Skip to main content

Advertisement

Log in

Serine protease activities in Leishmania (Leishmania) chagasi promastigotes

  • Original Paper
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

The present work reports the isolation, biochemical characterization, and subcellular location of serine proteases from aqueous, detergent soluble, and culture supernatant of Leishmania chagasi promastigote extracts, respectively, LCSII, LCSI, and LCSIII. The active enzyme molecular masses of LCSII were about 105, 66, and 60 kDa; of LCSI, 60 and 58 kDa; and of LCSIII, approximately 76 and 68 kDa. Optimal pH for the enzymes was 7.0 for LCSI and LCSIII and 8.5 for LCSII, and the optimal temperature for all enzymes was 37°C, using α-N-ρ-tosyl-l-arginine methyl ester as substrate. Assay of thermal stability indicated that LCSIII is the more stable enzyme. Hemoglobin, bovine serum albumin, and ovalbumin were hydrolyzed by LCSII and LCSI but not by LCSIII. Inhibition studies suggested that enzymes belong to the serine protease class modulated by divalent cations. Rabbit antiserum against 56-kDa serine protease of Leishmania amazonensis identified proteins in all extracts of L. chagasi. Furthermore, immunocytochemistry demonstrated that serine proteases are located in flagellar pocket region and cytoplasmic vesicles of L. chagasi promastigotes. These findings indicate that L. chagasi serine proteases differ from L. amazonensis proteases and all known flagellate proteases, but display some similarities with serine proteases from other Leishmania species, suggesting a conservation of this enzymatic activity in the genus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

BSA:

bovine serum albumin

EDTA:

ethylenediaminetetraacetic acid

E-64:

l-trans-epoxysuccinyleucylamido-(4-guanidino) butane

SDS-PAGE:

sodium dodecyl sulfate-polyacrylamide gel electrophoresis

L-TAME:

N-ρ-tosyl-l-arginine methyl ester

TLCK:

N-tosyl-lysine chloromethyl ketone

TPCK:

N-tosyl-l-phenylalanine chloromethyl ketone

References

  • Alberio SO, Dias SS, Faria FP, Mortara RA, Barbieri CL, Haapalainen EF (2004) Ultrastructural and cytochemical identification of megasome in Leishmania (Leishmania) chagasi. Parasitol Res 92:246–254

    Article  PubMed  Google Scholar 

  • Alcala-Canto Y, Alberti-Navarro A, Ibarra-Velarde F (2007) Serine protease activity demonstrated in the larval stage of the pentastomid Linguatula serrata. Parasitol Res 100:1011–1014

    Article  CAS  PubMed  Google Scholar 

  • Alexander J, Russel DG (1992) The interaction of Leishmania species and macrophages. Adv Parasitol 31:175–254

    Article  CAS  PubMed  Google Scholar 

  • Andrade AR, Santoro MM, Norma de Melo M, Mares-Guia M (1998) Leishmania (Leishmania) amazonensis: purification and enzyme characterization of a soluble serine oligopeptidase from promastigotes. Exp Parasitol 89:153–160

    Article  PubMed  Google Scholar 

  • Anzellotti AI, Farrell NP (2008) Zinc metalloproteins as medicinal targets. Chem Soc Rev 37:1629–1651

    Article  CAS  PubMed  Google Scholar 

  • Barankiewicz J, Dosh HM, Cohen A (1988) Extracellular nucleotide catabolism in human B and T lymphocytes. J Biol Chem 263:7094–7098

    CAS  PubMed  Google Scholar 

  • Berezein I, Martinek K (1970) Specificity of [alfa]-chymotrypsin. FEBS Lett 8:261–267

    Article  Google Scholar 

  • Berman JD (2006) Visceral leishmaniasis in the New World & Africa. Indian J Med Res 123:289–294

    PubMed  Google Scholar 

  • Blackman MJ (2008) Malarial proteases and host cell egress: an “emerging” cascade. Cell Microbiol 10:1925–1934

    Article  CAS  PubMed  Google Scholar 

  • Bonhivers M, Nowacki S, Landrein N, Robinson DR (2008) Biogenesis of the trypanosome endo-exocytotic organelle is cytoskeleton mediated. PLoS Biol 6:1033–1046

    Article  CAS  Google Scholar 

  • Burleigh BA, Andrews NA (1995) 120-kDa alkaline peptidase from Trypanosoma cruzi is involved in the generation of a novel calcium-signaling factor for mammalian cells. J Biol Chem 270:5172–5180

    Article  CAS  PubMed  Google Scholar 

  • Burleigh BA, Woolsey AM (2002) Cell signaling and Trypanosoma cruzi invasion. Cell Microbiol 4:701–711

    Article  CAS  PubMed  Google Scholar 

  • Caldas AJM, Costa JML, Silva AAM, Vinhas V, Barral A (2001) Risk factors associated with asymptomatic infection by Leishmania chagasi in northeast Brazil. Trans Roy Soc Trop Med Hyg 95:1–8

    Article  Google Scholar 

  • Caler EV, Avalos SV, Haynes PA, Andrews NW, Burleigh BA (1998) Oligopeptidase B-dependent signaling mediates host cell by Trypanosoma cruzi. EMBO J 17:4975–4986

    Article  CAS  PubMed  Google Scholar 

  • Carvalho S, Cruz T, Santarém N, Castro H, Costa V, Tomás AM (2009) Heme as a source of iron to Leishmania infantum amastigotes. Acta Trop 109:131–135

    Article  CAS  PubMed  Google Scholar 

  • Chang KP, Reed SG, McGwire BS, Soong L (2003) Leishmania model for microbial virulence: the relevance of parasite multiplication and pathoantigenicity. Acta Trop 85:375–390

    Article  PubMed  Google Scholar 

  • Coetzer TH, Goldring JP, Huson LE (2008) Oligopeptidase B: a processing peptidase involved in pathogenesis. Biochimie 90:336–344

    Article  CAS  PubMed  Google Scholar 

  • Coombs GH, Goldberg DE, Klemba M, Berry C, Kay J, Mottram JC (2001) Aspartic proteases of Plasmodium falciparum and other parasitic protozoa as drug targets. Trends Parasitol 17:532–537

    Article  CAS  PubMed  Google Scholar 

  • Das R, Roy A, Dutta N, Majumder HK (2008) Reactive oxygen species and imbalance of calcium homeostasis contributes to curcumin induced programmed cell death in Leishmania donovani. Apoptosis 13:867–882

    Article  CAS  PubMed  Google Scholar 

  • Desjeux P (2004) Leishmaniasis: current situation and new perspectives. Comp Immunol Microbiol Infect Dis 27:305–318

    Article  CAS  PubMed  Google Scholar 

  • Desjeux P, Alvar J (2003) Leishmania/HIV co-infection: epidemiology in Europe. Ann Trop Med Parasitol 97:4–15

    Article  Google Scholar 

  • Di Cero E (2009) Serine proteases. IUBMB Life 61:510–515

    Article  Google Scholar 

  • Dowse TJ, Soldati D (2005) Rhomboid-like proteins in Apicomplexa: phylogeny and nomenclature. Trends Parasitol 21:254–258

    Article  CAS  PubMed  Google Scholar 

  • Ersmark K, Samuelson B, Halberg A (2006) Plasmepsins as potential targets for new antimalarial therapy. Med Res Rev 26:626–666

    Article  CAS  PubMed  Google Scholar 

  • Freeman M (2008) Rhomboid proteases and their biological functions. Annu Rev Genet 42:191–210

    Article  CAS  PubMed  Google Scholar 

  • Goto Y, Sanjoba C, Asada M, Saeki K, Onodera T, Matsumoto Y (2008) Adhesion of MRP8/14 to amastigotes in skin lesions of Leishmania major-infected mice. Exp Parasitol 119:80–86

    Article  CAS  PubMed  Google Scholar 

  • Guedes HLM, Rezende Neto JM, Fonseca MA, Salles CMC, Rossi-Bergmann B, De Simone SG (2007) Identification of serine proteases from Leishmania braziliensis. Z Naturforsch 62:373–381

    CAS  Google Scholar 

  • Jeronimo SMB, Teixeira MJ, Sousa AP, Thielking P, Pearson RD, Evans TG (2000) Natural history of Leishmania (Leishmania) chagasi infection in Northeastern Brazil: long-term follow-up. Clin Infect Dis 30:608–609

    Article  CAS  PubMed  Google Scholar 

  • Jeronimo SMB, Duggal P, Braz RFS (2004) An emerging peri-urban pattern of infection with Leishmania chagasi, the protozoan causing visceral leishmaniasis in northeast Brazil. Scand J Infec Dis 36:443–449

    Article  Google Scholar 

  • Jeronimo SMB, Duggal P, Ettinger NA, Nascimento ET, Monteiro GR, Cabral AP, Pontes NN, Lacerda HG, Queiroz PV, Maia CG, Pearson RD, Blackwel JM, Beaty TH, Wilson ME (2007) Genetic predisposition to self-curing infection with the protozoan Leishmania chagasi: a genome wide scan. Clin Infect Dis 196:1261–1269

    CAS  Google Scholar 

  • Kim WT, Kong HH, Ha YR, Hong YC, Jeong HJ, Yu HS, Chung DI (2006) Comparison of specific activity and cytopathic effects of purified 33-kDa serine proteinase from Acanthamoeba strains with different degree of virulence. Korean J Parasitol 44:321–330

    Article  PubMed  Google Scholar 

  • Krishnamurty G, Vikram R, Singh SB, Patel N, Agarwal S, Mukhopadhyay G, Basu SK, Mukhopadhyay A (2005) Hemoglobin receptor in Leishmania is a hexokinase located in the flagellar pocket. J Biol Chem 280:5884–5891

    Article  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head bacteriophage T4. Nature 227:680–685

    Article  CAS  PubMed  Google Scholar 

  • Lanza H, Afonso-Cardoso SR, Silva AG, Napolitano DR, Espíndola FS, Pena JD, Souza MA (2004) Comparative effect of ion calcium and magnesium in the activation and infection of the murine macrophage by Leishmania major. Biol Res 37:385–393

    Article  CAS  PubMed  Google Scholar 

  • Linder JC, Staehelin LA (1979) A novel model for fluid secretion by the trypanosomatid contractile vacuole apparatus. J Cell Biol 83:371–382

    Article  CAS  PubMed  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin reagent. Biol Chem 193:264–275

    Google Scholar 

  • McKerrow JH, Sun E, Rosenthal PJ, Bouvier J (1993) The proteases and the pathogenicity of parasitic protozoa. Annu Rev Microbiol 47:821–853

    Article  CAS  PubMed  Google Scholar 

  • McKerrow JH, Caffrey C, Kelly B, Loke P, Sadij M (2005) Proteases in parasitic disease. Ann Rev Pathol Mechan Dis 1:497–536

    Article  Google Scholar 

  • Misra S, Naskar K, Sarkar D, Ghosh DK (1991) Role of Ca2+ ion on Leishmania-macrophage attachment. Mol Cell Biochem 27:13–18

    Google Scholar 

  • Morty RE, Troeberg L, Pike RN, Jones R, Nickel P, Lodsdale-Eccles JD, Coetzer THT (1998) A trypanosome oligopeptidase as a target for the trypanocidal agents pentamidine, diminazene and suramin. FEBS Lett 433:251–256

    Article  CAS  PubMed  Google Scholar 

  • Morty RE, Authié E, Troeberg L, Londsdale-Eccles JD, Coetzer THT (1999a) Purification and characterisation of a trypsin-like serine oligopeptidase from Trypanosoma congolense. Mol Biochem Parasitol 102:145–155

    Article  CAS  PubMed  Google Scholar 

  • Morty RE, Authié E, Troeberg L, Londsdale-Eccles JD, Coetzer THT (1999b) Oligopeptidase B from Trypanosoma brucei, a new member of an emerging subgroup of serine oligopeptidases. J Biol Chem 274:26149–26156

    Article  CAS  PubMed  Google Scholar 

  • Morty RE, Pellé R, Vadász I, Uzcanga GL, Seeger W, Budis J (2005) Oligopeptidase B from Trypanosoma evansi. J Biol Chem 280:10925–10937

    Article  CAS  PubMed  Google Scholar 

  • Murray HW, Berman JD, Davies CR, Saraiva NG (2005) Advances in leishmaniasis. Lancet 366:1561–1577

    Article  CAS  PubMed  Google Scholar 

  • Niemirowicz G, Parussini F, Aguero F, Cazzulo JJ (2007) Two metallocarboxypeptidases from the protozoan Trypanosoma cruzi belong to the M32 family, found so far only in prokaryotes. Biochem J 401:399–410

    Article  CAS  PubMed  Google Scholar 

  • Overath P, Stierhof YD, Wiese M (1997) Endocytosis and secretion in trypanosomatid parasites—tumultuous traffic in a pocket. Trends Cell Biol 7:27–33

    Article  CAS  PubMed  Google Scholar 

  • Prasad A, Kaur S, Malla N, Ganguly NK, Mahajan RC (2001) Ca++ signaling in the transformation of promastigotes to axenic amastigotes of Leishmania donovani. Mol Cell Biochem 224:39–44

    Article  CAS  PubMed  Google Scholar 

  • Quintas-Granados LI, Orozco E, Brieba LG, Arroyo R, Ortega-López J (2009) Purification, refolding and autoactivation of the recombinant cysteine proteinase EhCP112 from Entamoeba histolytica. Protein Expr Purif 63:26–32

    Article  CAS  PubMed  Google Scholar 

  • Rawlings ND, Morton FR, Kok CY, Kong J, Barrett AJ (2008) MEROPS: the peptidase database. Nucleic Acids Res 36:D320–D325

    Article  CAS  PubMed  Google Scholar 

  • Rhods ML, Fetterer RH (1997) Extracellular matrix: a tool for defining the extracorporeal function of parasite proteases. Parasitol Today 13:119–122

    Article  Google Scholar 

  • Roggwille E, Bétoulle MEM, Blisnick T, Braun-Breton C (1996) A role for erythrocyte band 3 degradation by the parasite gp 76 serine protease in the formation of the parasitophorus vacuole during invasion of erythrocytes by Plasmodium falciparum. Mol Biochem Parasitol 82:13–24

    Google Scholar 

  • Santana JM, Grellier P, Teixeira AR (1997) A Trypanosoma cruzi-secreted 80 kDa protease with specificity for human collagen types I and IV. Biochem J 324:129–137

    Google Scholar 

  • Shears SB (2009) Molecular basis for the integration of inositol phosphate signaling pathways via human ITPK1. Adv Enzyme Regul 49:87–96

    Article  CAS  PubMed  Google Scholar 

  • Silva-López RE, Giovanni De Simone S (2004a) A serine protease from a detergent soluble extract of Leishmania (Leishmania) amazonensis. Z Naturforsch 59c:590–598

    Google Scholar 

  • Silva-López RE, Giovanni De Simone S (2004b) Leishmania (Leishmania) amazonensis: purification and characterization of a promastigote serine protease. Exp Parasitol 107:173–182

    Article  PubMed  Google Scholar 

  • Silva-López RE, Morgado-Díaz JA, Alves CR, Côrte-Real S, Giovanni De Simone S (2004) Subcellular localization of an extracellular serine protease in Leishmania (Leishmania) amazonensis. Parasitol Res 93:328–331

    Article  PubMed  Google Scholar 

  • Silva-López RE, Coelho MGP, Giovanni De Simone S (2005) Characterization of an extracellular serine protease of Leishmania (Leishmania) amazonensis. Parasitol 131:85–96

    Article  Google Scholar 

  • Silva-López RE, Morgado-Díaz JA, Alves CR, Cháves MA, Giovanni De Simone S (2007) Effects of serine protease inhibitors on viability and morphology of Leishmania (Leishmania) amazonensis promastigotes. Parasitol Res 101:1627–1635

    Article  PubMed  Google Scholar 

  • Silva-López RE, Morgado-Díaz JA, Santos PT, Giovanni De Simone S (2008) Purification and subcellular localization of a secreted 75 kDa Trypanosoma cruzi serine oligopeptidase. Acta Trop 107:159–167

    Article  PubMed  Google Scholar 

  • Sousa MO, Miranda TSL, Maia CN, Bittar ER, Santoro MM, Figueiredo AFS (2002) Kinetic peculiarities of human tissue kallikrein: 1-Substrate activation in the catalyzed hydrolysis of H-D-valyl-leucyl-L-arginine 4-nitroanilide and H-D-valyl-leucyl-L-lysine 4-nitroanilide: 2-substrate inhibition in the catalysed hydrolysis of N-ρ-tosyl-L-arginine methyl ester. Arch Biochem Biophys 400:7–14

    Article  CAS  PubMed  Google Scholar 

  • Sundar S, Olliaro PL (2007) Miltefosine in the treatment of leishmaniasis: clinical evidence for informed clinical risk management. Ther Clin Risk Manag 3:733–740

    CAS  PubMed  Google Scholar 

  • Troerberg L, Pike RN, Morty RE, Berry RK, Coether THT, Londsdale-Eccles JD (1996) Proteases from Trypanosoma brucei brucei. Eur J Biochem 238:728–736

    Article  Google Scholar 

  • Ueda-Nakamura T, Attias M, Souza W (2007) Comparative analysis of megasomes in members of the Leishmania mexicana complex. Res Microbiol 158:456–462

    Article  CAS  PubMed  Google Scholar 

  • Werneck GL, Rodrigues Júnior L, Santos MV, Araújo IB, Moura LS, Lima SS, Gomes RBB, Maguirre JH, Costa CHN (2002) The burden of Leishmania chagasi infection during an urban outbreak of visceral leishmaniasis in Brazil. Acta Trop 83:13–18

    Article  CAS  PubMed  Google Scholar 

  • WHO (2006) Strategic and technical meeting on intensified control of neglected tropical diseases—Report of an international workshop—Berlin, 18–20 April 2005. WHO/CDS/NTD/2006.1 http://www.who.int/neglected_diseases/en/ accessed in June 2008.

  • Wilkesman J, Kurz L (2009) Protease analysis by zymography: a review on techniques and patents. Rec Pat Biotech 3:175–184

    Article  CAS  Google Scholar 

  • Wilson ME, Jeronimo SMB, Pearson RD (2005) Immunopathogenesis of infection with the visceralizing Leishmania species. Microbiol Pathogen 38:147–160

    Article  CAS  Google Scholar 

  • Yoshida N (2006) Molecular basis of mammalian cell invasion by Trypanosoma cruzi. An Acad Bras Cienc 78:87–111

    Google Scholar 

Download references

Acknowledgments

This work was supported with grants from Fundação Oswaldo Cruz (FIOCRUZ) and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq). We are grateful to Mr. G. A. de Souza for his technical assistance on Leishmania cultures, Mr. A. L. Antelo for his computer assistance, and Dr. M. R. Lishon for the English review and revision.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raquel Elisa da Silva-López.

Rights and permissions

Reprints and permissions

About this article

Cite this article

da Silva-López, R.E., dos Santos, T.R., Morgado-Díaz, J.A. et al. Serine protease activities in Leishmania (Leishmania) chagasi promastigotes. Parasitol Res 107, 1151–1162 (2010). https://doi.org/10.1007/s00436-010-1983-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-010-1983-y

Keywords

Navigation