Skip to main content
Log in

Significance of higher drug concentration in erythrocytes of mice infected with Schistosoma japonicum and treated orally with mefloquine at single doses

  • Original Paper
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

The purpose of the present study is to understand the pharmacokinetic feature of mefloquine measured by erythrocytes and plasma in Schistosoma japonicum (S. j.)-infected mice and non-infected mice after oral administration of the drug at single doses. A high-performance liquid chromatography (HPLC) method was used to measure the plasma and erythrocyte concentrations of mefloquine at varying intervals posttreatment. Our results demonstrated that in non-infected mice treated orally with mefloquine at an ineffective dose of 50 mg/kg or effective dose of 200 mg/kg for 2–72 h, the erythrocyte-to-plasma ratios of mefloquine were 5.8–11.2 or 2–14.2. On the other hand, in S. j.-infected mice treated with the same single doses of the drug, the erythrocyte and plasma drug concentration ratios were 3.1–4.6 or 2.9–8.5, manifesting that either in infected mice or in non-infected mice that received oral mefloquine resulted in higher concentration of mefloquine in erythrocytes than that in plasma. Unexpectedly, under oral administration of mefloquine at a higher single dose of 200 mg/kg, the pharmacokinetic parameter C max values for plasma from S. j.-infected and non-infected mice were 1.6 ± 0.3 and 2.0 ± 0.4 μg/mL, respectively, which were below the determined in vitro LC50 (50 % lethal concentration) value of 4.93 μg/mL. Therefore, the plasma concentration of mefloquine may display a little effect against schistosomes during the treatment. Although the values of T 1/2 and AUC0-∞ for erythrocytes were significantly longer and higher in infected mice than those of corresponding non-infect mice that received the same single mefloqine dose of 50 mg/kg, the C max value was only 2.6 ± 0.4 μg/mL lower than the determined in vitro LC50, which may explain why this low single dose is ineffective against schistosomes in vivo. After administration of higher mefloquine dose of 200 mg/kg, the C max value for erythrocytes in infected mice was 30 % (7.4 ± 0.7 versus 10.7 ± 2.7 μg/mL) lower than that in the corresponding non-infected mice, but its level was above the determined in vitro LC95 (95 % lethal concentration) value of 6.12 μg/mL. Meanwhile, longer T 1/2 value of 159.2 ± 129.3 h in infected mice led to significant increase in AUC0−∞ value (1969.3 ± 1057.7 vs 486.4 ± 53.0 μg/mL·h), relative to corresponding non-infected mice. In addition, the mean residence time (MRT0−∞) in infected mice was also significantly longer than that in non-infected mice. All these results may beneficial for the treatment. According to the results, we suggest that higher ratios of mefloquine concentration in erythrocytes to plasma may offer a way to transport mefloquine to the worm gut through ingestion of erythrocytes by the worms, where the gut is the site for displaying the effect by mefloquine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Becker B, Mehlhorn H, Andrews P, Thomas H, Eckert J (1980) Light and electron microscopic studies on the effect of praziquantel on Schistosoma mansoni, Dicrocoelium dendriticum, and Fasciola hepatica (Trematoda) in vitro. Z Parasitenkd 63:113–128

    Article  CAS  PubMed  Google Scholar 

  • Björkman A, Willcox M (1986) In vitro susceptibility of Plasmodium falciparum to amodiaquine, mefloquine, quinine and chloroquine in Liberia, West Africa. Trans R Soc Trop Med Hyg 80:761–762

    Article  PubMed  Google Scholar 

  • Botros SS, El-Din SH, El-Lakkany NM, Sabra AN, Ebeid FA (2006) Drug metabolizing enzymes and praziquantel bioavailability in mice harboring Schistosoma mansoni isolates of different drug susceptibilities. J Parasitol 92:1344–1349

    Article  CAS  PubMed  Google Scholar 

  • Chinese Pharmacopoeia Commission (2010) Pharmacopoeia of the People’s Republic of China (Volume II). Beijing. The medicine science and technology press of China, 2010, appendix XIX B Guidelines for the guidance of human bioavailability and bioavailability for drug preparation, appendix 195–196

  • Chou AC, Chevli R, Fitch CD (1980) Hemolysis of mouse erythrocytes by ferriproto- porphyrin IX and chloroquine. J Clin Invest 66:856–858

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Corrêa Soares JB, Menezes D, Vannier-Santos MA, Ferreira-Pereira A, Almeida GT, Venancio TM, Verjovski-Almeida S, Zishiri VK, Kuter D, Hunter R, Egan TJ, Oliveira MF (2009) Interference with hemozoin formation represents an important mechanism of schistosomicidal action of antimalarial quinoline methanols. PLoS Negl Trop Dis 3, e477

    Article  PubMed Central  PubMed  Google Scholar 

  • Davies MJ (1988) Detection of peroxyl and alkoxyl radicals produced by reaction of hydroperoxides with heme-proteins by electron spin resonance spectroscopy. Biochim Biophys Acta 964:28–35

    Article  CAS  PubMed  Google Scholar 

  • Egan TJ (2002) Physico-chemical aspects of hemozoin (malaria pigment) structure and formation. J Inorg Biochem 91:19–26

    Article  CAS  PubMed  Google Scholar 

  • Egan TJ (2006) Interactions of quinoline antimalarials with hematin in solution. J Inorg Biochem 100:916–926

    Article  CAS  PubMed  Google Scholar 

  • Egan TJ, Ross DC, Adams PA (1994) Quinoline anti-malarial drugs inhibit spontaneous formation of beta-haematin (malaria pigment). FEBS Lett 352:54–57

    Article  CAS  PubMed  Google Scholar 

  • Ginsburg H, Demel RA (1983) The effect of ferriprotoporphyrin IX and chloroquine on phospholipid monolayers and the possible implications to antimalarial activity. Biochim Biophys Acta 732:316–319

    Article  CAS  PubMed  Google Scholar 

  • Gutteridge JM, Smith A (1988) Antioxidant protection by haemopexin of haemstimulated lipid peroxidation. Biochem J 256:861–865

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Homewood CA, Jewsbury JM, Chance ML (1972) The pigment formed during haemoglobin digestion by malarial and schistosomal parasites. Comp Biochem Physiol 43:517–523

    CAS  Google Scholar 

  • Ingram K, Ellis W, Keiser J (2012) Antischistosomal activities of mefloquine-related arylmethanols. Antimicrob Agents Chemother 56:3207–3215

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ingram K, Duthaler U, Vargas M, Ellis W, Keiser J (2013) Disposition of mefloquine and enpiroline is highly influenced by a chronic Schistosoma mansoni infection. Antimicrob Agents Chemother 57:4506–4511

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Karbwang J, Molunto P, Na Bangchang K, Bunnag D (1989) Determination of mefloquine in biological fluids using high performance liquid chromatography. Southeast Asian J Trop Med Public Health 20:55–60

    CAS  PubMed  Google Scholar 

  • Kaschula CH, Egan TJ, Hunter R, Basilico N, Parapini S, Taramelli D, Pasini E, Monti D (2002) Structure-activity relationships in 4-aminoquinoline antiplasmodials. The role of the group at the 7-position. J Med Chem 45:3531–3539

    Article  CAS  PubMed  Google Scholar 

  • Keiser J, Chollet J, Xiao SH, Mei JY, Jiao PY, Utzinger J, Tanner M (2009) Mefloquine—an aminoalcohol with promising antischistosomal properties in mice. PLoS Negl Trop Dis 3, e350

    Article  PubMed Central  PubMed  Google Scholar 

  • Keiser J, Vargas M, Doenhoff MJ (2010) Activity of artemether and mefloquine against juvenile and adult Schistosoma mansoni in athymic and immuno- competent NMRI mice. Am J Trop Med Hyg 82:112–114

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Keiser J, Manneck T, Vargas M (2011) Interactions of mefloquine with praziquantel in the Schistosoma mansoni mouse model and in vitro. J Antimicrob Chemother 66:1791–1797

    Article  CAS  PubMed  Google Scholar 

  • Kloetzel K, Lewert RM (1966) Pigment formation in Schistosoma mansoni infections in the white mouse. Am J Trop Med Hyg 15:28–31

    CAS  PubMed  Google Scholar 

  • Lawrence JD (1973) The ingestion of red blood cells by Schistosoma mansoni. J Parasitol 59:60–63

    Article  CAS  PubMed  Google Scholar 

  • Manneck T, Haggenmuller Y, Keiser J (2010) Morphological effects and tegumental alterations induced by mefloquine on schistosomula and adult flukes of Schistosoma mansoni. Parasitology 137:85–98

    Article  CAS  PubMed  Google Scholar 

  • Mehlhorn H, Becker B, Andrews P, Thomas H, Frenkel JK (1981) In vivo and in vitro experiments on the effects of praziquantel on Schistosoma mansoni. A light and electron microscopic study. Arzneimittelforschung 31(3a):544–554

    CAS  PubMed  Google Scholar 

  • Mu JY, Israili ZH, Dayton PG (1975) Studies of the disposition and metabolism of mefloquine HCl (WR 142,490), a quinolinemethanol antimalarial, in the rat. Limited studies with an analog, WR 30,090. Drug Metab Dispos 3:198–210

    CAS  PubMed  Google Scholar 

  • Na-Bangchang K, Ruengweerayut R, Wernsdorfer WH (2011) Distribution of mefloquine in the blood of Thai patients with acute uncomplicated falciparum malaria following administration of therapeutic doses of artesunate. Eur J Clin Pharmacol 67:687–691

    Article  CAS  PubMed  Google Scholar 

  • Ncokazi KK, Egan TJ (2005) A colorimetric high-throughput beta-hematin inhibition screening assay for use in the search for antimalarial compounds. Anal Biochem 338:306–319

    Article  CAS  PubMed  Google Scholar 

  • Ohnmacht CJ, Patel AR, Lutz RE (1971) Antimalarials. 7. Bis(trifluoromethyl)- (2-piperidyl)-4-quinolinemethanols. J Med Chem 14:926–928

    Article  CAS  PubMed  Google Scholar 

  • Oliveira MF, d’Avila JC, Torres CR, Oliveira PL, Tempone AJ, Rumjanek FD, Braga CM, Silva JR, Dansa-Petretski M, Oliveira MA, de Souza W, Ferreira ST (2000) Haemozoin in Schistosoma mansoni. Mol Biochem Parasitol 111:217–221

    Article  CAS  PubMed  Google Scholar 

  • Oliveira MF, d’Avila JCP, Tempone AJ, Soares JBR, Rumjanek FD, Ferreira-Pereira A, Ferreira ST, Oliveira PL (2004) Inhibition of heme aggregation by chloroquine reduces Schistosoma mansoni infection. J Infect Dis 190:843–852

    Article  CAS  PubMed  Google Scholar 

  • Orjih AU, Banyal HS, Chevli R, Fitch CD (1981) Hemin lyses malaria parasites. Science 214:667–669

    Article  CAS  PubMed  Google Scholar 

  • Orjih AU, Chevli R, Fitch CD (1985) Toxic heme in sickle cells: an explanation for death of malaria parasites. Am J Trop Med Hyg 34:223–227

    CAS  PubMed  Google Scholar 

  • Pagola S, Stephens PW, Bohle DS, Kosar AD, Madsen SK (2000) The structure of malaria pigment (b-haematin). Nature 404:307–310

    Article  CAS  PubMed  Google Scholar 

  • Peters W, Howells RE, Portus J, Robinson BL, Thomas S, Warhurst DC (1977) The chemotherapy of rodent malaria, XXVII. Studies on mefloquine (WR 142,490). Ann Trop Med Parasitol 71:407–418

    CAS  PubMed  Google Scholar 

  • Rozman RS, Molek NA, Koby D (1978) The absorption, distribution, and excretion in mice of the antimalarial mefloquine, erythro-2,8-bis(thrifluoromethyl)-a-(2-piperidyl)-4-quinolinemethanol hydrochloride. Drug Metab Dispos 6:654–658

    CAS  PubMed  Google Scholar 

  • San George RC, Nagel RL, Fabry ME (1984) On the mechanism for the red-cell accumulation of mefloquine, an antimalarial drug. Biochim Biophys Acta 803:174–181

    Article  CAS  PubMed  Google Scholar 

  • Schmitt TH, Frezzatti WA Jr, Schreier S (1993) Hemin induced lipid membrane disorder and increased permeability: a molecular model for the mechanism of cell lysis. Arch Biochem Biophys 307:96–103

    Article  CAS  PubMed  Google Scholar 

  • Schwartz DE, Eckert G, Hartmann D, Weber B, Richard-Lenoble D, Ekue JM, Gentilini M (1982) Single dose kinetics of mefloquine in man. Plasma levels of the unchanged drug and of one of its metabolites. Chemotherapy 28:70–84

    Article  CAS  PubMed  Google Scholar 

  • Slater AF, Swiggard WJ, Orton BR, Flitter WD, Goldberg DE, Cerami A, Henderson GB (1991) An iron-carboxylate bond links the heme of malaria pigment. Proc Natl Acad Sci U S A 88:325–329

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tajerzadeh H, Cutler DJ (1993) Blood to plasma ratio of mefloquine: interpretation and pharmacokinetic implications. Biopharm Drug Dispos 14:87–91

    Article  CAS  PubMed  Google Scholar 

  • Tappel AL (1955) Unsaturated lipide oxidation catalyzed by hematin compounds. J Biol Chem 217:721–733

    CAS  PubMed  Google Scholar 

  • Van der Zee J, Barr DP, Mason RP (1996) ESR spin trapping investigation of radical formation from the reaction between hematin and tert-butyl hydroperoxide. Free Radic Biol Med 20:199–206

    Article  PubMed  Google Scholar 

  • Van Nassauw L, Toovey S, Van Op den bosch J, Timmermans JP, Vercruysse J (2008) Schistosomicidal activity of the antimalarial drug, mefloquine, in Schistosoma mansoni-infected mice. Travel Med Infect Dis 6:253–258

    Article  PubMed  Google Scholar 

  • Wernsdorfer WH, Noedl H, Rendi-Wagner P, Kollaritsch H, Wiedermann G, Mikolasek A, Karbwang J, Na-Bangchang K (2013) Gender-specific distribution of mefloquine in the blood following the administration of therapeutic doses. Malar J 12:443

    Article  PubMed Central  PubMed  Google Scholar 

  • Xiao SH (2013) Mefloquine, a new type of compound against schistosomes and other helminthes in experimental studies. Parasitol Res 112:3723–3740

    Article  PubMed  Google Scholar 

  • Xiao SH, Fu S (1991) Recent laboratory investigations by Chinese workers on antischistosomal activities of praziquantel. Chin Med J 104:599–606

    CAS  PubMed  Google Scholar 

  • Xiao SH, Zhang CW (2009) Histopathological alteration of juvenile Schistosoma japonicum in mice following treatment with single dose mefloquine. Parasitol Res 105:1733–1740

    Article  PubMed  Google Scholar 

  • Xiao SH, Zhang CW (2010) Further observation on histopathological alterations of adult Schistosoma japonicum harbored in mice following treatment with mefloquine at a smaller single dose. Parasitol Res 107:773–781

    Article  PubMed  Google Scholar 

  • Xiao SH, Shao BR, Xue YQ, Pan QR (1980) The actions of pyquiton on the morphological changes of schistosomes, oviposition of female worms and hatching of ova. Natl Med J China 60:137–141

    Google Scholar 

  • Xiao SH, Shao BR, Yu YG (1984) Preliminary studies on the mode of action of pyquiton against Schistosoma japonicum. Chin Med J 97:839–848

    CAS  PubMed  Google Scholar 

  • Xiao SH, Yue WJ, Yang YQ, You JQ (1987) Susceptibility of Schistosoma japonicum of different developmental stages to praziquantel. Chin Med J 100:759–768

    CAS  PubMed  Google Scholar 

  • Xiao SH, You JQ, Yang YQ, Wang CZ (1995) Experimental studies on early treatment of schistosomal infection with artemether. Southeast Asian J Trop Med Public Health 26:306–318

    CAS  PubMed  Google Scholar 

  • Xiao SH, May JY, Jiao PY (2009a) Further study on mefloquine concerning several aspects in experimental treatment of mice and hamsters infected with Schistosoma japonicum. Parasitol Res 106:131–138

    Article  PubMed  Google Scholar 

  • Xiao SH, May JY, Jiao PY (2009b) The in vitro effect of mefloquine and praziquantel against juvenile and adult Schistosoma japonicum. Parasitol Res 106:237–246

    Article  PubMed  Google Scholar 

  • Xiao SH, Chollet J, Utzinger J, Mei JY, Jiao P, Keiser J, Tanner M (2009c) Effect of single dose oral mefloquine on the morphology of adult Schistosoma japonicum in mice. Parasitol Res 105:853–861

    Article  PubMed  Google Scholar 

  • Xiao SH, Xue J, Shen BG (2010a) Tegumental alterations of adult Schuistosoma japonicum harbored in mice treated with a single oral dose of mefloquine. Chin J Parasitol Parasit Dis 28:1–7

    CAS  Google Scholar 

  • Xiao SH, Xue J, Shen BG (2010b) Transmission electron microscopic observation on ultrastructural alterations in Schistosoma japonicum caused by mefloquine. Parasitol Res 106:1179–1187

    Article  PubMed  Google Scholar 

  • Xiao SH, Mei JY, Jiao PY (2011) Effect of mefloquine administered orally at single, multiple, or combined with artemether, artesunate, or praziquantel in treatment of mice infected with Schistosoma japonicum. Parasitol Res 108:399–406

    Article  PubMed  Google Scholar 

  • Xiao S, Sun J, Xue J (2012a) Confocal laser scanning microscopic observation on adult Schistosoma japonicum harbored in mice following treatment with single-dose mefloquine. Parasitol Res 110:2403–2411

    Article  PubMed  Google Scholar 

  • Xiao SH, Sun J, Xue J, Du XL, Zhang HB (2012b) Ultrastructural alterations of juvenile Schistosoma japonicum harbored in mice following mefloquine administration. Parasitol Res 110:637–644

    Article  PubMed  Google Scholar 

  • Xiao SH, Xue J, Zhang HB (2012c) Further studies on mefloquine and praziquantel alone or interaction of both drugs against Schistosoma japonicum in vitro. Parasitol Res 110:1239–1248

    Article  PubMed  Google Scholar 

  • Xiao SH, Qiao C, Xue J, Wang L (2014) Mefloquine in combination with hemin causes severe damage to adult Schistosoma japonicum in vitro. Acta Trop 131:71–78

    Article  CAS  PubMed  Google Scholar 

  • Xue J, Jiang B, Liu CS, Sun J, Xiao SH (2013) Comparative observation on inhibition of hemozoin formation and their in vitro and in vivo anti-schistosome activity displayed by 7 antimalarial drugs. Chin J Parasitol Parasit Dis 31:161–169

    Google Scholar 

  • Zhang CW, Xiao SH, Utzinger J, Cholle J, Keiser J, Tanner M (2009) Histo- pathological changes in adult Schistosoma japonicum harbored in mice following treatment with mefloquine. Parasitol Res 104:1407–1416

    Article  PubMed  Google Scholar 

  • Zussman RA, Bauman PM, Petruska JC (1970) The role of hemoglobin in the nutrition of Schiswsoma mansoni. J Parasitol 56:75–79

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This investigation was supported by International Collaboration on Drug and Diagnostics Innovation of Tropical Diseases in PR China (International S&T Cooperation 2010DFB73280) and Special Funds of Technology Development Research for Science Research Institute (2011EG150312).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shu-hua Xiao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tao, Y., Xue, J., Jiang, B. et al. Significance of higher drug concentration in erythrocytes of mice infected with Schistosoma japonicum and treated orally with mefloquine at single doses. Parasitol Res 114, 4521–4530 (2015). https://doi.org/10.1007/s00436-015-4696-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-015-4696-4

Keywords

Navigation