Skip to main content

Advertisement

Log in

Reactive oxygen species and imbalance of calcium homeostasis contributes to curcumin induced programmed cell death in Leishmania donovani

  • Original Paper
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Curcumin, a polyphenol compound, has been recognized as a promising anti-cancer drug. The purpose of the present study was to investigate the cytotoxicity of curcumin to Leishmania donovani, the causative agent for visceral leishmaniasis. Flow cytometric analysis revealed that curcumin induced cell cycle arrest at G2/M phase. Incubation of Leishmania promastigotes with curcumin caused exposure of phosphatidylserine to the outer leaflet of plasma membrane. This event is preceded by curcumin-induced formation of reactive oxygen species (ROS) and elevation of cytosolic calcium through the release of calcium ions from intracellular stores as well as by influx of extracellular calcium. Elevation of cytosolic calcium is responsible for depolarization of mitochondrial membrane potential (ΔΨm), release of Cytochrome c into the cytosol and concomitant nuclear alterations that included deoxynucleotidyltransferase-mediated dUTP end labeling (TUNEL) and DNA fragmentation. Taken together, these data indicate that curcumin has promising antileishmanial activity that is mediated by programmed cell death and, accordingly, merits further investigation as a therapeutic option for the treatment of leishmaniasis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

SR:

Sarcoplasmic reticulum

ROS:

Reactive oxygen species

PI:

Propidium iodide

NAC:

N-acetyl-cysteine

DMSO:

dimethyl sulfoxide

TUNEL:

Terminal deoxynucleotidyltransferase enzyme-mediated dUTP end labeling

HU:

Hydroxyurea

References

  1. Iwu MM, Jackson JE, Schuster BG (1994) Medicinal plants in the fight against leishmaniasis. Parasitol Today 10:65–68. doi:10.1016/0169-4758(94)90398-0

    Article  PubMed  CAS  Google Scholar 

  2. Kayser O, Kiderlen AF, Croft SL (2003) Natural products as antiparasitic drugs. Parasitol Res 90:S55–S62. doi:10.1007/s00436-002-0768-3

    Article  PubMed  Google Scholar 

  3. Sharma RA, Gescher AJ, Steward WP (2005) Curcumin: the story so far. Eur J Cancer 41:1955–1968. doi:10.1016/j.ejca.2005.05.009

    Article  PubMed  CAS  Google Scholar 

  4. Mukherjee Nee Chakraborty S, Ghosh U, Bhattacharyya NP, Bhattacharya RK, Dey S, Roy M (2007) Curcumin-induced apoptosis in human leukemia cell HL-60 is associated with inhibition of telomerase activity. Mol Cell Biochem 297:31–39. doi:10.1007/s11010-006-9319-z

    Article  PubMed  Google Scholar 

  5. Fang J, Lu J, Holmgren A (2005) Thioredoxin reductase is irreversibly modified by curcumin: a novel molecular mechanism for its anticancer activity. J Biol Chem 280:25284–25290. doi:10.1074/jbc.M414645200

    Article  PubMed  CAS  Google Scholar 

  6. Su CC, Chen GW, Lin JG, Wu LT, Chung JG (2006) Curcumin inhibits cell migration of human colon cancer colo 205 cells through the inhibition of nuclear factor kappa B/p65 and down-regulates cyclooxygenase-2 and matrix metalloproteinase-2 expressions. Anticancer Res 26:1281–1288

    Google Scholar 

  7. Reddy AC, Lokesh BR (1994) Effect of dietary turmeric (Curcuma longa) on iron-induced lipid peroxidation in the rat liver. Food Chem Toxicol 32:279–283. doi:10.1016/0278-6915(94)90201-1

    Article  PubMed  CAS  Google Scholar 

  8. Nagabhushan M, Amonkar AJ, Bhide SV (1987) In vitro antimutagenicity of curcumin against environmental mutagens. Food Chem Toxicol 25:545–547. doi:10.1016/0278-6915(87)90207-9

    Article  PubMed  CAS  Google Scholar 

  9. Mazumder A, Raghavan K, Weinstein J, Kohn KW, Pommier Y (1995) Inhibition of human immunodeficiency virus type-1 integrase by curcumin. Biochem Pharmacol 49:1165–1170. doi:10.1016/0006-2952(95)98514-A

    Article  PubMed  CAS  Google Scholar 

  10. Joe B, Vijaykumar M, Lokesh BR (2004) Biological properties of curcumin-cellular and molecular mechanisms of action. Crit Rev Food Sci Nutr 44:97–111. doi:10.1080/10408690490424702

    Article  PubMed  CAS  Google Scholar 

  11. Cui SX, Qu XJ, Xie YY, Zhou L, Nakata M, Makuuchi M et al (2006) Curcumin inhibits telomerase activity in human cancer cell lines. Int J Mol Med 18:227–231

    PubMed  CAS  Google Scholar 

  12. Liao YF, Hung HC, Hour TC, Hsu PC, Kao MC, Tsay GJ et al (2008) Curcumin induces apoptosis through an ornithine decarboxylase-dependent pathway in human promyelocytic leukemia HL-60 cells. Life Sci 82:367–375

    PubMed  CAS  Google Scholar 

  13. Nose M, Koide T, Ogihara Y, Yabu Y, Ohta N (1998) Trypanocidal effects of curcumin in vitro. Biol Pharm Bull 21:643–645

    PubMed  CAS  Google Scholar 

  14. Pérez-Arriaga L, Mendoza-Magaña ML, Cortés-Zárate R, Corona-Rivera A, Bobadilla-Morales L, Troyo-Sanromán R et al (2006) Cytotoxic effect of curcumin on Giardia lamblia trophozoites. Acta Trop 98:152–161. doi:10.1016/j.actatropica.2006.03.005

    Article  PubMed  Google Scholar 

  15. Rasmussen HB, Christensen SB, Kvist LP, Karazmi A (2000) A simple and efficient separation of the curcumins, the antiprotozoal constituents of Curcuma longa. Planta Med 66:396–398. doi:10.1055/s-2000-8533

    Article  PubMed  CAS  Google Scholar 

  16. Reddy RC, Vatsala PG, Keshamouni VG, Padmanaban G, Rangarajan PN (2005) Curcumin for malaria therapy. Biochem Biophys Res Commun 326:472–474. doi:10.1016/j.bbrc.2004.11.051

    Article  PubMed  CAS  Google Scholar 

  17. Nandakumar DN, Nagaraj VA, Vathsala PG, Rangarajan P, Padmanaban G (2006) Curcumin-artemisinin combination therapy for malaria. Antimicrob Agents Chemother 50:1859–1860. doi:10.1128/AAC.50.5.1859-1860.2006

    Article  PubMed  CAS  Google Scholar 

  18. Cui L, Miao J, Cui L (2007) Cytotoxic effect of curcumin on malaria parasite Plasmodium falciparum: inhibition of histone acetylation and generation of reactive oxygen species. Antimicrob Agents Chemother 51:488–494. doi:10.1128/AAC.01238-06

    Article  PubMed  CAS  Google Scholar 

  19. Lee N, Bertholet S, Debrabant A, Muller J, Duncan R, Nakhasi HL (2002) Programmed cell death in the unicellular protozoan parasite Leishmania. Cell Death Differ 9:53–64. doi:10.1038/sj.cdd.4400952

    Article  PubMed  CAS  Google Scholar 

  20. Sen N, Das BB, Ganguly A, Mukherjee T, Tripathi G, Bandyopadhyay S et al (2004) Camptothecin induced mitochondrial dysfunction leading to programmed cell death in unicellular hemoflagellate Leishmania donovani. Cell Death Differ 11:924–936. doi:10.1038/sj.cdd.4401435

    Article  PubMed  CAS  Google Scholar 

  21. Das M, Mukherjee SB, Shaha C (2001) Hydrogen peroxide induces apoptosis-like death in Leishmania donovani promastigotes. J Cell Sci 114:2461–2469

    PubMed  CAS  Google Scholar 

  22. Zangger H, Mottram JC, Fasel N (2002) Cell death in Leishmania induced by stress and differentiation: programmed cell death or necrosis? Cell Death Differ 9:1126–1139. doi:10.1038/sj.cdd.4401071

    Article  PubMed  CAS  Google Scholar 

  23. Debrabant A, Lee N, Bertholet S, Duncan R, Nakhasi HL (2003) Programmed cell death in trypanosomatids and other unicellular organisms. Int J Parasitol 33:257–267. doi:10.1016/S0020-7519(03)00008-0

    Article  PubMed  Google Scholar 

  24. Saleheen D, Ali SA, Ashfaq K, Siddiqui AA, Agha A, Yasinzai MM (2002) Latent activity of curcumin against leishmaniasis in vitro. Biol Pharm Bull 25:386–389. doi:10.1248/bpb.25.386

    Article  PubMed  CAS  Google Scholar 

  25. Le Bras M, Clément MV, Pervaiz S, Brenner C (2005) Reactive oxygen species and the mitochondrial signaling pathway of cell death. Histol Histopathol 20:205–219

    PubMed  CAS  Google Scholar 

  26. Soto M, Iborra S, Quijada L, Folgueira C, Alonso C, Requena JM (2004) Cell-cycle-dependent translation of histone mRNAs is the key control point for regulation of histone biosynthesis in Leishmania infantum. Biochem J 379:617–625. doi:10.1042/BJ20031522

    Article  PubMed  CAS  Google Scholar 

  27. Mukherjee SB, Das M, Sudhandiran G, Shaha C (2002) Increase in cytosolic Ca2+ levels through the activation of non-selective cation channels induced by oxidative stress causes mitochondrial depolarization leading to apoptosis-like death in Leishmania donovani promastigotes. J Biol Chem 277:24717–24727. doi:10.1074/jbc.M201961200

    Article  PubMed  CAS  Google Scholar 

  28. Kunwar A, Barik A, Mishra B, Rathinasamy K, Pandey R, Priyadarsini KI (2008) Quantitative cellular uptake, localization and cytotoxicity of curcumin in normal and tumor cells. Biochim Biophys Acta 1780:673–679

    PubMed  CAS  Google Scholar 

  29. Mehta A, Shaha C (2004) Apoptotic death in Leishmania donovani promastigotes in response to respiratory chain inhibition: complex II inhibition results in increased pentamidine cytotoxicity. J Biol Chem 279:11798–11813. doi:10.1074/jbc.M309341200

    Article  PubMed  CAS  Google Scholar 

  30. Compton MM (1992) A biochemical hallmark of apoptosis: internucleosomal degradation of the genome. Cancer Metastasis Rev 11:105–119. doi:10.1007/BF00048058

    Article  PubMed  CAS  Google Scholar 

  31. Wan CP, Myung E, Lau BH (1993) An automated micro-fluorometric assay for monitoring oxidative burst activity of phagocytes. J Immunol Methods 159:131–138. doi:10.1016/0022-1759(93)90150-6

    Article  PubMed  CAS  Google Scholar 

  32. Bhaumik S, Anjum R, Rangaraj N, Pardhasaradhi BV, Khar A (1999) Curcumin mediated apoptosis in AK-5 tumor cells involves the production of reactive oxygen intermediates. FEBS Lett 456:311–314. doi:10.1016/S0014-5793(99)00969-2

    Article  PubMed  CAS  Google Scholar 

  33. Jana NR, Dikshit P, Goswami A, Nukina N (2004) Inhibition of proteasomal function by curcumin induces apoptosis through mitochondrial pathway. J Biol Chem 279:11680–11685. doi:10.1074/jbc.M310369200

    Article  PubMed  CAS  Google Scholar 

  34. Duchen MR (2000) Mitochondria and calcium: from cell signalling to cell death. J Physiol 529:57–68. doi:10.1111/j.1469-7793.2000.00057.x

    Article  PubMed  CAS  Google Scholar 

  35. Sen N, Das BB, Ganguly A, Mukherjee T, Bandyopadhyay S, Majumder HK (2004) Camptothecin-induced imbalance in intracellular cation homeostasis regulates programmed cell death in unicellular hemoflagellate Leishmania donovani. J Biol Chem 279:52366–52375. doi:10.1074/jbc.M406705200

    Article  PubMed  CAS  Google Scholar 

  36. Koya RC, Fujita H, Shimizu S, Ohtsu M, Takimoto M, Tsujimoto Y et al (2000) Gelsolin inhibits apoptosis by blocking mitochondrial membrane potential loss and cytochrome c release. J Biol Chem 275:15343–15349. doi:10.1074/jbc.275.20.15343

    Article  PubMed  CAS  Google Scholar 

  37. Scheffler IE (1999) Mitochondria. Wiley-Liss, New York

    Google Scholar 

  38. Rittig MG, Bogdan C (2000) Leishmania-host-cell interaction: complexities and alternative views. Parasitol Today 16:292–297. doi:10.1016/S0169-4758(00)01692-6

    Article  PubMed  CAS  Google Scholar 

  39. Park C, Kim GY, Kim GD, Choi BT, Park YM, Choi YH (2006) Induction of G2/M arrest and inhibition of cyclooxygenase-2 activity by curcumin in human bladder cancer T24 cells. Oncol Rep 15:1225–1231

    PubMed  CAS  Google Scholar 

  40. Chipuk JE, Green DR (2005) Do inducers of apoptosis trigger caspase-independent cell death? Nat Rev Mol Cell Biol 6:268–275. doi:10.1038/nrm1573

    Article  PubMed  CAS  Google Scholar 

  41. Ahsan H, Parveen N, Khan NU, Hadi SM (1999) Pro-oxidant, anti-oxidant and cleavage activities on DNA of curcumin and its derivatives demethoxycurcumin and bisdemethoxycurcumin. Chem Biol Interact 121:161–175. doi:10.1016/S0009-2797(99)00096-4

    Article  PubMed  CAS  Google Scholar 

  42. Litwinienko G, Ingold KU (2004) Abnormal solvent effects on hydrogen atom abstraction. 2. Resolution of the curcumin antioxidant controversy. The role of sequential proton loss electron transfer. J Org Chem 69:5888–5896. doi:10.1021/jo049254j

    Article  PubMed  CAS  Google Scholar 

  43. Chan MM, Adapala NS, Fong D (2005) Curcumin overcomes the inhibitory effect of nitric oxide on Leishmania. Parasitol Res 96:49–56. doi:10.1007/s00436-005-1323-9

    Article  PubMed  Google Scholar 

  44. Galati G, Sabzevari O, Wilson JX, O’Brien PJ (2002) Prooxidant activity and cellular effects of the phenoxyl radicals of dietary flavonoids and other polyphenolics. Toxicology 177:91–104. doi:10.1016/S0300-483X(02)00198-1

    Article  PubMed  CAS  Google Scholar 

  45. Cao J, Liu Y, Jia L, Zhou HM, Kong Y, Yang G et al (2007) Curcumin induces apoptosis through mitochondrial hyperpolarization and mtDNA damage in human hepatoma G2 cells. Free Radic Biol Med 43:968–975. doi:10.1016/j.freeradbiomed.2007.06.006

    Article  PubMed  CAS  Google Scholar 

  46. Mishra B, Priyadarsini KI, Bhide MK, Kadam RM, Mohan H (2004) Reactions of superoxide radicals with curcumin: probable mechanisms by optical spectroscopy and EPR. Free Radic Res 38:355–362. doi:10.1080/10715760310001660259

    Article  PubMed  CAS  Google Scholar 

  47. De Grey AD (2002) HO2*: the forgotten radical. DNA Cell Biol 21:251–257. doi:10.1089/104454902753759672

    Article  PubMed  Google Scholar 

  48. Ingolfsson HI, Koeppe RE II, Andersen OS (2007) Curcumin is a modulator of bilayer material properties. Biochemistry 46:10384–10391. doi:10.1021/bi701013n

    Article  PubMed  CAS  Google Scholar 

  49. Bilmen JG, Khan SZ, Javed MH, Michelangeli F (2001) Inhibition of the SERCA Ca2+ pumps by curcumin. Curcumin putatively stabilizes the interaction between the nucleotide-binding and phosphorylation domains in the absence of ATP. Eur J Biochem 268:6318–6327. doi:10.1046/j.0014-2956.2001.02589.x

    Article  PubMed  CAS  Google Scholar 

  50. Green DR, Kroemer G (2004) The pathophysiology of mitochondrial cell death. Science 305:626–629. doi:10.1126/science.1099320

    Article  PubMed  CAS  Google Scholar 

  51. Palit P, Ali N (2008) Oral therapy with amlodipine and lacidipine, 1,4-dihydropyridine derivatives showing activity against experimental visceral Leishmaniasis. Antimicrob Agents Chemother 52:374–377. doi:10.1128/AAC.00522-07

    Article  PubMed  CAS  Google Scholar 

  52. Verma NK, Dey CS (2004) Possible mechanism of miltefosine-mediated death of Leishmania donovani. Antimicrob Agents Chemother 48:3010–3015. doi:10.1128/AAC.48.8.3010-3015.2004

    Article  PubMed  CAS  Google Scholar 

  53. Dutta A, Bandyopadhyay S, Mandal C, Chatterjee M (2007) Aloe vera leaf exudate induces a caspase-independent cell death in Leishmania donovani promastigotes. J Med Microbiol 56:629–636. doi:10.1099/jmm.0.47039-0

    Article  PubMed  CAS  Google Scholar 

  54. Sen R, Bandyopadhyay S, Dutta A, Mandal G, Ganguly S, Saha P et al (2007) Artemisinin triggers induction of cell-cycle arrest and apoptosis in Leishmania donovani promastigotes. J Med Microbiol 56:1213–1218. doi:10.1099/jmm.0.47364-0

    Article  PubMed  CAS  Google Scholar 

  55. Dutta A, Ghoshal A, Mandal D, Mondal NB, Banerjee S, Sahu NP et al (2007) Racemoside A, an anti-leishmanial, water-soluble, natural steroidal saponin, induces programmed cell death in Leishmania Donovani. J Med Microbiol 56:1196–1204. doi:10.1099/jmm.0.47114-0

    Article  PubMed  CAS  Google Scholar 

  56. Anand P, Kunnumakkara AB, Newman RA, Aggarwal BB (2007) Bioavailability of curcumin: problems and promises. Mol Pharm 4:807–818. doi:10.1021/mp700113r

    Article  PubMed  CAS  Google Scholar 

  57. Shoba G, Joy D, Joseph T, Majeed M, Rajendran R, Srinivas PS (1998) Influence of piperine on the pharmacokinetics of curcumin in animals and human volunteers. Planta Med 64:353–356. doi:10.1055/s-2006-957450

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Prof. S. Roy, the Director of our institute, for his interest in this work. We thank Dr. G. Tripathi for her help regarding the confocal microscopic work. This work was supported by the grants from Network Project NWP-0038 Council for Scientific and Industrial Research (CSIR), Government of India to HKM. R.D. was supported by Senior Research Fellowship from CSIR, Government of India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hemanta K. Majumder.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Das, R., Roy, A., Dutta, N. et al. Reactive oxygen species and imbalance of calcium homeostasis contributes to curcumin induced programmed cell death in Leishmania donovani . Apoptosis 13, 867–882 (2008). https://doi.org/10.1007/s10495-008-0224-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-008-0224-7

Keywords

Navigation