Skip to main content

Advertisement

Log in

Exploration of antiplasmodial activity in Acalypha wilkesiana Müller Argoviensis, 1866 (family: Euphorbiaceae) and its GC-MS fingerprint

  • Original Paper
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

The plant kingdom continues to hold great promise for the eradication of Malaria infection following the challenges of insecticide resistance by the vector mosquito, drug resistance by the parasite, and the development of a vaccine still being a mirage. Acalypha wilkesiana Muller Argoviensis, 1866 (family: Euphorbiaceae) leaves have the ethnopharmacological reputation for use as a remedy against dermal microbial infections in Nigeria. Here, we have studied the antiplasmodial potential of the extract of the leaves of this ornamental plant. Aqueous methanol crude extract (70%) and Prep reversed-phase high-performance liquid chromatography (RPHPLC) fractions were tested in vitro against blood stage Plasmodium falciparum 3D7 strain parasites for antiplasmodial activity using the SYBR Green assay. Results obtained were validated through Giemsa stained microscopic blood smeared slides. An IC50 of < 0.39 μg/ml for fractions of the RPHPLC together with TC50 of > 100 μg/ml against mammalian HUH-7 cell lines and a HC50 of > 100 μg/ml against red blood cells indicate a high selectivity of this plant against Plasmodium. This is the first report of the antiplasmodial activity of this plant and a GC-MS fingerprinting of the same, opening the possibilities of identifying novel pharmacophores against the malaria parasite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Plate 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

GC-MS:

gas chromatography–mass spectrometry

RPHPLC:

reversed-phase high-performance liquid chromatography

TC50 :

toxicity concentration against 50% population of cells exposed

IC50 :

inhibitory concentration against 50% population of cells exposed

HC50 :

hemolytic concentration against 50% population of cells exposed

HPLC:

high-performance liquid chromatography

RPMI:

Roswell Park Memorial Institute medium

Pf :

Plasmodium falciparum

DMSO:

dimethyl sulfoxide

EDTA:

ethylenediaminetetraacetic acid

MTT:

3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide

CQ:

chloroquine

ADHD:

attention deficit-hyperactivity disorder

RDS:

respiratory distress syndrome

References

  • Adesina SK, Idowu O, Ogundaini AO, Oladimeji H, Olugbade TA, Onawunmi GO, Pais M (1997) Antimicrobial constituents of the leaves of Acalypha wilkesiana and Acalypha hispida. Phytother Res 14(5):371–374

    Article  Google Scholar 

  • Akinyemi K, Olukayode O, Chidi O and Fasure KA (2005) Screening of crude extracts of six medicinal plants used in South-West Nigeria unorthodox medicine for anti-methicillin resistant Staphylococcus aureus activity. BMC Compl Alternative Med 1-7

  • Alade PJ, Irobi ON (1992) Anti-microbial activities of crude leaf extracts of Acalypha wilkesiana. J Ethnopharmacol 39:171–174. https://doi.org/10.1016/0378-8741(93)90033-2

    Article  Google Scholar 

  • Anderson A (2006) Final report on the safety assessment of benzaldehyde. Int J Toxicol 25(1):11–27. https://doi.org/10.1080/10915810600716612

    Google Scholar 

  • Ban JO, Hwang IG, Kim TM, Hwang BY, Lee US, Jeong HS, Yoon YW, Kim DJ, Hong JT (2007) Anti-proliferate and pro-apoptotic effects of 2,3-dihydro-3,5-dihydroxy-6-methyl-4H-pyranone through inactivation of NF-KB in human colon cancer cells. Arch Pharm Res 30(11):1455–1463

    Article  CAS  PubMed  Google Scholar 

  • Berhow MA, Wagner ED, Vaughn SF, Plewa MJ (2000) Characterization and antimutagenic activity of soybean saponins. Mutat Res Genet Toxicol Environ Mutagen 448(1):11–22

    Article  CAS  Google Scholar 

  • Bloland PB (2001) Drug resistance in malaria. World Health Organization

  • Ciriminna R, Pandarus V, Béland F, Pagliaro M (2014) Catalytic hydrogenation of Squalene to Squalane. Org Process Res Dev 18(9):1110–1115. https://doi.org/10.1021/op5002337

    Article  CAS  Google Scholar 

  • Cox-Singh J, Singh B (2008) Knowlesi malaria: newly emergent and of public health importance. Trends Parasitol 24(9):406–410

    Article  PubMed  PubMed Central  Google Scholar 

  • Ezekiel CN, Anokwuru CP, Nsofor E, Odusanya OA, Adebanjo O (2009) Antimicrobial activity of the methanolic and crude alkaloid extracts of Acalypha wilkesiana cv. macafeeana copper leaf. Res J Microbiol 4:269–277

    Article  CAS  Google Scholar 

  • Gunstone FD, Harwood JL, Dijkstra AJ (2007) The lipid handbook with CD-ROM. Boca Raton 3rd edn CRC Press ISBN 978-0849396885

  • Ha YL, Grimm NK, Pariza MW (1989) Newly recognized anticarcinogenic fatty acids: identification and quantification in natural and processed cheeses. J Agric Food Chem 37(1):75–81. https://doi.org/10.1021/jf00085a018

    Article  CAS  Google Scholar 

  • Hao H, Xin Z, Biao J (2006) Survey in study on chemical constituents from plants of Elaeagnaceae. Chin Tradit Herb Drugs 37(2):307–309

    Google Scholar 

  • Hossain MA, Izuishi K, Tokuda M, Izumori K, Maeta H (2004) D-Allose has a strong suppressive effect against ischemia/reperfusion injury: a comparative study with allopurinol and superoxide dismutase. JHBPS 11(3):181–189

    Google Scholar 

  • Howlett A, Ohlsson A, Plakkal N (2015) Inositol in preterm infants at risk for or having respiratory distress syndrome. http://onlinelibrary.wiley.com/doi/10.1002/14651858.CD000366/abstract

  • Hunter JE, Zhang J, Kris-Etherton PM (2009) Cardiovascular disease risk of dietary stearic acid compared with trans, other saturated and unsaturated fatty acids: a systematic review. Am J Clin Nutr 91(1):46–63. https://doi.org/10.3945/ajcn.2009.27661.PMID19939984

    Article  PubMed  Google Scholar 

  • Ibrahim S, Nok JA, Abubakar MS, Sarkiyayi S (2012) Efficacy of di-n-octyl phthalate anti venom isolated from Ceiba pentandra leaves extract in neutralization of Echis ocellatus venom. Res J Appl Sci Eng Technol 4(15):2382–2387

    CAS  Google Scholar 

  • Ikewuchi CJ, Ikewuchi CC, Onyeike EN, Uwakwe AA (2010) Nutritional potential of the leaves of Acalypha wilkesiana ‘Godseffiana’ Muell Arg. J Appl Sci Environ Manage 14(3):21–24

    Google Scholar 

  • Ikewuchi JC, Onyeike EN, Uwakwe AA, Ikewuchi CC (2011) Effect of aqueous extract of the leaves of Acalypha wilkesiana ‘Godseffiana’ Muell Arg (Euphorbiaceae) on the hematology, plasma biochemistry and ocular indices of oxidative stress in alloxan induced diabetic rats. J Ethnopharmacol 11 137(3):1415–1424. https://doi.org/10.1016/j.jep.2011.08.015

    Article  Google Scholar 

  • Jerah AEA, Lihan S, Ahmad I (2013) The effect of combination of octadecanoic acid, methyl ester and ribavirin against measles virus. IJSTR 2: 10.ISSN 2277-8616 https://www.linkedin.com/in/ijstr

  • Julien M, Hoeffel JM, Flick MR (1986) Oleic acid lung injury in sheep. J Appl Physiol 60(2):433–440

    Article  CAS  PubMed  Google Scholar 

  • Kantele A, Jokiranta TS (2011) Clinical infectious diseases review of cases with the emerging fifth human malaria parasite, Plasmodium knowlesi. Clin Infect Dis 52(11):1356–1362. https://doi.org/10.1093/cid/cir180

    Article  PubMed  Google Scholar 

  • Kaushik NK, Bagavan A, Abdul Rahuman A, Mohanakrishnan D, Kamaraj C, Elango G, Abduz Zahir A, Sahal D (2013) Antiplasmodial potential of selected medicinal plants from eastern Ghats of South India. Exp Parasitol 134(1):26–32. https://doi.org/10.1016/j.exppara.2013.01.021

    Article  PubMed  Google Scholar 

  • Kazi YF, Parton R, Memon BA (1994) Haemolytic assay for the detection of adenylate cyclase toxin of Bordetella pertussis. Pak J Pharm Sci 7(2):55–59

    CAS  PubMed  Google Scholar 

  • Larner J (2002) D-chiro-inositol—its functional role in insulin action and its deficit in insulin resistance. Int J Exp Diabetes Res 3(1):47–60. https://doi.org/10.1080/15604280212528.PMC2478565.PMID11900279

    Article  PubMed  PubMed Central  Google Scholar 

  • Law D (2009) Adipic acid. In: Rowe RC, Sheskey PJ, Quinn ME (eds) Handbook of pharmaceutical excipients 6th edn. PhP, London, pp 11–12

  • Madziga HA, Sanni S, Sandabe UK (2010) Phytochemical and elemental analysis of Acalypha wilkesiana leaf. Am J Sci 6(11)

  • Makson GB d O, Rosemarie BM, F de S M, BDS A, Fabíola AB, Emiliano OB, PDe S D, Fernanda RCA, Daniel BP Jr, Ângelo RA, Lucindo JQ Jr (2012) α-Terpineol reduces mechanical hypernociception and inflammatory response. BCPT 111:120–125. https://doi.org/10.1111/j.1742-7843.2012.00875

    Google Scholar 

  • Martin-Moreno JM, Gorgojo L, Banegas JR, Rodriguez-Artalejo F, Fernandez-Rodriguez JC, Maisonneuve P, Boyle P (1994) Dietary fat, olive oil intake and breast cancer risk. Int J Cancer 58(6):774–780. https://doi.org/10.1002/ijc.2910580604

    Article  CAS  PubMed  Google Scholar 

  • McClanahan C (2009) Vitamin D and prevention of human disease. BioFiles 4(6):4

    Google Scholar 

  • McGee H (2003) On food and cooking: the science and lore of the kitchen. New York Scribner ISBN 978-0-684-80001-1. LCCN 2004058999. OCLC 56590708

  • McGinty D, Letizia CS, Api AM (2010) Fragrance material review on phytol. Food Chem Toxicol 48:S59–S63. https://doi.org/10.1016/j.fct.2009.11.012

    Article  CAS  PubMed  Google Scholar 

  • Miller LH, Su X (2011) Artemisinin: discovery from the Chinese herbal garden. Cell 146(6):855–858. https://doi.org/10.1016/j.cell.2011.08.024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mizushina Y, Tanaka N, Yagi H, Kurosawa T, Onoue M, Seto H, Horie T, Aoyagi N, Yamaoka M, Matsukage A, Yoshida S, Salaguchi K (1996) Fatty acids selectively inhibits eukaryotic DNA polymerase activities in vitro. Biochim Biophys Acta 1308(3):256–262

    Article  PubMed  Google Scholar 

  • Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63

    Article  CAS  PubMed  Google Scholar 

  • Oyelami OA, Onayemi O, Oladimeji A, Onawunmi O (2003) Clinical evaluation of Acalypha ointment in the treatment of superficial fungal skin diseases. Phytother Res 17:555–557

    Article  CAS  PubMed  Google Scholar 

  • Paddon CJ, Keasling JD (2014) Semi-synthetic artemisinin: a model for the use of synthetic biology in pharmaceutical development. Nat Rev Microbiol 12(5):355–367. https://doi.org/10.1038/nrmicro3240

    Article  CAS  PubMed  Google Scholar 

  • Pala V, Krogh V, Muti P, Chajes V, Riboli E, Micheli A, Saadatian M, Sieri S, Berrino F (2001) Erythrocyte membrane fatty acids and subsequent breast cancer: a prospective Italian study. J Natl Cancer Inst 93(14):1088–1095. https://doi.org/10.1093/jnci/93.14.1088

    Article  CAS  PubMed  Google Scholar 

  • Pascual G, Avgustinova A, Mejetta S, Martín M, Castellanos A, Attolini CS, Berenguer A, Prats N, Toll A, Hueto JA, Bescós C, Di Croce L, Benitah SA (2016) Targeting metastasis-initiating cells through the fatty acid receptor CD36. Nature 541(7635):41–45. https://doi.org/10.1038/nature20791

    Article  PubMed  Google Scholar 

  • Premanath R, Lakshmidevi N (2010) Studies on antioxidant activity of Tinospora cordifolia (Miers) leaves using in vitro models. Am J Sci 6(10):736–737

    Google Scholar 

  • Purnamadjaja AH, Russell RA (2005) Pheromone communication in a robot swarm: Necrophoric bee behaviour and its replication. Robotica 23(6):731–742. https://doi.org/10.1017/S026357470400122

    Article  Google Scholar 

  • Quan J, Yin X, Jin M, Shen M (2003) Study on the inhibition of alpha-glucosidase by soya saponins. Zhongyaocai 26(9):654–656

    PubMed  Google Scholar 

  • Rosa MSS, Mendonc a-Filho RR, Bizzo HR, Rodrigues IA, Soares RMA, Souto-Padron T, Alviano CS, Lopes AHCS (2003) Antileishmanial activity of a linalool-rich essential oil from Croton cajucara. Antimicrob Agents Chemother 47:1895–1901

    Article  CAS  PubMed Central  Google Scholar 

  • Scott BC, Butler J, Halliwell B, Aruoma OI (1993) Evaluation of the antioxidant actions of ferulic acid and catching. Free Radic Res Commun 19:4. https://doi.org/10.3109/10715769309056512

    Google Scholar 

  • Smilkstein M, Sriwilaijaroen N, Kelly JX, Wilairat P, Riscoe M (2004) Simple and inexpensive fluorescence-based technique for high throughput antimalarial drug screening. Antimicrob Agents Chemother 48:1803–1806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sule OJ, Elekwa I, Ayalogu EO (2012) The protective nature of Acalypha wilkensiana Muell Arg. leaves on CCL4-induced hepatotoxicity in wistar rats. J Pharm Biomed Sci 14: 14. ISSN NO- 2230 – 7885. www.jpbms.info

  • Takara K, Otsuka K, Wada K, Iwasaki H, Yamashita M (2007) 1,1-diphenyl-2-picrylhydrazyl radical scavenging activity and tyrosinase inhibitory effects of constituents of sugarcane molasses. Biosci Biotechnol Biochem 71(1):183–191

    Article  CAS  PubMed  Google Scholar 

  • Van Sassenbroeck DK, De Paepe P, Belpaire FM, Buylaert WA (2003) Characterization of the pharmacokinetic and pharmacodynamic interaction between gamma-hydroxybutyrate and ethanol in the rat. Toxicol Sci 73(2):270–278. https://doi.org/10.1093/toxsci/kfg079

    Article  PubMed  Google Scholar 

  • Wieczorek P (2006) Structure of natural antibiotic CP-47,444. Chem Aust 59 (11): 25–26, 55–59

  • World Health Organization (2005) World Malaria Report 71: 17–22

  • Yang ZH, Miyahara H, Hatanaka A (2011) Chronic administration of palmitoleic acid reduces insulin resistance and hepatic lipid accumulation in KK-Ay Mice with genetic type 2 diabetes. Lipids Health Dis 10:120. https://doi.org/10.1186/1476-511X-10-120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zelles L (1999) Fatty acid patterns of phospholipids and lipopolysaccharides in the characterization of microbial communities in soil: a review. Biol Fertil Soils 29(2):111–129. https://doi.org/10.1007/s003740050533

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial assistance of the Ahmadu Bello University, Zaria-Nigeria TETFUND for sponsoring this research work and thank the Director ICGEB, New Delhi, India, for granting the bench space and facilities used. We thank Dr. Ajay Kumar of the Advance Instrumentation and Research Facility at Jawaharlal Nehru University, New Delhi, India, for helping in the GC-MS fingerprinting. We thank Mal. Kabiru Ibrahim, Alhaji Adamu Mohammed, and Mal. Kamilu Mahmud Zaria of the Department of Pharmacognosy and Drug Development in Ahmadu Bello University, Zaria-Nigeria, for their technical assistance, also our gratitude goes to Mal U.S. Gallah for his assistance in the collection of the plant species from the wild, their identification, and proper documentation at the Herbarium.

Author information

Authors and Affiliations

Authors

Contributions

WEA, DS, and IHN conceived and designed the experiments; WEA, NKK, DM, and JT conducted the experiments; WEA and NKK performed data analysis and prepared figures; WEA and DS wrote the paper; DS and IHN provided experimental oversight, analytical guidance, and edited the paper. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Wandayi Emmanuel Amlabu or Dinkar Sahal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amlabu, W.E., Nock, I.H., Kaushik, N.K. et al. Exploration of antiplasmodial activity in Acalypha wilkesiana Müller Argoviensis, 1866 (family: Euphorbiaceae) and its GC-MS fingerprint. Parasitol Res 117, 1473–1484 (2018). https://doi.org/10.1007/s00436-018-5802-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-018-5802-1

Keywords

Navigation