Skip to main content
Log in

Interaction between the ribosomal subunits: 16S rRNA suppressors of the lethal ΔA1916 mutation in the 23S rRNA of Escherichia coli

  • Original Paper
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

A1916 in 23S rRNA is located in one of the major intersubunit bridges of the 70S ribosome. Deletion of A1916 disrupts the intersubunit bridge B2a, promotes misreading of the genetic code and is lethal. In a genetic selection for suppressor mutations, two base substitutions in 16S rRNA were recovered that restored viability and also allowed expression of ΔA1916-associated capreomycin resistance. These mutations were G1048A in helix 34 and U1471C in helix 44. Restoration of function is incomplete, however, and the double mutants are slow-growing, defective in subunit association and support high levels of translational errors. In contrast, none of these parameters is affected by the single 16S suppressor mutations. U1471C likely affects another intersubunit contact, bridge B6, suggesting that interactions between different bridges and cross-talk between subunits contributes to ribosomal function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ali IK, Lancaster L, Feinberg J, Joseph S, Noller HF (2006) Deletion of a conserved, central ribosomal intersubunit RNA bridge. Mol Cell 23:865–874

    Article  PubMed  CAS  Google Scholar 

  • Asai T, Zaporojets D, Squires C, Squires CL (1999a) An Escherichia coli strain with all chromosomal rRNA operons inactivated: complete exchange of rRNA genes between bacteria. Proc Natl Acad Sci USA 96:1971–1976

    Article  PubMed  CAS  Google Scholar 

  • Asai T, Condon C, Voulgaris J, Zaporojets D, Shen B, Al-Omar M, Squires C, Squires CL (1999b) Construction and initial characterization of Escherichia coli strains with few or no intact chromosomal rRNA operons. J Bacteriol 181:3803–3809

    PubMed  CAS  Google Scholar 

  • Atkins JF, Ryce S (1974) UGA and non-triplet suppressor reading of the genetic code. Nature 249:527–530

    Article  PubMed  CAS  Google Scholar 

  • Beringer M, Bruell C, Xiong L, Pfister P, Bieling P, Katunin VI, Mankin AS, Bottger EC, Rodnina MV (2005) Essential mechanisms in the catalysis of peptide bond formation on the ribosome. J Biol Chem 280:36065–36072

    Article  PubMed  CAS  Google Scholar 

  • Carter AP, Clemons WM, Brodersen DE, Morgan-Warren RJ, Wimberly BT, Ramakrishnan V (2000) Functional insights from the structure of the 30S ribosomal subunit and its interactions with antibiotics. Nature 407:340–348

    Article  PubMed  CAS  Google Scholar 

  • Cupples CG, Miller JH, Huber RE (1990) Determination of the roles of Glu-461 in beta-galactosidase (Escherichia coli) using site-specific mutagenesis. J Biol Chem 265:5512–5518

    PubMed  CAS  Google Scholar 

  • Dallas A, Noller HF (2001) Interaction of translation initiation factor 3 with the 30S ribosomal subunit. Mol Cell 8:855–864

    Article  PubMed  CAS  Google Scholar 

  • DeLano WL (2002) The PyMOL user’s manual. DeLano Scientific, San Carlos, CA

    Google Scholar 

  • Deutscher MP (2006) Degradation of RNA in bacteria: comparison of mRNA and stable RNA. Nucleic Acids Res 34:659–666

    Article  PubMed  CAS  Google Scholar 

  • Frank J, Zhu J, Penczek P, Li Y, Srivastava S, Verschoor A, Radermacher M, Grassucci R, Lata RK, Agrawal RK (1995) A model of protein synthesis based on cryo-electron microscopy of the E. coli ribosome. Nature 376:441–444

    Article  PubMed  CAS  Google Scholar 

  • Gao H, Sengupta J, Valle M, Korostelev A, Eswar N, Stagg SM, Van Roey P, Agrawal RK, Harvey SC, Sali A, Chapman MS, Frank J (2003) Study of the structural dynamics of the E. coli 70S ribosome using real-space refinement. Cell 113:789–801

    Article  PubMed  CAS  Google Scholar 

  • Gao N, Zavialov AV, Li W, Sengupta J, Valle M, Gursky RP, Ehrenberg M, Frank J (2005) Mechanism for the disassembly of the posttermination complex inferred from cryo-EM studies. Mol Cell 18:663–674

    Article  PubMed  CAS  Google Scholar 

  • Gregory ST, Brunelli CA, Lodmell JS, O’Connor M, Dahlberg AE (1998) Genetic selection of rRNA mutations. Methods Mol Biol 77:271–281

    PubMed  CAS  Google Scholar 

  • Gregory ST, Carr JF, Rodriguez-Correa D, Dahlberg AE (2005) Mutational analysis of 16S and 23S rRNA genes of Thermus thermophilus. J Bacteriol 187:4804–4812

    Article  PubMed  CAS  Google Scholar 

  • Gutgsell NS, Deutscher MP, Ofengand J (2005) The pseudouridine synthase RluD is required for normal ribosome assembly and function in Escherichia coli. RNA 11:1141–1152

    Article  PubMed  CAS  Google Scholar 

  • Hirabayashi N, Sato NS, Suzuki T (2006) Conserved loop sequence of helix 69 in Escherichia coli 23 S rRNA is involved in A-site tRNA binding and translational fidelity. J Biol Chem 281:17203–17211

    Article  PubMed  CAS  Google Scholar 

  • Johansen SK, Maus CE, Plikaytis BB, Douthwaite S (2006) Capreomycin binds across the ribosomal subunit interface using tlyA-encoded 2′-O-methylations in 16S and 23S rRNAs. Mol Cell 23:173–182

    Article  PubMed  CAS  Google Scholar 

  • Klaholz BP, Pape T, Zavialov AV, Myasnikov AG, Orlova EV, Vestergaard B, Ehrenberg M, van Heel M (2003) Structure of the Escherichia coli ribosomal termination complex with release factor 2. Nature 421:90–94

    Article  PubMed  CAS  Google Scholar 

  • Klaholz BP, Myasnikov AG, Van Heel M (2004) Visualization of release factor 3 on the ribosome during termination of protein synthesis. Nature 427:862–865

    Article  PubMed  CAS  Google Scholar 

  • Kunkel TA, Bebenek K, McClary J (1991) Efficient site-directed mutagenesis using uracil-containing DNA. Methods Enzymol 204:125–139

    Article  PubMed  CAS  Google Scholar 

  • Liiv A, Karitkina D, Maivali U, Remme J (2005) Analysis of the function of E. coli 23S rRNA helix-loop 69 by mutagenesis. BMC Mol Biol 6:18

    Article  PubMed  CAS  Google Scholar 

  • Liiv A, O’Connor M (2006) Mutations in the intersubunit bridge regions of 23S rRNA. J Biol Chem 281:29850–29862

    Article  PubMed  CAS  Google Scholar 

  • Maivali U, Remme J (2004) Definition of bases in 23S rRNA essential for ribosomal subunit association. RNA 10:600–604

    Article  PubMed  CAS  Google Scholar 

  • Marrero P, Cabanas MJ, Modolell J (1980) Induction of translational errors (misreading) by tuberactinomycins and capreomycins. Biochem Biophys Res Commun 97:1047–1042

    Article  PubMed  CAS  Google Scholar 

  • Merryman C, Moazed D, Daubresse G, Noller HF (1999) Nucleotides in 23S rRNA protected by the association of 30S and 50S ribosomal subunits. J Mol Biol 285:107–113

    Article  PubMed  CAS  Google Scholar 

  • Miller JH (1991) A short course in bacterial genetics. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York

    Google Scholar 

  • Mitchell P, Osswald M, Brimacombe R (1992) Identification of intermolecular RNA cross-links at the subunit interface of the Escherichia coli ribosome. Biochemistry 31:3004–3011

    Article  PubMed  CAS  Google Scholar 

  • Modolell J, Vazquez D (1977) The inhibition of ribosomal translocation by viomycin. Eur J Biochem 81:491–497

    Article  PubMed  CAS  Google Scholar 

  • Nashimoto H, Nomura M (1970) Structure and function of bacterial ribosomes. XI dependence of 50S ribosomal assembly on simultaneous assembly of 30S subunits. Proc Natl Acad Sci USA 67:1440–1447

    Article  PubMed  CAS  Google Scholar 

  • Noller HF, Nomura M (1996) Ribosomes. In: Neidhardt FC, Curtiss R, Ingraham JL, Lin ECC, Low KB, Magasanik B, Reznikoff WS, Riley M, Schaechter M, Umbarger HE (eds) Escherichia coli and salmonella: cellular and molecular biology. ASM Press, Washington, DC, pp 104–125

  • O’Connor M, Dahlberg AE (1995) The involvement of two distinct regions of 23 S ribosomal RNA in tRNA selection. J Mol Biol 254:838–847

    Article  PubMed  CAS  Google Scholar 

  • O’Connor M, Dahlberg AE (2002) Isolation of spectinomycin resistance mutations in the 16S rRNA of Salmonella enterica serovar Typhimurium and expression in Escherichia coli and salmonella. Curr Microbiol 45:429–433

    Article  PubMed  CAS  Google Scholar 

  • O’Connor M, Thomas CL, Zimmermann RA, Dahlberg AE (1997) Decoding fidelity at the ribosomal A and P sites: influence of mutations in three different regions of the decoding domain in 16S rRNA. Nucleic Acids Res 25:1185–1193

    Article  PubMed  CAS  Google Scholar 

  • O’Connor M, Asai T, Squires CL, Dahlberg AE (1999) Enhancement of translation by the downstream box does not involve base pairing of mRNA with the penultimate stem sequence of 16S rRNA. Proc Natl Acad Sci USA 96:8973–8978

    Article  PubMed  CAS  Google Scholar 

  • O’Connor M, Lee WM, Mankad A, Squires CL, Dahlberg AE (2001) Mutagenesis of the peptidyltransferase center of 23S rRNA: the invariant U2449 is dispensable. Nucleic Acids Res 29:710–715

    Article  PubMed  CAS  Google Scholar 

  • Pardo D, Vola C, Rosset R (1979) Assembly of ribosomal subunits affected in a ribosomal mutant of E. coli having an altered L22 protein. Mol Gen Genet 174:53–58

    Article  PubMed  CAS  Google Scholar 

  • Petry S, Brodersen D, Murphy F, Dunham C, Selmer M, Tarry M, Kelley A, Ramakrishnan V (2005) crystal structures of the ribosome in complex with release factors RF1 and RF2 bound to a cognate stop codon. Cell 123:1255–1266

    Article  PubMed  CAS  Google Scholar 

  • Rawat U, Gao H, Zavialov A, Gursky R, Ehrenberg M, Frank J (2006) Interactions of the release factor RF1 with the ribosome as revealed by cryo-EM. J Mol Biol 357:1144–1153

    Article  PubMed  CAS  Google Scholar 

  • Raychaudhuri S, Conrad J, Hall BG, Ofengand J (1998) A pseudouridine synthase required for the formation of two universally conserved pseudouridines in ribosomal RNA is essential for normal growth of Escherichia coli. RNA 4:1407–1417

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez-Correa D, Dahlberg AE (2004) Genetic evidence against the 16S ribosomal RNA helix 27 conformational switch model. RNA 10:28–33

    Article  PubMed  CAS  Google Scholar 

  • Sergiev PV, Kiparisov SV, Burakovsky DE, Lesnyak DV, Leonov AA, Bogdanov AA, Dontsova OA (2005) The conserved A-site finger of the 23S rRNA: just one of the intersubunit bridges or a part of the allosteric communication pathway? J Mol Biol 353:116–123

    Article  PubMed  CAS  Google Scholar 

  • Schuwirth BS, Borovinskaya MA, Hau CW, Zhang W, Vila-Sanjurjo A, Holton JM, Cate JH (2005) Structures of the bacterial ribosome at 3.5 A resolution. Science 310:827–834

    Article  PubMed  CAS  Google Scholar 

  • Sharma MR, Koc EC, Datta PP, Booth TM, Spremulli LL, Agrawal RK (2003) Structure of the mammalian mitochondrial ribosome reveals an expanded functional role for its component proteins. Cell 115:97–108

    Article  PubMed  CAS  Google Scholar 

  • Spahn CM, Beckmann R, Eswar N, Penczek PA, Sali A, Blobel G, Frank J (2001) Structure of the 80S ribosome from Saccharomyces cerevisiae—tRNA-ribosome and subunit-subunit interactions. Cell 107:373–386

    Article  PubMed  CAS  Google Scholar 

  • Stoker NG, Fairweather NF, Spratt BG (1982) Versatile low-copy-number plasmid vectors for cloning in Escherichia coli. Gene 18:335–341

    Article  PubMed  CAS  Google Scholar 

  • Taniguchi H, Chang B, Abe C, Nikaido Y, Mizuguchi Y, Yoshida SI (1997) Molecular analysis of kanamycin and viomycin resistance in Mycobacterium smegmatis by use of the conjugation system. J Bacteriol 179:4795–4801

    PubMed  CAS  Google Scholar 

  • Tubulekas I, Buckingham RH, Hughes D (1991) Mutant ribosomes can generate dominant kirromycin resistance. J Bacteriol 173:3635–3643

    PubMed  CAS  Google Scholar 

  • Usary J, Champney WS (2001) Erythromycin inhibition of 50S ribosomal subunit formation in Escherichia coli cells. Mol Microbiol 40:951–962

    Article  PubMed  CAS  Google Scholar 

  • Vila-Sanjurjo A, Lu Y, Aragonez J, Starkweather R, Sasikumar M, O’Connor M (2007) Modulation of 16S rRNA function by ribosomal protein S12. Biochim Biophys Acta (In press)

  • Vogel HJ, Bonner DM (1956) Acetylornithinase of Escherichia coli: partial purification and some properties. J Biol Chem 218:97–106

    PubMed  CAS  Google Scholar 

  • Wachi M, Umitsuki G, Shimizu M, Takada A, Nagai K (1999) Escherichia coli cafA gene encodes a novel RNase, designated as RNase G, involved in processing of the 5′ end of 16S rRNA. Biochem Biophys Res Commun 259:483–488

    Article  PubMed  CAS  Google Scholar 

  • Wilson DN, Schluenzen F, Harms JM, Yoshida T, Ohkubo T, Albrecht R, Buerger J, Kobayashi Y, Fucini P (2005) X-ray crystallography study on ribosome recycling: the mechanism of binding and action of RRF on the 50S ribosomal subunit. EMBO J 24:251–260

    Article  PubMed  CAS  Google Scholar 

  • Yamada T, Mizugichi Y, Nierhaus KH, Wittmann HG (1978) Resistance to viomycin conferred by RNA of either ribosomal subunit. Nature 275:460–461

    Article  PubMed  CAS  Google Scholar 

  • Yamada T, Nierhaus KH (1978) Viomycin favours the formation of 70S ribosome couples. Mol Gen Genet 161:261–265

    Article  PubMed  CAS  Google Scholar 

  • Yusupov MM, Yusupova GZ, Baucom A, Lieberman K, Earnest TN, Cate JH, Noller HF (2001) Crystal structure of the ribosome at 5.5 A resolution. Science 292:883–896

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

I am indebted to Dr. Catherine Squires and her laboratory for providing essential strains, to Dr. Albert Dahlberg in whose laboratory was initiated, to Dr. Qing Sun for providing the pLGlacZ plasmids and to Dr. Anton Vila-Sanjurjo for useful discussions and for providing Fig. 1.Thanks are due to Bradford Isintit for his comments on the manuscript and to Angela Diederich for her help with figures. This work was supported by grant number MCB 0343942 from the National Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael O’Connor.

Additional information

Communicated by D. Andersson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

O’Connor, M. Interaction between the ribosomal subunits: 16S rRNA suppressors of the lethal ΔA1916 mutation in the 23S rRNA of Escherichia coli . Mol Genet Genomics 278, 307–315 (2007). https://doi.org/10.1007/s00438-007-0252-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-007-0252-y

Keywords

Navigation