Skip to main content
Log in

The trypanosome alternative oxidase exists as a monomer in Trypanosoma brucei mitochondria

  • Original Paper
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

The bloodstream forms of African trypanosomes solely depend on trypanosome alternative oxidase (TAO), for respiration. Similar to alternative oxidases (AOXs) found in plants and fungi, TAO is a membrane-bound diiron protein. Here, we investigated if TAO exists as a dimer like plant AOXs, or as a monomer like that of fungi. We have found that TAO forms a homo-dimer on a regular SDS-PAGE in the absence of any reducing agent and exists as a monomer under reducing condition. However, TAO does not form a dimer upon treatment of mitochondria with diamide. TAO was found as a higher molecular mass complex on a Blue-native gel after solubilization with digitonin. In the detergent soluble form, TAO activity was stimulated under reducing and inhibited under oxidizing condition. However, these conditions have no effect on the TAO activity in the mitochondria. Moreover, chemical cross-linking analysis revealed that TAO could not be cross-linked when present in the mitochondria. Together, it suggests that like certain other hydrophobic membrane proteins, TAO forms a dimer or oligomer when solubilized with detergents, and the TAO-dimer is SDS-resistant. However, it exists as a monomer in Trypanosoma brucei mitochondria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Affourtit C, Krab K, Moore AL (2001) Control of plant mitochondrial respiration. Biochim Biophys Acta 1504:58–69

    CAS  PubMed  Google Scholar 

  • Affourtit C, Albury MS, Crichton PG, Moore AL (2002) Exploring the molecular nature of alternative oxidase regulation and catalysis. FEBS Lett 510:121–126

    Article  CAS  PubMed  Google Scholar 

  • Bienen EJ, Hill GC, Shin K (1983) Elaboration of mitochondrial function during Trypanosoma brucei differentiation. Mol Biochem Parasitol 7:75–86

    Article  CAS  PubMed  Google Scholar 

  • Bienen EJ, Saric M, Pollakis G, Grady RW, Clarkson AB Jr (1991) Mitochondrial development in Trypanosoma brucei brucei transitional bloodstream forms. Mol Biochem Parasitol 45:185–192

    Article  CAS  PubMed  Google Scholar 

  • Carruthers VB, Cross GA (1992) High efficiency clonal growth of bloodstream and insect form of Trypanosoma brucei on agarose plates. Proc Natl Acad Sci USA 15:8818–8821

    Google Scholar 

  • Chaudhuri M, Nargang FE (2003) Import and assembly of Neurospora crassa Tom40 into mitochondria of Trypanosoma brucei in vivo. Curr Genet 44:85–94

    Article  CAS  PubMed  Google Scholar 

  • Chaudhuri M, Ajayi W, Temple S, Hill GC (1995) Identification and partial purification of a stage specific 33 kDa mitochondrial protein as the alternative oxidase of Trypanosoma brucei brucei bloodstream trypanosomes. J Eukaryot Microbiol 42:467–472

    CAS  PubMed  Google Scholar 

  • Chaudhuri M, Ajayi WU, Hill GC (1998) Biochemical and molecular properties of the Trypanosoma brucei alternative oxidase. Mol Biochem Parasitol 95:53–68

    Article  CAS  PubMed  Google Scholar 

  • Clarkson AB, Bienen EJ, Pollakis G, Grady RW (1989) Respiration of the bloodstream forms of the parasite Trypanosoma brucei brucei is dependent on a plant-like alternative oxidase. J Biol Chem 264:17770–17776

    CAS  PubMed  Google Scholar 

  • Clayton CE, Michels P (1996) Metabolic compartmentation in African trypanosomes. Parasitol Today 12:465–471

    Article  CAS  PubMed  Google Scholar 

  • Fleming KG, Ackerman AL, Engelman DM (1997) The effect of point mutations on the free energy of transmembrane α-helix dimerization. J Mol Biol 272:266–275

    Article  CAS  PubMed  Google Scholar 

  • Grant PT, Sargent JR (1960) Properties of L-α-glycerophosphate and its role in the respiration of Trypanosoma rhodesience. Biochem J 76:229–237

    CAS  PubMed  Google Scholar 

  • Hill GC (1976) Electron transport systems in kinetoplastida. Biochim Biophys Acta 456:149–193

    CAS  PubMed  Google Scholar 

  • Hirumi H, Hirumi K (1984) Continuous cultivation of animal-infective bloodstream forms of an East African Trypanosoma congolense stock. Ann Trop Med Parasitol 78:327–330

    CAS  PubMed  Google Scholar 

  • Horvath A, Berry EA, Maslov DA (2000) Translation of the edited mRNA for cytochrome b in trypanosome mitochondria. Science 287:1639–1640

    Article  CAS  PubMed  Google Scholar 

  • Horvath A, Nebohacova M, Lukes J, Maslov DA (2001) Unusual polypeptide synthesis in the kinetoplast-mitochondria from Leishmania tarentolae. Identification of individual de novo translation products. J Biol Chem 277:7222–7230

    Article  PubMed  Google Scholar 

  • Joseph-Horne T, Babij J, Wood PM, Hollomon D, Sessions RB (2000) New sequence data enable modeling of the fungal alternative oxidase and explain an absence of regulation by pyruvate. FEBS Lett 481:141–146

    Article  CAS  PubMed  Google Scholar 

  • Kumar MA, Davidson VL (1992) Methods to identify and avoid artifactual formation of interchain disulfide bonds when analyzing proteins by SDS-PAGE. BioTechniques 12:198–202

    CAS  PubMed  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural protein during the assembly of the head of bacteriophage T4. Nature 227:680–685

    CAS  PubMed  Google Scholar 

  • Lemmon MA, Flanagan JM, Hunt JF, Adair BD, Bormann B-J, Dempsey CE, Engelman DM (1992) Glycophorin A dimerization is driven by specific interactions between transmembrane alpha-helices. J Biol Chem 267:7683–7689

    CAS  PubMed  Google Scholar 

  • Millar Ah, Hoefnagel MHN, Day DA, Wiskich JT (1996) Specificity of the organic acid activation of alternative oxidase in plant mitochondria. Plant Physiol 111:613–618

    CAS  PubMed  Google Scholar 

  • Minagawa N, Yoshimoto A (1987) The induction of cyanide-resistant respiration in Hansenula anomala. J Biochem 101:1141–1146

    CAS  PubMed  Google Scholar 

  • Moore AL, Siedow JN (1992) The nature and regulation of the alternative oxidase of plant mitochondria. Biochem Soc Trans 20:361–363

    CAS  PubMed  Google Scholar 

  • Moore AL, Albury MS, Crichton PG, Affourtit C (2002) Function of the alternative oxidase: is it still a scavenger? Trends Plant Sci 7:478–481

    Article  CAS  PubMed  Google Scholar 

  • Njogu RM, Whittaker CJ, Hill GC (1980) Evidence for a branched electron transport chain in Trypanosoma brucei. Mol Biochem Parasitol 1:29–39

    Article  Google Scholar 

  • Priest JW, Hajduk SL (1994a) Developmental regulation of mitochondrial biogenesis in Trypanosoma brucei. J Bioenerg Biomembr 26:179–191

    Article  CAS  PubMed  Google Scholar 

  • Priest JW, Hajduk SL (1994b) Developmental regulation of Trypanosoma brucei cytochrome c reductase during bloodstream to procyclic differentiation. Mol Biochem Parasitol 65:291–304

    Article  CAS  PubMed  Google Scholar 

  • Priest JW, Hajduk SL (1996) In vitro import of the Rieske iron–sulfur protein by trypanosome mitochondria. J Biol Chem 271:20060–20069

    Article  CAS  PubMed  Google Scholar 

  • Rapaport D, Neupert W (1999) Biogenesis of Tom40, core component of the TOM complex of mitochondria. J Cell Biol 146:321–331

    Article  CAS  PubMed  Google Scholar 

  • Rhoads DM, Umbach AL, Sweet CR, Lennon AM, Ranch GS, Siedow JN (1998) Regulation of the cyanide-resistant alternative oxidase of plant mitochondria. Identification of the cysteine residue involved in alpha-keto acid stimulation and intersubunit disulfide bond formation. J Biol Chem 273:30750–30756

    Article  CAS  PubMed  Google Scholar 

  • Schagger H, von Jagow G (1991) Blue-native electrophoresis for isolation of membrane complexes in enzymatically active form. Anal Biochem 199:220–230

    Article  Google Scholar 

  • Schagger H, Crammer WA, von Jagow G (1994) Analysis of molecular masses and oligomeric states of protein complexes by blue native electrophoresis and isolation of membrane protein complexes by two-dimensional native electrophoresis. Anal Biochem 217:220–230

    Article  CAS  PubMed  Google Scholar 

  • Tielens AG, Hill GC (1985) The solubilization of a SHAM sensitive cyanide insensitive ubiquinol oxidase from Trypanosome brucei. J Parasitol 71:384–386

    CAS  PubMed  Google Scholar 

  • Tielens AGM, Van Hellemond JJ (1998) Differences in energy metabolism between trypanosomatidae. Parasitol Today 14:265–271

    Article  CAS  Google Scholar 

  • Towbin H, Staehelin T, Gordon J (1979) Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedures and some application. Proc Natl Acad Sci USA 76:4350–4354

    CAS  PubMed  Google Scholar 

  • Umbach AL, Siedow JN (1993) Covalent and noncovalent dimmers of the cyanide-resistant alternative oxidase protein in higher plant mitochondria and their relationship to enzyme activity. Plant Physiol 103:845–854

    CAS  PubMed  Google Scholar 

  • Umbach AL, Siedow JN (2000) The cyanide resistant alternative oxidases from fungi Pichia stipitis and Neurospora crassa are monomeric and lack regulatory features of the plant enzyme. Arch Biochem Biophys 378:234–245

    Article  CAS  PubMed  Google Scholar 

  • Umbach AL, Wiskich JT, Siedow JN (1994) Regulation of alternative oxidase kinetics by pyruvate and intermolecular disulfide bond redox status in Soybean seedling mitochondria. FEBS Lett 348:181–184

    Article  CAS  PubMed  Google Scholar 

  • Vanderleyden J, Peeters C, Verachtert H, Bertrand H (1980) Substrate kinetics of the alternative oxidase of Neurospora crassa. Biochem J 188:141–144

    CAS  PubMed  Google Scholar 

  • Vanlerberghe GC, McIntosh L (1997) Alternative oxidase: from gene to function. Annu Rev Plant Physiol Plant Mol Biol 48:703–734

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Steve Hajduk for the ISP monoclonal antibody, Ann Umbach for soybean cotyledon mitochondria and AOA monoclonal antibody. The research was supported by NIH grants 5KO1HL03839 and 3SO6GM08037-30S1. All experiments comply with the current laws of USA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minu Chaudhuri.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chaudhuri, M., Ott, R.D., Saha, L. et al. The trypanosome alternative oxidase exists as a monomer in Trypanosoma brucei mitochondria. Parasitol Res 96, 178–183 (2005). https://doi.org/10.1007/s00436-005-1337-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-005-1337-3

Keywords

Navigation