon Y, Höhne M, Günter M, Trethewey R, Kamlage B, Poorter H, Stitt M (2008) Multilevel genomic analysis of the response of transcripts, enzyme activities and metabolites in Arabidopsis rosettes to a progressive decrease of temperature in the non-freezing range. Plant Cell Environ 31:518–547

    Article  CAS  PubMed  Google Scholar 

  • Vágújfalvi A, Kerepesi I, Galiba G, Tischner T, Sutka J (1999) Frost hardiness depending on carbohydrate changes during cold acclimation in wheat. Plant Sci 144:85–92

    Article  Google Scholar 

  • Vágújfalvi A, Crosatti C, Galiba G, Dubcovsky J, Cattivelli L (2000) Two loci on wheat chromosome 5A regulate the differential cold-dependent expression of the cor14b gene in the frost-tolerant and -sensitive genotypes. Mol Gen Genet 263:194–200

    Article  PubMed  Google Scholar 

  • Vágújfalvi A, Galiba G, Cattivelli L, Dubcovsky J (2003) The cold-regulated transcriptional activator Cbf3 is linked to the frost-tolerance gene Fr-A2 on wheat chromosome 5A. Mol Genet Genom 269:60–67

    Google Scholar 

  • Vágújfalvi A, Aprile A, Miller A, Dubcovsky J, Delugu G, Galiba G, Cattivelli L (2005) The expression of several Cbf genes at the Fr-A2 locus linked to frost resistance in wheat. Mol Genet Genom 274:506–514

    Article  Google Scholar 

  • Vágújfalvi A, Soltész A, Kellős T, Dubcovsky J, Cattivelli L, Galiba G (2008) Frost tolerance in cereals—from a molecular point of view. Curr Top Plant Biol 8:71–80

    Google Scholar 

  • Vallelian BL, Mosinger E, Metraux JP, Schweizer P (1998) Structure, expression and localisation of a germin-like protein in barley Hordeum vulgare L. that is insolubilised in stressed leaves. Plant Mol Biol 37:297–308

    Article  Google Scholar 

  • van Buskirk HA, Thomashow MF (2006) Arabidopsis transcription factors regulating cold acclimation. Physiol Plant 126:72–80

    Article  Google Scholar 

  • van Ooijen JW, Voorrips RE (2003) Join Map 3.0 software for the calculation of genetic linkage maps. Plant Research International, Wageningen

    Google Scholar 

  • van Zyl L, von Arnold S, Bozhkov P, Chen Y, Egertsdotter U, MacKay J, Sederoff RR, Shen J, Zelena L, Clapham DH (2002) Heterologous array analysis in Pinaceae: hybridization of Pinus taeda cDNA arrays with cDNA from needles and embryogenic cultures of P. taeda, P. sylvestris or Picea abies. Comp Funct Genom 3:306–318

    Article  Google Scholar 

  • Vij S, Tyagi AK (2007) Emerging trends in the functional genomics of the abiotic stress response in crop plants. Plant Biotechnol J 5:361–380

    Article  CAS  PubMed  Google Scholar 

  • Vogel JT, Zarka DG, van Buskirk HA, Fowler SG, Thomashow MF (2005) Roles of the CBF2 and ZAT12 transcription factors in configuring the low temperature transcriptome of Arabidopsis. Plant J 41:195–211

    Article  CAS  PubMed  Google Scholar 

  • Yan L, Loukoianov A, Blechl A, Tranquilli G, Ramakrishna W, SanMiguel P, Bennetzen JL, Echenique V, Dubcovsky J (2004) The wheat VRN2 gene is a flowering repressor down-regulated by vernalization. Science 303:1640–1644

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Fowler SG, Cheng H, Lou Y, Rhee SY, Stockinger EJ, Thomashow MF (2004) Freezing-sensitive tomato has a functional CBF cold response pathway, but a CBF regulon that differs from that of freezing-tolerant Arabidopsis. Plant J 39:905–919

    Article  CAS  PubMed  Google Scholar 

  • Zhu JH, Dong CH, Zhu JK (2007) Interplay between cold-responsive gene regulation, metabolism and RNA processing during plant cold acclimation. Curr Opin Plant Biol 10:290–295

    Article  CAS  PubMed  Google Scholar 

  • Zierold U, Scholz U, Schweizer P (2005) Transcriptome analysis of mlo-mediated resistance in the epidermis of barley. Mol Plant Pathol 6:139–151

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank A. Horváth for plant cultivation and treatment, I. Walde and J. Perovic for help in the cDNA-macroarray work, S. König for sequencing, D. Douchkov for support during the real-time qRT PCR analyses, A. Winter for providing the program for the analysis of macroarray data prior to publishing, L. Altschmied, U. Scholz, M. Lange and P. Miskolczi for their help in the data analysis. This work was supported by the German–Hungarian bilateral cooperation “PlantResource” (WTZ HUN 02/001), the state of Saxony-Anhalt (German-Hungarian Distributed Project Group PlantResource FKZ: 3593A/04055T), the Hungarian Scientific Research Fund, the National Office for Research and Technology (NKTH-OTKA K 67906 and K 68894; Wheat Spike Consortia, NKFP OM-00018/04, subtask 3/1; NKTH NAP-BIO-06–OMFB-00515/2007) and the European Union (AGRISAFE 203288–EU-FP7-REGPOT 2007-1). G. Galiba and N. Stein are partners in the COST action FA0604 ‘Tritigen’.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nils Stein.

Additional information

Communicated by A. Tyagi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

438_2010_520_MOESM1_ESM.xls

Table S1 Hierarchical clusters of the 681 cold-responsive genes showing up- and down-regulation. The table contains the ratio of normalised expression data after 1, 7 and 21 d at 2°C compared to the untreated controls.(XLS 136 kb)

438_2010_520_MOESM2_ESM.xls

Table S2 K-means clusters of the 681 cold-responsive genes showing the different time-courses of expression changes. The over-represented genes in the 3rd group, indicated in red, are shown in Fig. 2. (XLS 95 kb)

438_2010_520_MOESM3_ESM.xls

Table S3 Chromosomal localization of the 681 cold-responsive genes in rice. Based on synteny analysis, segments of rice chromosomes 3, 9 and 12 correspond to barley chromosome 5H and wheat chromosome 5A. (XLS 152 kb)

438_2010_520_MOESM4_ESM.xls

Table S4 K-means clusters of 78 chromosome 5A-controlled genes exhibiting cold-induced expression changes. The mapped genes and their positions are indicated in red. (XLS 34.0 kb)

438_2010_520_MOESM5_ESM.xls

Table S5 KEGG-based annotation of the EST sequences present on the cDNA-macroarray to metabolic pathways, GB, GI and TC identifiers and normalised data. (XLS 3596 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kocsy, G., Athmer, B., Perovic, D. et al. Regulation of gene expression by chromosome 5A during cold hardening in wheat. Mol Genet Genomics 283, 351–363 (2010). https://doi.org/10.1007/s00438-010-0520-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-010-0520-0

Keywords

Navigation