Skip to main content

Advertisement

Log in

Pro- and anti-inflammatory adipokines are associated with cardiometabolic risk markers in Brazilian schoolchildren

  • Original Article
  • Published:
European Journal of Pediatrics Aims and scope Submit manuscript

Abstract

Pro- and anti-inflammatory adipokines have been regarded as potential markers of obesity and cardiometabolic comorbidities. However, few studies have evaluated this association in children. We aimed to evaluate the relationship between adipokine concentrations and cardiometabolic risk markers in Brazilian schoolchildren. This was a cross-sectional study with 378 children aged 8–9 years from Viçosa, Minas Gerais, Brazil. We measured adipokines (leptin, retinol-binding protein 4, adiponectin, and chemerin) and cardiometabolic risk markers (fasting glucose, HOMA-IR, lipid profile, and blood pressure). Cardiometabolic risk markers were compared by quintiles of adipokines with linear regression adjusted for potential confounders. Leptin was positively associated with diastolic blood pressure (P = 0.03) and HOMA-IR (P = 0.01), and retinol-binding protein 4 was positively associated with total cholesterol (P = 0.04). Each standard deviation of leptin and retinol-binding protein 4 was associated to, respectively, a 0.1 (95%CI: 0.1; 0.2), 0.3 (95%CI: 0.1; 0.6), and 2.5 (95%CI: 0.1; 4.9) units increase in diastolic blood pressure, HOMA-IR, and total cholesterol. Adiponectin was negatively associated with diastolic blood pressure (P = 0.01) and HOMA-IR (P = 0.01), and chemerin was negatively associated with glucose (P = 0.001). Each standard deviation of adiponectin and chemerin was associated to, respectively, a −0.1 (95%CI: −0.2; −0.1), −0.2 (95%CI: −0.3; −0.1), and −1.2 (95%CI: −1.9; −0.5) units decrease in diastolic blood pressure, HOMA-IR, and glucose.

Conclusion: Pro- and anti-inflammatory adipokines were positively and negatively associated with cardiometabolic risk markers, respectively, among schoolchildren, indicating this relationship may be identified at earlier ages.

What is Known:

• Although leptin, retinol-binding protein 4, and adiponectin are well-known adipokines, a consensus regarding their relationship with cardiometabolic risk markers, especially in schoolchildren, has not yet been reached.

• Chemerin is an adipokine that has been studied recently. Yet, due to its dependence on the target cell type, its functions are still a controversial topic.

What is New:

• Leptin was positively associated with diastolic blood pressure and HOMA-IR, and retinol-binding protein 4 was positively associated with total cholesterol.

• Adiponectin was negatively associated with diastolic blood pressure and HOMA-IR, and chemerin was negatively associated with glucose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

N/A.

Abbreviations

BF:

Body fat

BMI:

Body mass index

CI:

Confidence interval

DBP:

Diastolic blood pressure

DXA:

Dual-energy X-ray absorptiometry

HDL-c:

High-density lipoprotein-cholesterol

HOMA-IR:

Homeostatic model assessment for insulin resistance

LDL-c:

Low-density lipoprotein-cholesterol

RBP4:

Retinol-binding protein 4

SBP:

Systolic blood pressure

SD:

Standard deviation

References

  1. World Health Organization (2000) Obesity: preventing and managing the global epidemic: report on a WHO Consultation (WHO Technical Report Series 894). World Health Organization, Geneva

    Google Scholar 

  2. Gray SL, Vidal-Puig AJ (2007) Adipose tissue expandability in the maintenance of metabolic homeostasis. Nutr Rev 65:S7–S12

    Article  PubMed  Google Scholar 

  3. Aygun AD, Gungor S, Ustundag B, Gurgoze MK, Sen Y (2005) Proinflammatory cytokines and leptin are increased in serum of prepubertal obese children. Mediators Inflamm 2005:180–183

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Castro APP, Cândido APC, Nicolato RL, Caldas IS, Machado-Coelho GL (2014) Retinol-binding protein 4 and insulin resistance are related to body fat in primary and secondary schoolchildren: the Ouro Preto study. Eur J Nutr 53:433–440

    Article  CAS  PubMed  Google Scholar 

  5. Landgraf K, Friebe D, Ullrich T, Kratzsch J, Dittrich K, Herberth G, Adams V, Kiess W, Erbs S, Körner A (2012) Chemerin as a mediator between obesity and vascular inflammation in children. J Clin Endocrinol Metab 97:E556–E564

    Article  CAS  PubMed  Google Scholar 

  6. Domingos ALG, Machado-Coelho GLL, Volp ACP, Oliveira FLP, Caldas IS, Freitas SN (2014) Association between nutritional status, C-reactive protein, adiponectin and HOMA-AD in Brazilian children. Nutr Hosp 30:66–74

    CAS  Google Scholar 

  7. Genovesi S, Parati G (2020) Cardiovascular risk in children: focus on pathophysiological aspects. Int J Mol Sci 21:E6612

    Article  PubMed  Google Scholar 

  8. Unamuno X, Gómez-Ambrosi J, Rodríguez A, Becerril S, Frühbeck G, Catalán V (2018) Adipokine dysregulation and adipose tissue inflammation in human obesity. Eur J Clin Invest 48:e12997

    Article  PubMed  CAS  Google Scholar 

  9. Gonzaga NC, Medeiros CCM, Carvalho DF, Alves JGB (2014) Leptin and cardiometabolic risk factors in obese children and adolescents. J Paediatr Child Health 50:707–712

    Article  PubMed  Google Scholar 

  10. Giudici KV, Kindler JM, Martin BR, Laing EM, McCabe GP, McCabe MD, Hausman DB, Martini LA, Lewis RD, Weaver CM et al (2017) Associations among osteocalcin, leptin and metabolic health in children ages 9-13 years in the United States. Nutr Metab (Lond) 14:25

    Article  Google Scholar 

  11. Frithioff-Bøjsøe C, Lund MAV, Lausten-Thomsen U, Hedley PL, Pedersen O, Christiansen M, Baker JL, Hansen T, Holm JC (2020) Leptin, adiponectin, and their ratio as markers of insulin resistance and cardiometabolic risk in childhood obesity. Pediatr Diabetes 21:194–202

    Article  PubMed  CAS  Google Scholar 

  12. Boyraz M, Cekmez F, Karaoğlu A, Cinaz P, Durak M, Bideci A (2013) Relationship of adipokines (adiponectin, resistin and RBP4) with metabolic syndrome components in pubertal obese children. Biomark Med 7:423–428

    Article  CAS  PubMed  Google Scholar 

  13. Grøntved A, Steene-Johannessen J, Kynde I, Franks PW, Helge JW, Froberg K, Anderssen SA, Andersen LB (2011) Association between plasma leptin and blood pressure in two population-based samples of children and adolescents. J Hypertens 29:1093–1100

    Article  PubMed  CAS  Google Scholar 

  14. Ding W, Cheng H, Chen F, Yan Y, Zhang M, Zhao X, Hou D, Mi J (2018) Adipokines are associated with hypertension in metabolically healthy obese (MHO) Children and adolescents: a prospective population-based cohort study. J Epidemiol 28:19–26

    Article  PubMed  PubMed Central  Google Scholar 

  15. Kelly AS, Metzig AM, Schwarzenberg SJ, Norris AL, Fox CK, Steinberger J (2012) Hyperleptinemia and hypoadiponectinemia in extreme pediatric obesity. Metab Syndr Relat Disord 10:123–127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Cândido APC, Geloneze B, Calixto A, Vasques ACJ, Freitas RN, Freitas SN, Machado-Coelho GLL (2021) Adiponectin, HOMA-adiponectin, HOMA-IR in Children and adolescents: Ouro Preto Study. Indian J Pediatr 88:336-344

  17. Leal VO, Mafra D (2013) Adipokines in obesity. Clin Chim Acta 419:87–94

    Article  CAS  Google Scholar 

  18. Sell H, Laurencikiene J, Taube A, Eckardt K, Cramer A, Horrighs A, Arner P, Eckel J (2009) Chemerin is a novel adipocyte-derived factor inducing insulin resistance in primary human skeletal muscle cells. Diabetes 58:2731–2740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Takahashi M, Takahashi Y, Takahashi K, Zolotaryov FN, Hong KS, Kitazawa R, Iida K, Okimura Y, Kaji H, Kitazawa S, Kasuga M, Chihara K (2008) Chemerin enhances insulin signaling and potentiates insulin-stimulated glucose uptake in 3 T3-L1 adipocytes. FEBS Lett 582:573–578

    Article  CAS  PubMed  Google Scholar 

  20. Niklowitz P, Rothermel J, Lass N, Barth A, Reinehr T (2018) Link between chemerin, central obesity, and parameters of the metabolic syndrome: findings from a longitudinal study in obese children participating in a lifestyle intervention. Int J Obes (Lond) 42:1743–1752

    Article  CAS  Google Scholar 

  21. Instituto Brasileiro de Geografia e Estatística Cidades@-Minas Gerais: Viçosa. IBGE, Brasil http://cod.ibge.gov.br/690. Accessed May 2020

  22. Milagres LC, Rocha NP, Filgueiras MS, Albuquerque FM, Castro APP, Pessoa MC, Peluzio MCG, Novaes JF (2017) Vitamin D insufficiency/deficiency is associated with insulin resistance in Brazilian children, regardless of body fat distribution. Public Health Nutr 20:2878–2886

    Article  PubMed  Google Scholar 

  23. Filgueiras MS, Suhett LG, Silva MA, Rocha NP, Novaes JF (2018) Lower vitamin D intake is associated with low HDL cholesterol and vitamin D insufficiency/deficiency in Brazilian children. Public Health Nutr 21:2004–2012

    Article  PubMed  Google Scholar 

  24. Expert Panel on Integrated Guidelines for Cardiovascular Health and Risk Reduction in Children and Adolescents; National Heart, Lung, and Blood Institute (2011) Expert panel on integrated guidelines for cardiovascular health and risk reduction in children and adolescents: summary report. Pediatrics 128(Suppl 5):S213–S256

    PubMed Central  Google Scholar 

  25. Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC (1985) Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 28:412–419

    Article  CAS  PubMed  Google Scholar 

  26. Arellano-Ruiz P, García-Hermoso A, Cavero-Redondo I, Pozuelo-Carrascosa D, Martínez-Vizcaíno V, Solera-Martinez M (2019) Homeostasis model assessment cut-off points related to metabolic syndrome in children and adolescents: a systematic review and meta-analysis. Eur J Pediatr 178:1813–1822

    Article  PubMed  Google Scholar 

  27. Shashaj B, Luciano R, Contoli B, Morino GS, Spreghini MR, Rustico C, Sforza RW, Dallapiccola B, Manco M (2016) Reference ranges of HOMA-IR in normal-weight and obese young Caucasians. Acta Diabetol 53:251–260

    Article  CAS  PubMed  Google Scholar 

  28. National High Blood Pressure Education Program Working Group on High Blood Pressure in Children and Adolescents (2004) The fourth report on the diagnosis, evaluation, and treatment of high blood pressure in children and adolescents. Pediatrics 114:555–576

    Article  Google Scholar 

  29. American Academy of Pediatrics (2013) Council on Communications and Media. Children, adolescents, and the media. Pediatrics 132:958–961

    Article  Google Scholar 

  30. de Onis M, Onyango AW, Borghi E, Siyam A, Nishida C, Siekmann J (2007) Development of a WHO growth reference for school-aged children and adolescents. Bull World Health Organ 85:660–667

    Article  PubMed  PubMed Central  Google Scholar 

  31. Cole TJ, Bellizzi MC, Flegal KM, Dietz WH (2000) Establishing a standard definition for child overweight and obesity worldwide: international survey. BMJ 320:1240–1243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. White H (1980) A heteroskedasticity-consistent covariance matrix estimator and a direct test for heteroskedasticity. Econometrica 48:817–838

    Article  Google Scholar 

  33. Blundell JE, Dulloo AG, Salvador J, Frühbeck G, EASO SAB Working Group on BMI (2014) Beyond BMI--phenotyping the obesities. Obes Facts 7:322–328

    Article  PubMed  PubMed Central  Google Scholar 

  34. Rodríguez A, Becerril S, Ezquerro S, Méndez-Giménez L, Frühbeck G (2017) Crosstalk between adipokines and myokines in fat browning. Acta Physiol (Oxf) 219:362–381

    Article  CAS  Google Scholar 

  35. Nieuwenhuis D, Pujol-Gualdo N, Arnoldussen IAC, Kiliaan AJ (2020) Adipokines: a gear shift in puberty. Obes Rev 21:e13005

    Article  PubMed  PubMed Central  Google Scholar 

  36. Fujita Y, Kouda K, Ohara K, Nakamura H, Iki M (2019) Leptin mediates the relationship between fat mass and blood pressure: the Hamamatsu school-based health study. Medicine (Baltimore) 98:e14934

    Article  CAS  Google Scholar 

  37. Wang H, Necheles J, Birne JS, Li Z, Xing H, Tang G, Christoffel KK, Brickman WJ, Zimmerman D, Wang X (2012) Association of adipokines with blood pressure in rural Chinese adolescents. J Hum Hypertens 26:493–501

    Article  PubMed  CAS  Google Scholar 

  38. Gómez-Díaz RA, Rodríguez-Moran M, Mondragón-González R, Wacher NH, Guerrero-Romero F (2019) Adipocytokines and high blood pressure in Mexican children. Endocr Res 44:159–167

    Article  PubMed  CAS  Google Scholar 

  39. Fantuzzi G (2005) Adipose tissue, adipokines, and inflammation. J Allergy Clin Immunol 115:911–919

    Article  CAS  PubMed  Google Scholar 

  40. Considine RV, Sinha MK, Heiman ML, Kriauciunas A, Stephens TW, Nyce MR, Ohannesian JP, Marco CC, McKee LJ, Bauer TL et al (1996) Serum immunoreactive-leptin concentrations in normal-weight and obese humans. N Engl J Med 334:292–295

    Article  CAS  PubMed  Google Scholar 

  41. Bełtowski J (2006) Role of leptin in blood pressure regulation and arterial hypertension. J Hypertens 24:789–801

    Article  PubMed  CAS  Google Scholar 

  42. Stakos DA, Papaioannou HI, Angelidou I, Mantadakis E, Paraskakis E, Tsigalou C, Chatzimichael A (2014) Plasma leptin and adiponectin concentrations correlate with cardiometabolic risk and systemic inflammation in healthy, non-obese children. J Pediatr Endocrinol Metab 27:221–228

    Article  CAS  PubMed  Google Scholar 

  43. Jois A, Navarro P, Ortega-Senovilla H, Gavela-Pérez T, Soriano-Guillén L, Garcés C (2015) Relationship of high leptin levels with an adverse lipid and insulin profile in 6-8 year-old children in Spain. Nutr Metab Cardiovasc Dis 25:1111–1116

    Article  CAS  PubMed  Google Scholar 

  44. Lee YH, Magkos F, Mantzoros CS, Kang ES (2011) Effects of leptin and adiponectin on pancreatic β-cell function. Metabolism 60:1664–1672

    Article  CAS  PubMed  Google Scholar 

  45. Rhie YJ, Choi BM, Eun SH, Son CS, Park SH, Lee KH (2011) Association of serum retinol binding protein 4 with adiposity and pubertal development in Korean children and adolescents. J Korean Med Sci 26:797–802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Poulain-Godefroy O, Lecoeur C, Pattou F, Frühbeck G, Froguel P (2008) Inflammation is associated with a decrease of lipogenic factors in omental fat in women. Am J Physiol Regul Integr Comp Physiol 295:R1–R7

    Article  CAS  PubMed  Google Scholar 

  47. Goodman E, Graham TE, Dolan LM, Daniels SR, Goodman ER, Kahn BB (2009) The Relationship of Retinol Binding Protein 4 to Changes in insulin resistance and cardiometabolic risk in overweight black adolescents. J Pediatr 154:67–73

    Article  CAS  PubMed  Google Scholar 

  48. Yang Q, Graham TE, Mody N, Preitner F, Peroni OD, Zabolotny JM, Kotani K, Quadro L, Kahn BB (2005) Serum retinol binding protein 4 contributes to insulin resistance in obesity and type 2 diabetes. Nature 436:356–362

    Article  CAS  PubMed  Google Scholar 

  49. Farjo KM, Farjo RA, Halsey S, Moiseyev G, Ma J-X (2012) Retinol-binding protein 4 induces inflammation in human endothelial cells by an NADPH oxidase- and nuclear factor kappa B-dependent and retinol-independent mechanism. Mol Cell Biol 32:5103–5115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Staels B (2001) Regulation of lipid and lipoprotein metabolism by retinoids. J Am Acad Dermatol 45:S158–S167

    Article  CAS  PubMed  Google Scholar 

  51. Scherer PE, Williams S, Flogiano M, Baldini G, Lodish HF (1995) A novel serum protein similar to C1q, produced exclusively by adipocytes. J Biol Chem 270:26746–26749

    Article  CAS  PubMed  Google Scholar 

  52. Orlando A, Nava E, Giussani M, Genovesi S (2019) Adiponectin and Cardiovascular Risk. From Pathophysiology to Clinic: focus on children and adolescents. Int J Mol Sci 20:3228

    Article  CAS  PubMed Central  Google Scholar 

  53. Balsan GA, Vieira JL, Oliveira AM, Portal VL (2015) Relationship between adiponectin, obesity and insulin resistance. Rev Assoc Med Bras (1992) 61:72–80

    Article  PubMed  Google Scholar 

  54. Rojas E, Rodríguez-Molina D, Bolli P, Israili ZH, Faría J, Fidilio E, Bermúdez V, Velasco M (2014) The role of adiponectin in endothelial dysfunction and hypertension. Curr Hypertens Rep 6:463

    Article  CAS  Google Scholar 

  55. Brambilla P, Antolini L, Street ME, Giussani M, Galbiati S, Valsecchi MG, Stella A, Zuccotti GV, Bernasconi S, Genovesi S (2013) Adiponectin and hypertension in normal-weight and obese children. Am J Hypertens 26:257–264

    Article  CAS  PubMed  Google Scholar 

  56. Riestra P, García-Anguita A, Lasunción MA, Cano B, Oya M, Garcés C (2011) Relationship of adiponectin with metabolic syndrome components in pubertal children. Atherosclerosis 216:467–470

    Article  CAS  PubMed  Google Scholar 

  57. Klünder-Klünder M, Flores-Huerta S, García-Macedo R, Peralta-Romero J, Cruz M (2013) Adiponectin in eutrophic and obese children as a biomarker to predict metabolic syndrome and each of its components. BMC Public Health 13:88

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Buechler C, Feder S, Haberl EM, Aslanidis C (2019) Chemerin isoforms and activity in obesity. Int J Mol Sci 20:1128

    Article  CAS  PubMed Central  Google Scholar 

  59. Takahashi M, Okimura Y, Iguchi G, Nishizawa H, Yamamoto M, Suda K, Kitazawa R, Fujimoto W, Takahashi K, Zolotaryov FN, Hong KS, Kiyonari H, Abe T, Kaji H, Kitazawa S, Kasuga M, Chihara K, Takahashi Y (2011) Chemerin regulates β-cell function in mice. Sci Rep 1:123

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Catalán V, Gómez-Ambrosi J, Rotellar F, Silva C, Rodríguez A, Salvador J, Gil MJ, Cienfuegos JA, Frühbeck G (2007) Validation of endogenous control genes in human adipose tissue: relevance to obesity and obesity-associated type 2 diabetes mellitus. Horm Metab Res 39:495–500

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to all the children who participated in this study and their guardians. We are thankful for the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) and the FAPEMIG for the scholarships granted to MS Filgueiras, FM Albuquerque, LG Suhett, MA Silva, and JF Novaes. We appreciate BioClin® (Belo Horizonte, Minas Gerais, Brazil) for their support in the biochemical analyses.

Code availability

N/A.

Funding

This work was supported by the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq - grant numbers 478910/2013-4 and 407547/2012-6), Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG - grant number CDS-APQ-02979-16), and the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES - code 001).

Author information

Authors and Affiliations

Authors

Contributions

M.S.F.: study conception and design; data collection; analysis; interpretation of data; drafting and writing the manuscript. M.C.P.: study conception and design; revision of the manuscript; co-supervision. J.B.: study conception and design; revision of the manuscript; co-supervision. F.M.A.: data collection; interpretation of data; revision of the manuscript. L.G.S.: interpretation of data; revision of the manuscript. M.A.S.: interpretation of data; revision of the manuscript. J.F.N.: study conception and design; acquisition of funding; writing and revision of the manuscript; supervision. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Mariana De Santis Filgueiras.

Ethics declarations

Ethics approval

This study was conducted according to the guidelines established by the Declaration of Helsinki. All the procedures involving study participants were approved by the Human Research Ethics Committee of the Universidade Federal de Viçosa (UFV) (reference number 663.171/2014), as well as by the Municipal Secretary of Education, the Regional Superintendent of Education and school principals.

Consent to participate

Written informed consent was obtained from all parents/guardians.

Consent to publish

N/A.

Conflict of interest

The authors declare no competing interests.

Disclaimer

The CNPq, FAPEMIG, and CAPES had no role in the design, analysis, or writing of this paper.

Additional information

Communicated by Gregorio Paolo Milani

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(PDF 281 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Filgueiras, M.D.S., Pessoa, M.C., Bressan, J. et al. Pro- and anti-inflammatory adipokines are associated with cardiometabolic risk markers in Brazilian schoolchildren. Eur J Pediatr 180, 2931–2941 (2021). https://doi.org/10.1007/s00431-021-04040-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00431-021-04040-z

Keywords

Navigation