Skip to main content
Log in

Comparative mtDNA phylogeographic patterns reveal marked differences in population genetic structure between generalist and specialist ectoparasites of the African penguin (Spheniscus demersus)

  • Genetics, Evolution, and Phylogeny - Short Communication
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

To address factors affecting genetic diversity and dispersal of ectoparasites, we compared mitochondrial DNA (mtDNA) population genetic structures of the generalist soft tick Ornithodoros capensis to the more host-specific nest flea Parapsyllus humboldti. A total of 103 ticks and 92 fleas were sampled at five distinct South African island/mainland African penguin (Spheniscus demersus) colonies. With its wide host range, O. capensis showed no evidence of significant cytochrome c oxidase subunit I (COI) mtDNA population differentiation among the five sampling sites (φst = 0.00 ± 0.004; p = 0.80), as well as a higher level of genetic diversity (π = 0.8% ± 0.06%) when compared to P. humboldti. In contrast, the flea showed significant population structure among most of the same sampling sites (φst = 0.22 ± 0.11; p ≤ 0.05) and a lower level of genetic diversity (π = 0.2% ± 0.01%). Our findings suggest that despite both parasites being mostly nest bound, O. capensis have few barriers to dispersal among island and mainland colonies. However, P. humboldti are more dependent on the African penguin for dispersal and thus have more impediments to gene flow among the same colonies. These findings broadly support the SGVH (specialist generalist variation hypothesis) and provide the first evidence for this hypothesis in parasites restricted to seabird colonies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  • Araya-Anchetta A, Busch JD, Scoles GA, Wagner DM (2015) Thirty years of tick population genetics: a comprehensive review. Infect Genet Evol 29:164–179

    Article  PubMed  Google Scholar 

  • Berkman LK, Nielsen CK, Charlotte LR, Heist EJ (2015) Comparative genetic structure of sympatric Leporids in southern Illinois. J Mammal 96:552–563

    Article  Google Scholar 

  • Bitam I, Dittmar K, Parola P, Whiting MF, Raoult D (2010) Fleas and flea-borne diseases. Int J Infect Dis 14:667–676

    Article  Google Scholar 

  • Boyd EM (1951) The external parasites of birds: a review. Wilson Bull 63:363–369

    Google Scholar 

  • Clement M, Posada DCKA, Crandall KA (2000) TCS: a computer program to estimate gene genealogies. Mol Ecol 9:1657–1659

    Article  CAS  PubMed  Google Scholar 

  • Crawford RJM, Williams AJ, Hofmeyer JH, Klages NTW, Randall RM, Cooper J, Dyer BMCY (1995) Trends of African penguin Spheniscus demersus populations in the 20th century. S Afr J Mar Sci 16:101–118

    Article  Google Scholar 

  • Duffy DC (1983) The ecology of tick parasitism on densely nesting Peruvian seabirds. Ecology 64:110–119

    Article  Google Scholar 

  • Duffy DC (1988) Ticks among the seabirds. Living Bird Q 7:8–13

    Google Scholar 

  • Dupraz M, Toty C, Noël V, Estrada-Peňa A, González-Solís J, Boulinier T, Dujardin J, McCoy K (2016) Linking morphometric and genetic divergence with host use in the tick complex, Ornithodoros capensis sensu lato. Infect Genet Evol 46:12–22

    Article  PubMed  Google Scholar 

  • Engelbrecht A, Matthee S, Matthee CA (2016) Limited dispersal in an ectoparasitic mite, Laelaps giganteus, contributes to significant phylogeographic congruence with the rodent host, Rhabdomys. Mol Ecol 25:1006–1021

    Article  PubMed  Google Scholar 

  • Excoffier L, Lischer HEL (2010) Arlequin Suite Ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour 10:564–567

    Article  PubMed  Google Scholar 

  • Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoek R (1994) DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol Mar Biol Biotechnol 3:294–299

    CAS  PubMed  Google Scholar 

  • Gasteiger E, Gattiker A, Hoogland C, Ivanyi I, Appel RD, Bairoch A (2003) ExPASy: the proteomics server for in-depth protein knowledge and analysis. Nucleic Acids Res 31:3784–3788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gómez-Díaz E, Morris-Pocock JA, González-Solís J, McCoy KD (2012) Trans-oceanic host dispersal explains high seabird tick diversity on Cape Verde islands. Biol Lett 8:616–619

    Article  PubMed  PubMed Central  Google Scholar 

  • Hoogstraal H, Wassef HY, Hays C, Keirans JE (1985) Ornithodoros (Alectorobius) spheniscus n. sp. [Acarina: Ixodoidea: Argasidae: Ornithodoros (Alectorobius) capensis group], a tick parasite of the Humboldt penguin in Peru. J Parasitol 71:635–644

    Article  CAS  PubMed  Google Scholar 

  • Janecka JE, Tewes ME, Davis IA, Haines AM, Caso A, Blankenship TL, Honeycutt RL (2016) Genetic differences in the response to landscape fragmentation by a habitat generalist, the bobcat, and a habitat specialist, the ocelot. Conserv Genet 17:1093–1108

    Article  Google Scholar 

  • Jordan K (1942) On Parapsyllus and some closely related genera of Siphonaptera. Eos 18:7–29

    Google Scholar 

  • Jurik M (1974) Bionomics of fleas in bird’s nests in the territory of Czechoslovakia. Acta Sc Nat Brno 8:1–54

    Google Scholar 

  • Leigh JW, Bryant D (2015) PopART: full-feature software for haplotype network construction. Methods Ecol Evol 6:1110–1116

    Article  Google Scholar 

  • Li S, Jovelin R, Yoshiga T, Tanaka R, Cutter AD (2014) Specialist versus generalist life histories and nucleotide diversity in Caenorhabditis nematodes. Proc R Soc Lond B 281:2013–2858

    Google Scholar 

  • MacLeod CJ, Paterson AM, Tompkins D, Duncan RP (2010) Parasites lost – do invaders miss the boat or drown on arrival? Ecol Lett 13:516–527

    Article  PubMed  Google Scholar 

  • Marshall AG (1981) The ecology of ectoparasitic insects. Academic, London; New York

    Google Scholar 

  • Martinossi-Allibert I, Clavel J, Ducatez S, Le Viol I, Teplitsky C (2017) Does habitat specialization shape the evolutionary potential of wild bird populations? J Avian Biol 48:1158–1165

    Article  Google Scholar 

  • Matthee CA, Engelbrecht A, Matthee S (2018) Comparative phylogeography of parasitic Laelaps mites contribute new insights into the specialist-generalist variation hypothesis (SGVH). BMC Evol Biol 18:131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McCoy KD, Boulinier T, Tirard C (2005) Comparative host-parasite population structures: disentangling prospecting and dispersal in the black-legged kittiwake Rissa tridactyla. Mol Ecol 14:2825–2838

    Article  CAS  PubMed  Google Scholar 

  • Moon KL, Banks SC, Fraser CI (2015) Phylogeographic structure in penguin ticks across an ocean basin indicates allopatric divergence and rare trans-oceanic dispersal. PLoS One 10:e0128514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muñoz-Leal S, Dias RA, Abrahão CR, Labruna MB (2017) The Ornithodoros capensis group (Acari: Argasidae): a morphological diagnosis and molecular characterization of O. capensis sensu stricto from Queimada Grande Island, Brazil. Syst Appl Acarol 22:28–41

    Article  Google Scholar 

  • Murray MD, Vestjens WJM (1967) Studies on the ectoparasites of seals and penguins III. The distribution of the tick Ixodes uriae White and the flea Parapsyllus magellanicus heardi de Meillon on Macquarie Island. Aust J Zool 15:715–725

    Article  Google Scholar 

  • Segerman J (1995) Siphonaptera of southern Africa. Handbook for the identification of fleas. Publications of the South African Institute for Medical Research, No. 57, Johannesburg

  • Smith KM, Karesh WB, Majluf P, Paredes R, Zavalaga C, Hoogesteijn Reul A, Stetter M, Braselton WE, Puche H, Cook RA (2008) Health evaluation of free-ranging Humboldt penguins (Spheniscus humboldti) in Peru. Avian Dis 52:130–135

    Article  PubMed  Google Scholar 

  • Sonenshine DE (1991) Life cycles of ticks. In: Sonenshine DE (ed) Biology of ticks. Oxford University Press, New York, pp 51–66

    Google Scholar 

  • Sonenshine DE (1993) Ecology of nidicolous ticks. In: Sonenshine DE (ed) Biology of ticks. Oxford University Press, New York, pp 66–91

    Google Scholar 

  • Sutherst RW (1971) An experimental investigation into the effects of flooding on the ixodid tick Boophilus microplus (Canestrini). Oecologia 6:208–222

    Article  CAS  PubMed  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van der Mescht L, Matthee S, Matthee CA (2015) Comparative phylogeography between two generalist flea species reveal a complex interaction between parasite life history and host vicariance: parasite-host association matters. BMC Evol Biol 15:105

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the managers and fieldworkers at CapeNature, South African National Parks and the Southern African Foundation for the Conservation of Coastal Birds (SANCCOB) for assisting with the specimen collection. MPAE was awarded a scholarship from the Chilean National Scholarship Program for Graduate Studies (Becas-Chile) of the National Commission for Scientific and Technological Research (CONICYT).

Funding

This work was supported by the International Penguin and Marine Mammal Foundation, the National Research Foundation and Stellenbosch University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. A. Matthee.

Ethics declarations

Ethical approval was obtained from Stellenbosch University Animal Ethics Committee (SU-ACUD15-00114) who followed the South African National Standard (SANS) for the Care and Use of Animals for Scientific Purposes (SANS 10386:2008).

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Section Editor: Boris R. Krasnov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wessels, C., Matthee, S., Espinaze, M.P.A. et al. Comparative mtDNA phylogeographic patterns reveal marked differences in population genetic structure between generalist and specialist ectoparasites of the African penguin (Spheniscus demersus). Parasitol Res 118, 667–672 (2019). https://doi.org/10.1007/s00436-018-6150-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-018-6150-x

Keywords

Navigation