Skip to main content

Advertisement

Log in

High prevalence of persistent residual parasitemia on days 3 and 14 after artemether–lumefantrine or pyronaridine–artesunate treatment of uncomplicated Plasmodium falciparum malaria in Nigeria

  • Research
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

Background

Microscopic evaluation of parasite clearance is the gold standard in antimalarial drug efficacy trials. However, the presence of sub-microscopic residual parasitemia after artemisinin-based combination therapy (ACT) needs to be investigated.

Methods

One hundred and twenty (AL: n = 60, PA: n = 60) days 3 and 14 dried blood spots, negative by microscopy were analysed for residual parasitemia using nested PCR. Isolates with residual parasitemia on days 3 and 14 were further genotyped with their corresponding day-0 isolates using merozoite surface proteins msp-1, msp-2, and glurp genes for allelic similarity.

Results

Persistent PCR-determined sub-microscopic residual parasitemia at day 3 post ACT treatment was 83.3 (AL) and 88.3% (PA), respectively (ρ = 0.600), while 63.6 and 36.4% (ρ = 0.066) isolates were parasitemic at day 14 for AL and PA, respectively. Microscopy-confirmed gametocytemia persisted from days 0 to 7 and from days 0 to 21 for AL and PA. When the alleles of day 3 versus day 0 were compared according to base pair sizes, 59% of parasites shared identical alleles for glurp, 36% each for 3D7 and FC27, while K1 was 77%, RO33 64%, and MAD20 23%, respectively. Similarly, day 14 versus day 0 was 36% (glurp), 64% (3D7), and 32% (FC27), while 73% (K1), 77% (RO33), and 41% (MAD20), respectively.

Conclusion

The occurrence of residual parasitemia on days 3 and 14 following AL or PA treatment may be attributable to the presence of either viable asexual, gametocytes, or dead parasite DNAs, which requires further investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

Available on reasonable request.

Materials availability

Available on reasonable request.

Code availability

Not applicable.

References

  • Amambua-Ngwa A, Okebe J, Mbye H, Ceesay S, El-Fatouri F, Joof F, Nyang H, Janha R, Affara M, Ahmad A, Kolly O, Nwakanma D, D'Alessandro U (2017) Sustained ex vivosusceptibility of Plasmodium falciparum toartemisinin derivatives but increasing toleranceto artemisinin combination therapy partnerquinolines in The Gambia. Antimicrob Agents Chemother 61:e00759-17. https://doi.org/10.1128/AAC.00759-17

  • Balikagala B, Fukuda N, Ikeda M, Katuro OT, Tachibana S-I, Yamauchi M, Opio W, Emoto S, Anywar DA, Kimura E et al (2021) Evidence of artemisinin-resistant malaria in Africa. N Engl J Med 385:1163–1171. https://doi.org/10.1056/NEJMoa2101746

    Article  CAS  Google Scholar 

  • Bergmann C, van Loon W, Habarugira F, Tacoli C, Jäger JC, Savelsberg D, Nshimiyimana F, Rwamugema E, Mbarushimana D, Ndoli J et al (2021) Increase in Kelch 13 polymorphisms in Plasmodium falciparum, Southern Rwanda. Emerg Infect Dis 27:294. https://doi.org/10.3201/eid2701.203527

    Article  CAS  Google Scholar 

  • Beshir KB, Sutherland CJ, Sawa P, Drakeley CJ, Okell L, Mweresa CK, Omar SA, Shekalaghe SA, Kaur H, Ndaro A et al (2013) Residual Plasmodium falciparum parasitemia in Kenyan children after artemisinin-combination therapy is associated with increased transmission to mosquitoes and parasite recurrence. J Infect Dis 208:2017–2024. https://doi.org/10.1093/infdis/jit431

    Article  CAS  Google Scholar 

  • Byakika-Kibwika P, Nyakato P, Lamorde M, Kiragga AN (2018) Assessment of parasite clearance following treatment of severe malaria with intravenous artesunate in Ugandan children enrolled in a randomized controlled clinical trial. Malar J 17:400. https://doi.org/10.1186/s12936-018-2552-6

    Article  CAS  Google Scholar 

  • Carlsson AM, Ngasala BE, Dahlström S, Membi C, Veiga IM, Rombo L, Abdulla S, Premji Z, Gil JP, Björkman A et al (2011) Plasmodium falciparum population dynamics during the early phase of anti-malarial drug treatment in Tanzanian children with acute uncomplicated malaria. Malar J 10:380. https://doi.org/10.1186/1475-2875-10-380

    Article  Google Scholar 

  • Chang H-H, Meibalan E, Zelin J, Daniels R, Eziefula AC, Meyer EC, Tadesse F, Grignard L, Joice RC, Drakeley C et al (2016) Persistence of Plasmodium falciparum parasitemia after artemisinin combination therapy: evidence from a randomized trial in Uganda. Sci Rep 6:26330. https://doi.org/10.1038/srep26330

    Article  CAS  Google Scholar 

  • Dhorda M, Ba EH, Kevin Baird J, Barnwell J, Bell D, Carter JY, Dondorp A, Ekawati L, Gatton M, González I et al (2020) Towards harmonization of microscopy methods for malaria clinical research studies. Malar J 19:324. https://doi.org/10.1186/s12936-020-03352-z

    Article  Google Scholar 

  • Froeschl G, Saathoff E, Kroidl I, Berens-Riha N, Clowes P, Maboko L, Assisya W, Mwalongo W, Gerhardt M, Ntinginya EN et al (2018) Reduction of malaria prevalence after introduction of artemisinin-combination-therapy in Mbeya Region, Tanzania: results from a cohort study with 6773 participants. Malar J 17:245. https://doi.org/10.1186/s12936-018-2389-z

    Article  CAS  Google Scholar 

  • Funwei RI, Thomas BN, Falade CO, Ojurongbe O (2018) Extensive diversity in the allelic frequency of Plasmodium falciparum merozoite surface proteins and glutamate-rich protein in rural and urban settings of southwestern Nigeria. Malar J 17:1. https://doi.org/10.1186/s12936-017-2149-5

    Article  CAS  Google Scholar 

  • Garner P, Graves PM (2005) The benefits of artemisinin combination therapy for malaria extend beyond the individual patient. PLOS Med 2(4):e105. https://doi.org/10.1371/journal.pmed.0020105

    Article  Google Scholar 

  • Getnet G, Fola AA, Alemu A, Getie S, Fuehrer H-P, Noedl H (2015) Therapeutic efficacy of artemether–lumefantrine for the treatment of uncomplicated Plasmodium falciparum malaria in Enfranze, north-west Ethiopia. Malar J 14:258. https://doi.org/10.1186/s12936-015-0775-3

    Article  CAS  Google Scholar 

  • Hastings IM, Kay K, Hodel EM (2015) How robust are malaria parasite clearance rates as indicators of drug effectiveness and resistance? Antimicrob. Agents Chemother 59:6428–6436. https://doi.org/10.1128/AAC.00481-15

    Article  CAS  Google Scholar 

  • Imwong M, Suwannasin K, Kunasol C, Sutawong K, Mayxay M, Rekol H, Smithuis FM, Hlaing TM, Tun KM, van der Pluijm RW et al (2017) The spread of artemisinin-resistant Plasmodium falciparum in the Greater Mekong subregion: a molecular epidemiology observational study. Lancet Infect Dis 17:491–497. https://doi.org/10.1016/S1473-3099(17)30048-8

    Article  Google Scholar 

  • Jarra W, Snounou G (1998) Only viable parasites are detected by PCR following clearance of rodent malarial infections by drug treatment or immune responses. Infect Immun 66:3783–3787

    Article  CAS  Google Scholar 

  • Kiaco K, Teixeira J, Machado M, do Rosário V, Lopes D, (2015) Evaluation of artemether-lumefantrine efficacy in the treatment of uncomplicated malaria and its association with pfmdr1, pfatpase6 and K13-propeller polymorphisms in Luanda. Angola Malar J 14:504. https://doi.org/10.1186/s12936-015-1018-3

    Article  CAS  Google Scholar 

  • Lopera-Mesa TM, Doumbia S, Chiang S, Zeituni AE, Konate DS, Doumbouya M, Keita AS, Stepniewska K, Traore K, Diakite SAS et al (2013) Plasmodium falciparum clearance rates in response to artesunate in Malian children with malaria: effect of acquired immunity. J Infect Dis 207:1655–1663. https://doi.org/10.1093/infdis/jit082

    Article  CAS  Google Scholar 

  • Lubis IND, Wijaya H, Lubis M, Lubis CP, Beshir KB, Staedke SG, Sutherland CJ (2020) Recurrence of Plasmodium malariae and P. falciparum following treatment of uncomplicated malaria in North Sumatera with dihydroartemisinin-piperaquine or artemether-lumefantrine. Open Forum Infect Dis 7:ofaa116. https://doi.org/10.1093/ofid/ofaa116

    Article  CAS  Google Scholar 

  • Mhamilawa LE, Ngasala B, Morris U, Kitabi EN, Barnes R, Soe AP, Mmbando BP, Björkman A, Mårtensson A (2020) Parasite clearance, cure rate, post-treatment prophylaxis and safety of standard 3-day versus an extended 6-day treatment of artemether–lumefantrine and a single low-dose primaquine for uncomplicated Plasmodium falciparum malaria in Bagamoyo district, Tanzania: a randomized controlled trial. Malar J 19:216. https://doi.org/10.1186/s12936-020-03287-5

    Article  CAS  Google Scholar 

  • Mwaiswelo R, Ngasala B (2020) Evaluation of residual submicroscopic Plasmodium falciparum parasites 3 days after initiation of treatment with artemisinin-based combination therapy. Malar J 19:162. https://doi.org/10.1186/s12936-020-03235-3

    Article  CAS  Google Scholar 

  • Mwaiswelo R, Ngasala BE, Jovel I, Gosling R, Premji Z, Poirot E, Mmbando BP, Björkman A, Mårtensson A (2016) Safety of a single low-dose of primaquine in addition to standard artemether-lumefantrine regimen for treatment of acute uncomplicated Plasmodium falciparum malaria in Tanzania. Malar J 15:316. https://doi.org/10.1186/s12936-016-1341-3

    Article  CAS  Google Scholar 

  • Mwaiswelo R, Ngasala B, Jovel I, Xu W, Larsson E, Malmberg M, Gil JP, Premji Z, Mmbando BP, Mårtensson A (2019) Prevalence of and risk factors associated with polymerase chain reaction-determined plasmodium falciparum positivity on day 3 after initiation of artemether–lumefantrine treatment for uncomplicated malaria in Bagamoyo District, Tanzania. Am J Trop Med Hyg 100:1179–1186. https://doi.org/10.4269/ajtmh.18-0729

    Article  Google Scholar 

  • Ohrt C, Purnomo P, Sutamihardja MA, Tang D, Kain KC (2002) Impact of microscopy error on estimates of protective efficacy in malaria-prevention trials. J Infect Dis 186:540–546. https://doi.org/10.1086/341938

    Article  Google Scholar 

  • Phyo AP, Nosten F (2018) The artemisinin resistance in Southeast Asia: an imminent global threat to malaria elimination. Malar Elimin - Leap Forw. https://doi.org/10.5772/intechopen.76519

    Article  Google Scholar 

  • Raman J, Kagoro FM, Mabuza A, Malatje G, Reid A, Frean J, Barnes KI (2019) Absence of kelch13 artemisinin resistance markers but strong selection for lumefantrine-tolerance molecular markers following 18 years of artemisinin-based combination therapy use in Mpumalanga Province, South Africa (2001–2018). Malar J 18:280. https://doi.org/10.1186/s12936-019-2911-y

    Article  CAS  Google Scholar 

  • Roth JM, Sawa P, Omweri G, Makio N, Osoti V, de Jong MD, Schallig HDFH, Mens PF (2018) Molecular detection of residual parasitemia after pyronaridine–artesunate or artemether–lumefantrine treatment of uncomplicated Plasmodium falciparum malaria in Kenyan children. Am J Trop Med Hyg 99:970–977. https://doi.org/10.4269/ajtmh.18-0233

    Article  CAS  Google Scholar 

  • Snounou G, Viriyakosol S, Zhu XP, Jarra W, Pinheiro L, do Rosario VE, Thaithong S, Brown KN (1993) High sensitivity of detection of human malaria parasites by the use of nested polymerase chain reaction. Mol Biochem Parasitol 61:315–320

    Article  CAS  Google Scholar 

  • Sowunmi A, Ntadom G, Akano K, Ibironke FO, Ayede AI, Agomo C, Folarin OA, Gbotosho GO, Happi C, Oguche S et al (2019) Declining responsiveness of childhood Plasmodium falciparum infections to artemisinin-based combination treatments ten years following deployment as first-line antimalarials in Nigeria. Infect Dis Poverty 8:69. https://doi.org/10.1186/s40249-019-0577-x

    Article  Google Scholar 

  • Sutherland CJ, Henrici RC, Artavanis-Tsakonas K (2020) Artemisinin susceptibility in the malaria parasite Plasmodium falciparum: propellers, adaptor proteins and the need for cellular healing. FEMS Microbiol Rev. https://doi.org/10.1093/femsre/fuaa056

    Article  Google Scholar 

  • Tadele G, Jaiteh FK, Oboh M, Oriero E, Dugassa S, Amambua-Ngwa A, Golassa L (2022) Persistence of residual submicroscopic P. falciparum parasitemia following treatment of artemether-lumefantrine in Ethio-Sudan Border, Western Ethiopia. Antimicrob Agents Chemother 0:e00002-22. https://doi.org/10.1128/aac.00002-22

    Article  CAS  Google Scholar 

  • Thriemer K, Hong NV, Rosanas-Urgell A, Phuc BQ, Ha DM, Pockele E, Guetens P, Van NV, Duong TT, Amambua-Ngwa A et al (2014) Delayed parasite clearance after treatment with dihydroartemisinin-piperaquine in Plasmodium falciparum malaria patients in Central Vietnam. Antimicrob Agents Chemother 58:7049–7055. https://doi.org/10.1128/AAC.02746-14

    Article  CAS  Google Scholar 

  • Tjitra E, Suprianto S, Anstey NM (2002) Higher gametocyte prevalence following failure of treatment of Plasmodium falciparum malaria with sulfadoxine-pyrimethamine and the combination of chloroquine plus sulfadoxine-pyrimethamine: implications for progression of anti-folate resistance. Trans R Soc Trop Med Hyg 96:434–437. https://doi.org/10.1016/S0035-9203(02)90385-8

    Article  CAS  Google Scholar 

  • Vafa Homann M, Emami SN, Yman V, Stenström C, Sondén K, Ramström H, Karlsson M, Asghar M, Färnert A (2017) Detection of malaria parasites after treatment in travelers: a 12-months longitudinal study and statistical modelling analysis. EBioMedicine 25:66–72. https://doi.org/10.1016/j.ebiom.2017.10.003

    Article  Google Scholar 

  • Vinayak S, Alam MT, Mixson-Hayden T, McCollum AM, Sem R, Shah NK, Lim P, Muth S, Rogers WO, Fandeur T et al (2010) Origin and evolution of sulfadoxine resistant Plasmodium falciparum. PLOS Pathog 6:e1000830. https://doi.org/10.1371/journal.ppat.1000830

    Article  CAS  Google Scholar 

  • White NJ (2017) Malaria parasite clearance. Malar J 16:88. https://doi.org/10.1186/s12936-017-1731-1

    Article  CAS  Google Scholar 

  • Zwang J, Dorsey G, Mårtensson A, d’Alessandro U, Ndiaye J-L, Karema C, Djimde A, Brasseur P, Sirima SB, Olliaro P (2014) Plasmodium falciparum clearance in clinical studies of artesunate-amodiaquine and comparator treatments in sub-Saharan Africa, 1999–2009. Malar J 13:114. https://doi.org/10.1186/1475-2875-13-114

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We appreciate all study participants and their parents/guardians. We also thank our research and clinical staff for their commitment during and after field work.

Funding

The clinical aspect of the study was funded by Shin Poong Pharmaceutical Company, Ltd., Ansan, South Korea.

Author information

Authors and Affiliations

Authors

Contributions

Roland I. Funwei and Catherine O. Falade conceived, designed, and supervised the study. Olusola Ojorungbe and Oladapo Walker co-supervised and edited the scientific content in the manuscript. Roland I. Funwei, Wasiu A. Hammed, and Gabriel N. Uyaiabasi performed the laboratory procedures and analyzed the data. Roland I. Funwei drafted the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Roland I. Funwei.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval

Ethical approval was obtained from the University of Ibadan/University College Hospital Institutional Review Board (UI/UCH/IRB).

Consent to participate

Written informed consent was obtained from all parents/guardians before enrollment into the study. Participants were free to withdraw if they felt otherwise to continue with the study.

Consent for publication

Details of participants were not disclosed in the manuscript. Therefore, it can be published.

Conflict of interest

The authors declare no competing interests.

Additional information

Handling Editor: Julia Walochnik

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Funwei, R.I., Uyaiabasi, G.N., Hammed, W.A. et al. High prevalence of persistent residual parasitemia on days 3 and 14 after artemether–lumefantrine or pyronaridine–artesunate treatment of uncomplicated Plasmodium falciparum malaria in Nigeria. Parasitol Res 122, 519–526 (2023). https://doi.org/10.1007/s00436-022-07753-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-022-07753-8

Keywords

Navigation