Skip to main content
Log in

Differentiating paramphistome species in cattle using DNA barcoding coupled with high-resolution melting analysis (Bar-HRM)

  • Research
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

Paramphistomosis is caused by paramphistome or amphistome parasites, including Fischoederius elongatus, Gastrothylax crumenifer, Orthocoelium parvipapillatum, and Paramphistomum epiclitum. The control and prevention of these parasite outbreaks are difficult because of the wide occurrence of these species. Besides, the clinical manifestations and their egg characteristics are similar to those of other intestinal flukes in the paramphistome group, leading to misdiagnosis. Here, we employed DNA barcoding using NADH dehydrogenase (ubiquinone, alpha 1) (ND1) and cytochrome c oxidase subunit I (COI), coupled with high-resolution melting analysis (Bar-HRM), for species differentiation. As a result, ParND1_3 and ParCOI4 resulted in positive amplification in the paramphistomes and Fasciola gigantica, with significantly different melting curves for each species. The melting temperatures of each species obtained clearly differed. Regarding sensitivity, the limit of detection (LoD) for all species of paramphistomes was 1 pg/µl. Our findings suggest that Bar-HRM using ParND1_3 is highly suitable for the differentiation of paramphistome species. This approach can be used in parasite detection and epidemiological studies in cattle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

All DNA sequences of adult parasites obtained from DNA barcodes, ND1 and COI in this study were deposited in the GenBank database (NCBI) as OP939413-OP939415 and OP928154-OP928157, respectively.

References

  • Amer S, Dar Y, Ichikawa M, Fukuda Y, Tada C, Itagaki T, Nakai Y (2011) Identification of Fasciola species isolated from Egypt based on sequence analysis of genomic (ITS1 and ITS2) and mitochondrial (NDI and COI) gene markers. Parasitol Int 60(1):5–12

    Article  CAS  PubMed  Google Scholar 

  • Anuar TS, Al-Mekhlafi HM, Ghani MKA, Bakar EA, Azreen SN, Salleh FM, Moktar N (2013) Evaluation of formalin-ether sedimentation and trichrome staining techniques: its effectiveness in detecting Entamoeba histolytica/dispar/moshkovskii in stool samples. J Microbiol Methods 92(3):344–348

    Article  PubMed  Google Scholar 

  • Anucherngchai S, Chontananarth T, Tejangkura T, Wongsawad C (2020) Molecular classification of rumen fluke eggs in fecal specimens from Suphanburi Province, Thailand, based on cytochrome C oxidase subunit 1. Vet Parasitol Reg Stud Reports 20:100382

    PubMed  Google Scholar 

  • Anuracpreeda P, Chawengkirttikul R, Sobhon P (2016) Surface histology, topography, and ultrastructure of the tegument of adult Orthocoelium parvipapillatum (Stiles & Goldberger, 1910). Parasitol Res 115:2757–2769

    Article  PubMed  Google Scholar 

  • Arias MS, Sanchís J, Francisco I, Francisco R, Piñeiro P, Cazapal-Monteiro C, Cortiñas FJ, Suárez JL, Sánchez-Andrade R, Paz-Silva A (2013) The efficacy of four anthelmintics against Calicophoron daubneyi in naturally infected dairy cattle. Vet Parasitol 197(1–2):126–129

    Article  CAS  PubMed  Google Scholar 

  • Bhalerao GD (1935) On two new monostomes (Trematoda) from avian hosts in British India. Indian J Anim Sci 5(1):49–63

    Google Scholar 

  • Boray J (1969) Studies on intestinal paramphistomosis in sheep due to Paramphistomum ichikawai Fukui, 1922. Vet Med Rev 4:290–308

    Google Scholar 

  • Bowles J, McManus DP (1993) NADH dehydrogenase 1 gene sequences compared for species and strains of the genus Echinococcus. Int J Parasitol 23:969–972

    Article  CAS  PubMed  Google Scholar 

  • Buddhachat K, Chontananarth T (2019) Is species identification of Echinostoma revolutum using mitochondrial DNA barcoding feasible with high-resolution melting analysis? Parasitol Res 118(6):1799–1810

    Article  PubMed  Google Scholar 

  • Buddhachat K, Meerod T, Pradit W, Siengdee P, Chomdej S, Nganvongpanit K (2020) Simultaneous differential detection of canine blood parasites: multiplex high-resolution melting analysis (mHRM). Ticks Tick Borne Dis 11(3):101370

    Article  PubMed  Google Scholar 

  • Chaudhry U, Van Paridon B, Shabbir MZ, Shafee M, Ashraf K, Yaqub T, Gilleard J (2016) Molecular evidence shows that the liver fluke Fasciola gigantica is the predominant Fasciola species in ruminants from Pakistan. J Helminthol 90(2):206–213

    Article  CAS  PubMed  Google Scholar 

  • Chowdhury R, Sen A, Kar J, Nath SK (2017) Prevalence of gastrointestinal parasitism of cattle at Chandaniash Upazilla, Chittagong, Bangladesh. Int J Adv Res 4(6):144–149

    Google Scholar 

  • Chryssafidis AL, Fu Y, De Waal T, Mulcahy G (2015) Standardisation of egg-viability assays for Fasciola hepatica and Calicophoron daubneyi: a tool for evaluating new technologies of parasite control. Vet Parasitol 210(1–2):25–31

    Article  PubMed  Google Scholar 

  • Eduardo S (1985) The taxonomy of the family Paramphistomidae Fischoeder, 1901 with special reference to the morphology of species occurring in ruminants. VI. Revision of the genus Orthocoelium (Stiles & Goldberger, 1910) Price & McIntosh, 1953. Syst Parasitol 7(2):125–158

  • Eduardo S (1980) Orthocoelium indonesiense, a new species of amphistome from ruminants in Indonesia. Syst Parasitol 1(3):203–210

    Article  Google Scholar 

  • Eduardo S (1982a) The taxonomy of the family Paramphistomidae Fischoeder, 1901 with special reference to the morphology of species occurring in ruminants. I. General Considerations. Syst Parasitol 4(1):7–57

    Article  Google Scholar 

  • Eduardo S (1982b) The taxonomy of the family Paramphistomidae Fischoeder, 1901 with special reference to the morphology of species occurring in ruminants. II. Revision of the genus Paramphistomum Fischoeder, 1901. Syst Parasitol 4(3):189–238.

  • Fukui T (1929) On some Acanthocephala found in Japan. Annot Zool Jpn 12:255–270

    Google Scholar 

  • Furda A M, Bess A S, Meyer J N, Houten B V (2012) Analysis of DNA damage and repair in nuclear and mitochondrial DNA of animal cells using quantitative PCR. In DNA Repair Protocols (pp. 111–132). Humana Press, Totowa, NJ

  • Hall T A (1999) January. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. In Nucleic acids symposium series (Vol. 41, No. 41, pp. 95–98). [London]: Information Retrieval Ltd., c1979–c2000.

  • Hebert PD, Penton EH, Burns JM, Janzen DH, Hallwachs W (2004) Ten species in one: DNA barcoding reveals cryptic species in the neotropical skipper butterfly Astraptes fulgerator. Proc Natl Acad Sci 101(41):14812–14817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hosseini-safa A, Rokni M B, Mosawi S H, Heydarian P, Azizi H, Davari A, Aryaiepour M (2019) High-resolution malting analysis as an appropriate method to differentiate between Fasciola hepatica and F. gigantica. Iran J Public Health 48(3):501

  • Jones A, Bray RA, Gibson DI (2005) Keys to the Trematoda, vol 2. CABI Publishing and The Natural History Museum, London

    Book  Google Scholar 

  • Khan I, Afshan K, Shah S, Akhtar S, Komal M, Firasat S (2020) Morphological and molecular identification of Paramphistomum epiclitum from buffaloes in Pakistan. Acta Parasitol 65(1):225–236

    Article  CAS  PubMed  Google Scholar 

  • Li J, Zhao GH, Lin R, Blair D, Sugiyama H, Zhu XQ (2015) Rapid detection and identification of four major Schistosoma species by high-resolution melt (HRM) analysis. Parasitol Res 114:4225–4232

    Article  PubMed  Google Scholar 

  • Minsakorn S, Watthanadirek A, Poolsawat N, Puttarak P, Chawengkirttikul R, Anuracpreeda P (2021) The anthelmintic potentials of medicinal plant extracts and an isolated compound (rutin, C27H30O16) from Terminalia catappa L. against Gastrothylax crumenifer. Vet Parasitol 291:109385

  • Morgan JAT, Blair D (1998) Relative merits of nuclear ribosomal internal transcribed spacers and mitochondrial CO1 and ND1 genes for distinguishing among Echinostoma species (Trematoda). Parasitology 116(3):289–297

    Article  CAS  PubMed  Google Scholar 

  • Nak-on S, Chontananarth T (2020) Rumen fluke, Fischoederius elongatus (Trematoda: Gastrothylacidae): preliminary investigation of suitable conditions for egg hatching. Vet Parasitol 282:109135

    Article  CAS  PubMed  Google Scholar 

  • Nak-on S, Srimontok P, Jamsiang M, Chontananarth T. (2022) Complex morphological characterization and morphometric-molecular discrimination of two paramphistome species co-infecting cattle, Orthocoelium sp. and Paramphistomum epiclitum. Vet Parasitol Reg Stud Reports 30:100708

  • Ploeger HW, Ankum L, Moll L, Van Doorn DCK, Mitchell G, Skuce PJ, Zadoks RN, Holzhauer M (2017) Presence and species identity of rumen flukes in cattle and sheep in the Netherlands. Vet Parasitol 243:42–46

    Article  CAS  PubMed  Google Scholar 

  • Rooney J P, Ryde I T, Sanders L H, Howlett E, Colton M D, Germ K E, Mayer G D, Greenamyre J T, Meyer J N (2015) PCR based determination of mitochondrial DNA copy number in multiple species. In Mitochondrial regulation (pp. 23–38). Humana Press, New York, NY

  • Sanguankiat S, Sato M O, Sato M, Maipanich W, Yoonuan T, Pongvongsa T, ... Waikagul J (2016) First record of paramphistomes Fischoederius cobboldi and Paramphistomum epiclitum detected in bovine rumen from a local market of Savannakhet Province, Lao PDR. Korean J Parasitol 54(4):543

  • Semyenova SK, Morozova EV, Chrisanfova GG, Gorokhov VV, Arkhipov IA, Moskvin AS, Movsessyan SO, Ryskov AP (2006) Genetic differentiation in eastern European and western Asian populations of the liver fluke, Fasciola hepatica, as revealed by mitochondrial nad1 and cox1 genes. J Parasitol Res 92(3):525–530

    Article  CAS  Google Scholar 

  • Sey O (1985a) Amphistomes of Vietnamese vertebrates (Trematoda: Amphistomida). Parasit Hung 18:17–24

    Google Scholar 

  • Sey FMO (1985b) Some nematode parasites of frogs (Rana spp.) from North Viet Nam. Parasitol Hung 18:63–77

    Google Scholar 

  • Sey O (1991) CRC Handbook of the zoology of amphistomes. CRC Press, London and New York

    Google Scholar 

  • Sey O, Prasitirat P (1994) Amphistomes (Trematoda, Amphistomida) of cattle and buffalo in Thailand. Miscnea Zool Hung 9:11–17

    Google Scholar 

  • Swarnakar G, Kumawat A, Sanger B, Roat K, Goswami H, Domor RN (2014) Scanning electron microscopic observations of rumen amphistome (trematoda) in buffalo (Bubalus bubalis) in Udaipur, Rajasthan. Int J Curr Microbiol Appl Sci 3(9):695–703

    Google Scholar 

  • Szmidt-Adjidé V, Abrous M, Adjidé CC, Dreyfuss G, Lecompte A, Cabaret J, Rondelaud D (2000) Prevalence of Paramphistomum daubneyi infection in cattle in central France. Vet Parasitol 87(2–3):133–138

    Article  PubMed  Google Scholar 

  • Tandon V, Roy B, Shylla JA, Ghatani S (2019) Amphistomes. In: Toledo R, Fried B (eds) Digenetic trematodes. Advances in experimental medicine and biology, vol 1154. Springer, Cham, pp 255–277

  • Tandon R S (1961) Studies on the excretory system of amphistome parasites of ruminants: II. The genera Gastrothylax Poirier, 1883, and Fischoederius Stiles & Goldberger, 1910. Parasitol 51(1–2):127–132

  • Thienpont D, Rochette F, Vanparijs O (1986) Diagnosing helminthiasis by coprological examination (Vol. 1986): Janssen research foundation Beerse, Belgium

  • Truant AL, Elliott SH, Kelly MT, Smith JH (1981) Comparison of formalin-ethyl ether sedimentation, formalin-ethyl acetate sedimentation, and zinc sulfate flotation techniques for detection of intestinal parasites. J Clin Microbiol 13(5):882–884

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van Steenkiste N, Locke SA, Castelin M, Marcogliese DJ, Abbott CL (2015) New primer for DNA barcoding of digeneans and cestodes (Platyhelminthes). Mol Ecol Resour 15(4):945–952

    Article  PubMed  Google Scholar 

  • Venter JC, Adams MD, Myers EW, Li PW, Mural RJ, Sutton GG, Smith HO, Yandell M, Evans CA, Holt RA, Gocayne JD (2001) The sequence of the human genome. Science 291(5507):1304–1351

    Article  CAS  PubMed  Google Scholar 

  • Ward RD, Hanner R, Hebert PD (2009) The campaign to DNA barcode all fishes, FISH-BOL. J Fish Biol 74(2):329–356

    Article  CAS  PubMed  Google Scholar 

  • Watthanasiri P, Geadkaew-Krenc A, Grams R (2021) Morphology and mitochondrial genome of Fischoederius sp. 1 in Thailand. Korean J Parasitol 59(4):355

  • Wood JR (2018) DNA barcoding of ancient parasites. Parasitol 145(5):646–655

    Article  Google Scholar 

  • Yamaguti S (1958) Systema helminthum. The digenetic trematodes of vertebrates-Part I. (pp. 800–979). New York

  • Yang X, Wang L, Chen H, Feng H, Shen B, Hu M, Fang R (2016) The complete mitochondrial genome of Gastrothylax crumenifer (Gastrothylacidae, Trematoda) and comparative analyses with selected trematodes. Parasitol Res 115(6):2489–2497

    Article  PubMed  Google Scholar 

  • Zintl A, Garcia-Campos A, Trudgett A, Chryssafidis AL, Talavera-Arce S, Fu Y, Egan S, Lawlor A, Negredo C, Brennan G, Hanna RE, Waal TD, Mulcahy G (2014) Bovine paramphistomes in Ireland. Vet Parasitol 204(3–4):199–208

    Article  PubMed  Google Scholar 

Download references

Funding

This work was supported by Srinakharinwirot University (Research Grant No. 023/2564 and 575/2564). Additional funding was supported by Excellence Center in Veterinary Bioscience, Chiang Mai University, Chiang Mai, Thailand.

Author information

Authors and Affiliations

Authors

Contributions

Thapana Chontananarth (TC) is a major contributor and participates in all parts of the study. TC and Kittisak Buddhachat (KB) created the conceptualization for all experiments. TC and Sirapat Nak-on (SN) collected and identified the samples. Sirikhwan Sriuan (SS) and KB conducted the experiment in the laboratory, analyzed the data, created data visualization, and performed the statistical analysis. KB and TC were working together for writing the manuscript. All authors have read and accepted this manuscript.

Corresponding author

Correspondence to Thapana Chontananarth.

Ethics declarations

Ethics approval

The animal ethic of this experiment was approved by Srinakharinwirot University under SWE-A-022–2563.

Consent to participate

Informed consent was obtained from all individual participants included in the study.

Consent for publication

Additional informed consent was obtained from all individual participants for whom identifying information is included in this article.

Competing interests

The authors declare no competing interests.

Additional information

Handling Editor: Abdul Jabbar

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Buddhachat, K., Sriuan, S., Nak-on, S. et al. Differentiating paramphistome species in cattle using DNA barcoding coupled with high-resolution melting analysis (Bar-HRM). Parasitol Res 122, 769–779 (2023). https://doi.org/10.1007/s00436-022-07769-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-022-07769-0

Keywords

Navigation