Skip to main content
Log in

Characterization of EamaT1, a member of maT family of transposable elements from the earthworm Eisenia andrei (Annelida, Oligochaeta)

  • Original Paper
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

The maT family is a unique clade within the Tc1-mariner superfamily, and their distribution is to date known as being limited to invertebrates. A novel transposon named EamaT1 is described from the genome of the earthworm Eisenia andrei. The full sized EamaT1 was obtained by degenerate and inverse PCR-based amplification. Sequence analysis of multiple copies of the EamaT1, which consisted of 0.9 and 1.4 kb elements, showed that the consensual EamaT1 with inverted terminal repeats (ITRs) of 69 bp was 1,422 bp long and flanked by a duplicated TA dinucleotide. The EamaT1 is present in approximately 120–250 copies per diploid genome but undergoes an inactivation process as a result of accumulating multiple mutations and is nonfunctional. The open reading frame (ORF) of the EamaT1 consensus encoding 356 amino acid sequences of transposase contained a DD37D signature and a conserved paired-like DNA binding motif for the transposition mechanism. The result of ITRs comparison confirmed their consensus terminal sequences (5′-CAGGGTG-3′) and AT-rich region on the internal bases for ITRs-transposase interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aravind L, Landsman D (1998) AT-hook motifs identified in a wide variety of DNA-binding proteins. Nucleic Acids Res 26:4413–4421

    Article  PubMed  CAS  Google Scholar 

  • Arkhipova IR, Meselson M (2005) Diverse DNA transposons in rotifers of the class Bdelloidea. Proc Natl Acad Sci USA 102:11781–11786

    Article  PubMed  CAS  Google Scholar 

  • Black DM, Jackson MS, Kidwell MG, Dover GA (1987) KP elements repress P-induced hybrid dysgenesis in Drosophila melanogaster. EMBO J 20:4125–4135

    Google Scholar 

  • Brownlie JC, Whyard S (2005) Identification of novel non-autonomous CemaT transposable elements and evidence of their mobility within the C. elegans genome. Genetica 125:243–251

    Article  PubMed  CAS  Google Scholar 

  • Brownlie JC, Johnson NM, Whyard S (2005) The Caenorhabditis briggsae genome contains active CbmaT1 and Tcb1 transposons. Mol Genet Genomics 273:92–101

    Article  PubMed  CAS  Google Scholar 

  • Brunet F, Giraud T, Godin F, Capy P (2002) Do deletions of Mos1-like elements occur randomly in the drosophilidae family? J Mol Evol 54:227–234

    Article  PubMed  CAS  Google Scholar 

  • Capy P, Vitalis R, Langin T, Higuet D, Bazin C (1996) Relationships between transposable elements based upon the integrase-transposase domains: is there a common ancestor? J Mol Evol 42:359–368

    PubMed  CAS  Google Scholar 

  • Casse N, Bui QT, Nicolas V, Renault S, Bigot Y, Laulier M (2006) Species sympatry and horizontal transfers of Mariner transposons in marine crustacean genomes. Mol Phylogenet Evol 40:609–619

    Article  PubMed  CAS  Google Scholar 

  • Cho SJ, Cho PY, Lee MS, Hur SY, Lee JA, Kim SK, Koh KS, Na YE, Choo JK, Kim CB, Park SC (2003) Hox genes from the earthworm Perionyx excavatus. Dev Genes Evol 213:207–210

    PubMed  CAS  Google Scholar 

  • Claudianos C, Brownlie J, Russell R, Oakeshott J, Whyard S (2002) maT-a clade of transposons intermediate between mariner and Tc1. Mol Biol Evol 19:2101–2109

    PubMed  CAS  Google Scholar 

  • Galindo MI, Ladeveze V, Lemeunier F, Kalmes R, Periquet G, Pascual L (1995) Spread of the autonomous transposable element hobo in the genome of Drosophila melanogaster. Mol Biol Evol 12:723–734

    PubMed  CAS  Google Scholar 

  • Gregory TR, Hebert PDN (2002) Genome size estimates for some oligochaete annelids. Can J Zool 80:1485–1489

    Article  CAS  Google Scholar 

  • Hartl DL, Lozovskaya ER, Nurminsky DI, Lohe AR (1997) What restricts the activity of mariner-like transposable elements. Trends Genet 13:197–201

    Article  PubMed  CAS  Google Scholar 

  • Hicks GR, Raikhel NV (1995) Protein import into the nucleus: an integrated view. Annu Rev Cell Dev Biol 11:155–188

    Article  PubMed  CAS  Google Scholar 

  • Hodel MR, Corbett AH, Hodel AE (2001) Dissection of a nuclear localization signal. J Biol Chem 276:1317–1325

    Article  PubMed  CAS  Google Scholar 

  • Izsvak Z, Ivics Z (2004) Transposable elements for transgenesis and insertional mutagenesis in vertebrate: a contemporary review of experimental strategies. Methods Mol Biol 260: 255–276

    PubMed  Google Scholar 

  • Jehle JA, Nickel A, Vlak JM, Backhaus H (1998) Horizontal escape of the novel Tc1-like lepidopteran transposon TCp3.2 into Cydia pomonella granulovirus. J Mol Evol 46:215–224

    Article  PubMed  CAS  Google Scholar 

  • Kidwell MG, Lisch DR (2000) Transposable elements and host genome evolution. Trends Ecol Evol 15:95–99

    Article  PubMed  Google Scholar 

  • Kumar S, Tamura K, Nei M (2004) MEGA3: Integrated software for Molecular Evolutionary Genetics Analysis and sequence alignment. Brief Bioinform 5:150–163

    Article  PubMed  CAS  Google Scholar 

  • Leaver MJ (2001) A family of Tc1-like transposons from the genomes of fishes and frogs: evidence for horizontal transmission. Gene 271:203–214

    Article  PubMed  CAS  Google Scholar 

  • Lee CC, Mul YM, Rio DC (1996) The Drosophila P-element KP repressor protein dimerizes and interacts with multiple sites on P-element DNA. Mol Cell Biol 16:5616–5622

    PubMed  CAS  Google Scholar 

  • McElroy TC, Diehl WJ (2001) Heterosis in two closely related species of earthworm (Eisenia fetida and Eisenia andrei). Heredity 87:598–608

    Article  PubMed  CAS  Google Scholar 

  • Nicholas KB, Nicholas Jr HB, Deerfield II DW (1997) GeneDoc: analysis and visualization of genetic variation. EMBnet news 4:1–4

    Google Scholar 

  • Park HW, Koh KS, Park SC (1998) Molecular weights and inhibitor sensitivities of alkaline phosphatase isoenzymes from the midgut of the earthworm, Eisenia andrei. Soil Biol Biochem 30:831–832

    Article  CAS  Google Scholar 

  • Plasterk RH, Izsvak Z, Ivics Z (1999) Resident aliens: the Tc1/mariner superfamily of transposable elements. Trends Genet 15:326–332

    Article  PubMed  CAS  Google Scholar 

  • Robertson HM, MacLeod EG (1993) Five major subfamilies of mariner transposable elements in insects, including the Mediterranean fruit fly, and related arthropods. Insect Mol Biol 2:125–139

    PubMed  CAS  Google Scholar 

  • Robertson HM, Asplund ML (1996) Bmmar1: a basal lineage of the mariner family of transposable elements in the silkworm moth, Bombyx mori. Insect Biochem Mol Biol 26:945–954

    Article  PubMed  CAS  Google Scholar 

  • Robertson HM, Walden KK (2003) Bmmar6, a second mori subfamily mariner transposon from the silkworm moth Bombyx mori. Insect Mol Biol 12:167–171

    Article  PubMed  CAS  Google Scholar 

  • Rouleux-Bonnin F, Petit A, Demattei MV, Bigot Y (2005) Evolution of full-length and deleted forms of the mariner-like element, Botmar1, in the Genome of the bumble bee, Bombus terrestris (Hymenoptera: Apidae). J Mol Evol 60:736–747

    Article  PubMed  CAS  Google Scholar 

  • Schneider TD, Stephens RM (1990) Sequence logos: a new way to display consensus sequences. Nucleic Acids Res 18:6097–6100

    Article  PubMed  CAS  Google Scholar 

  • Shao H, Tu Z (2001) Expanding the diversity of the IS630-Tc1-mariner superfamily: discovery of a unique DD37E transposon and reclassification of the DD37D and DD39D transposons. Genetics 159:1103–1115

    PubMed  CAS  Google Scholar 

  • Silva JC, Bastida F, Bidwell SL, Johnson PJ, Carlton JM (2005) A potentially functional mariner transposable element in the protist Trichomonas vaginalis. Mol Biol Evol 22:126–134

    Article  PubMed  CAS  Google Scholar 

  • Sinzelle L, Pollet N, Bigot Y, Mazabraud A (2005) Characterization of multiple lineages of Tc1-like elements within the genome of the amphibian Xenopus tropicalis. Gene 349:187–196

    Article  PubMed  CAS  Google Scholar 

  • Wang J, Staten R, Miller TA, Park Y (2005) Inactivated mariner-like elements (MLE) in pink bollworm, Pectinophora gossypiella. Insect Mol Biol 14:547–553

    Article  PubMed  CAS  Google Scholar 

  • Yoshiyama M, Tu Z, Kainoh Y, Honda H, Shono T, Kimura K (2001) Possible horizontal transfer of a transposable element from host to parasitoid. Mol Biol Evol 18:1952–1958

    PubMed  CAS  Google Scholar 

  • Zakharkin SO, Willis RL, Litvinova OV, Jinwal UK, Headley VV, Benes H (2004) Identification of two mariner-like elements in the genome of the mosquito Ochlerotatus atropalpus. Insect Biochem Mol Biol 34:377–386

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Basic Science Research Institute Special Program of Chung-Ang University in 2004.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jong Kil Choo.

Additional information

Communicated by M.-A. Grandbastien.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jee, S.H., Kim, G.E., Hong, S.H. et al. Characterization of EamaT1, a member of maT family of transposable elements from the earthworm Eisenia andrei (Annelida, Oligochaeta). Mol Genet Genomics 278, 479–486 (2007). https://doi.org/10.1007/s00438-007-0266-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-007-0266-5

Keywords

Navigation