Skip to main content
Log in

The dietary inflammatory index is associated with anti- and pro-inflammatory adipokines in Brazilian schoolchildren

  • Original Contribution
  • Published:
European Journal of Nutrition Aims and scope Submit manuscript

A Correction to this article was published on 13 April 2021

This article has been updated

Abstract

Purpose

To investigate the relationship of Children’s Dietary Inflammatory Index (C-DII™) scores with body fat distribution and serum adipokines in Brazilian schoolchildren.

Methods

This population-based cross-sectional study enrolled 378 schoolchildren aged 8 and 9 years from Viçosa, Minas Gerais, Brazil. Food consumption was assessed using three 24-h dietary recalls from which C-DII scores were calculated. Serum adipokines [adiponectin, leptin, retinal-binding protein 4 (RBP4), and chemerin] were analyzed in blood samples. Sociodemographic characteristics and sedentary behavior were assessed using a semi-structured questionnaire. Total, truncal, android and gynoid body fat were evaluated by dual-energy X-ray absorptiometry (DXA). We compared the distributions of adiposity measures and serum adipokines by C-DII categories with linear regression, adjusting for potential confounders.

Results

The mean sample C-DII was 0.59 ± 0.94 and ranged from − 2.16 to + 2.75. The C-DII was not associated with central and total body fat. However, the C-DII was modestly inversely associated with adiponectin and RBP4, and modestly directly associated with chemerin. These results remained significant after adjusting for body fat. Every 1 SD of C-DII was related, respectively, to a − 0.8 (− 1.5, − 0.03) and to a − 0.1 (− 0.2, − 0.05) units lower mean of adiponectin and RBP4, and to 7.2 (0.3, 14.1) units higher of chemerin.

Conclusion

Higher C-DII score was modestly inversely and directly associated with anti- and pro-inflammatory adipokines, respectively, in Brazilian children. The development of public health policies is needed to promote healthy eating habits during childhood to prevent the early onset of systemic inflammation and ill health effects later in life.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

References

  1. Cao H (2014) Adipocytokines in obesity and metabolic disease. J Endocrinol 220:T47. https://doi.org/10.1530/JOE-13-0339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Hotamisligil GS (2006) Inflammation and metabolic disorders. Nature 444:860–867. https://doi.org/10.1038/nature05485

    Article  CAS  PubMed  Google Scholar 

  3. Ouchi N, Parker JL, Lugus JJ, Walsh K (2011) Adipokines in inflammation and metabolic disease. Nat Rev Immunol 11:85. https://doi.org/10.1038/nri2921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Su X, Peng D (2020) Adipokines as novel biomarkers of cardio-metabolic disorders. Clin Chim Acta. https://doi.org/10.1016/j.cca.2020.04.009

    Article  PubMed  PubMed Central  Google Scholar 

  5. WHO (2003) Diet, nutrition, and the prevention of chronic diseases: report of a joint WHO/FAO expert Consultation. World Health Organization, Geneva

    Google Scholar 

  6. Vieira-Ribeiro SA, Andreoli CS, Fonseca PC, Hermsdorff HM, Pereira PF, Ribeiro AQ, Priore SE, Franceschini SC (2019) Dietary patterns and body adiposity in children in Brazil: a cross-sectional study. Public Health 166:140–147. https://doi.org/10.1016/j.puhe.2018.10.00

    Article  CAS  PubMed  Google Scholar 

  7. Rocha NP, Milagres LC, Filgueiras MD, Suhett LG, Silva MA, Albuquerque FM, Ribeiro AQ, Vieira SA, Novaes JF (2019) Associação dos Padrões Alimentares com Excesso de Peso e Adiposidade Corporal em Crianças Brasileiras: Estudo Pase-Brasil. Arquivos Brasil Cardiol (AHEAD). https://doi.org/10.5935/abc.20190113

    Article  Google Scholar 

  8. Rocha NP, Milagres LC, Longo GZ, Ribeiro AQ, de Novaes JF (2017) Association between dietary pattern and cardiometabolic risk in children and adolescents: a systematic review. J Pediat (Versão Português) 93:214–222. https://doi.org/10.1016/j.jped.2017.01.002

    Article  Google Scholar 

  9. Wisnuwardani RW, De Henauw S, Ferrari M, Forsner M, Gottrand F, Huybrechts I, Kafatos AG, Kersting M, Knaze V, Manios Y, Marcos A (2020) Total polyphenol intake is inversely associated with a pro/anti-inflammatory biomarker ratio in European adolescents of the HELENA study. J Nutr. https://doi.org/10.1093/jn/nxaa064

    Article  PubMed  Google Scholar 

  10. Suhett LG, Silveira BK, Filgueiras MD, Peluzio MD, Hermsdorff HH, de Novaes JF (2018) Inverse association of calcium intake with abdominal adiposity and C-reactive protein in Brazilian children. Public Health Nutr 21:1912–1920. https://doi.org/10.1017/S136898001800023X

    Article  PubMed  Google Scholar 

  11. González-Gil EM, Tognon G, Lissner L, Intemann T, Pala V, Galli C, Wolters M, Siani A, Veidebaum T, Michels N, Molnar D (2018) Prospective associations between dietary patterns and high sensitivity C-reactive protein in European children: the IDEFICS study. Eur J Nutr 57:1397–1407. https://doi.org/10.1007/s00394-017-1419-x

    Article  CAS  PubMed  Google Scholar 

  12. Khan S, Wirth MD, Ortaglia A, Alvarado CR, Shivappa N, Hurley TG, Hebert JR (2018) Design, development and construct validation of the children’s dietary inflammatory index. Nutrients 10:993. https://doi.org/10.3390/nu10080993

    Article  CAS  PubMed Central  Google Scholar 

  13. Suhett LG, Hermsdorff HH, Cota BC, Ribeiro SA, Shivappa N, Hébert JR, Franceschini SD, de Novaes JF (2020) Dietary inflammatory potential, cardiometabolic risk and inflammation in children and adolescents: a systematic review. Crit Rev Food Sci Nutr 10:1. https://doi.org/10.1080/10408398.2020.1734911

    Article  CAS  Google Scholar 

  14. Filgueiras MD, Suhett LG, Silva MA, Rocha NP, de Novaes JF (2018) Lower vitamin D intake is associated with low HDL cholesterol and vitamin D insufficiency/deficiency in Brazilian children. Public Health Nutr 21:2004–2012. https://doi.org/10.1017/S1368980018000204

    Article  PubMed  Google Scholar 

  15. Milagres LC, Rocha NP, Filgueiras MS, Albuquerque FM, Castro APP, Pessoa MC et al (2017) Vitamin D insufficiency/deficiency is associated with insulin resistance in Brazilian children, regardless of body fat distribution. Public Health Nutr 20:2878–2886. https://doi.org/10.1017/S136898001700194X

    Article  PubMed  Google Scholar 

  16. Zabotto CB, Vianna RPT, Gil MF (1996) Registro Fotográfico Para Inquéritos Dietéticos: Utensílios e Porções. Goiânia: Nepa-Unicamp; available at http://www.fcm.unicamp.br/fcm/sites/default/files/2016/page/manual_ fotografico.pdf Accessed 22 May 2020

  17. Núcleo de Estudos e Pesquisas em Alimentação, Universidade Estadual de Campinas (2011) Tabela Brasileira de Composição de Alimentos – TACO, 4ª ed. rev. e ampl. Campinas: Nepa–Unicamp, p 161

  18. US Department of agriculture, agricultural research service (2016) USDA national nutrient database for standard reference (Release 28). http://www.fnic.nal.usda.gov/food-composition/usda-nutrient-data-laboratory Accessed 22 May 2020

  19. American Academy of Pediatrics, Council on Communications and Media (2013) Children, adolescents, and the media. Pediatrics 132:958–961. https://doi.org/10.1542/peds.2013-2656

    Article  Google Scholar 

  20. Lohman TG (1992) Advances in body composition assessment. Hum Kinet 1–23

  21. Navarro P, Shivappa N, Hébert JR, Mehegan J, Murrin CM, Kelleher CC, Phillips CM (2019) Predictors of the dietary inflammatory index in children and associations with childhood weight status: a longitudinal analysis in the Lifeways Cross-Generation Cohort Study. Clin Nutr. https://doi.org/10.1016/j.clnu.2019.09.004

    Article  PubMed  Google Scholar 

  22. Aslani Z, Qorbani M, Hébert JR, Shivappa N, Motlagh ME, Asayesh H, Mahdavi-Gorabi A, Kelishadi R (2019) Association of dietary inflammatory index with anthropometric indices in children and adolescents: the weight disorder survey of the childhood and adolescence surveillance and prevention of adult non-communicable disease (CASPIAN)-IV study. Br J Nutr 121:340–350. https://doi.org/10.1017/S0007114518003240

    Article  CAS  PubMed  Google Scholar 

  23. Sen S, Rifas-Shiman SL, Shivappa N, Wirth MD, Hebert JR, Gold DR, Gillman MW, Oken E (2018) Associations of prenatal and early life dietary inflammatory potential with childhood adiposity and cardiometabolic risk in Project Viva. Pediat Obesity 13:292–300. https://doi.org/10.1111/ijpo.12221

    Article  CAS  Google Scholar 

  24. Correa-Rodríguez M, González-Jiménez E, Rueda-Medina B, Tovar-Gálvez MI, Ramírez-Vélez R, Correa-Bautista JE, Schmidt-RioValle J (2018) Dietary inflammatory index and cardiovascular risk factors in Spanish children and adolescents. Res Nurs Health 41:448–458. https://doi.org/10.1002/nur.21904

    Article  PubMed  Google Scholar 

  25. Oliveira TM, Bressan J, Pimenta AM, Martínez-González MÁ, Shivappa N, Hébert JR, Hermsdorff HH (2020) Dietary inflammatory index and prevalence of overweight and obesity in Brazilian graduates from the Cohort of Universities of Minas Gerais (CUME project). Nutrition 71:110635. https://doi.org/10.1016/j.nut.2019.110635

    Article  PubMed  Google Scholar 

  26. Meneguelli TS, Hinkelmann JV, de Novaes JF, Rosa CD, Filgueiras MD, Silveira B (2019) Dietary inflammatory index is associated with excessive body weight and dietary patterns in subjects with cardiometabolic risk. J Food Nutr Res 7:491–499. https://doi.org/10.12691/jfnr-7-7-2

    Article  CAS  Google Scholar 

  27. Wolf AM, Wolf D, Rumpold H, Enrich B, Tilg H (2004) Adiponectin induces the anti-inflammatory cytokines IL-10 and IL-1RA in human leukocytes. Biochem Biophys Res Commun 323:630–635. https://doi.org/10.1016/j.bbrc.2004.08.145

    Article  CAS  PubMed  Google Scholar 

  28. Frithioff-Bøjsøe C, Lund MAV, Lausten-Thomsen U, Hedley PL, Pedersen O, Christiansen M et al (2020) Leptin, adiponectin, and their ratio as markers of insulin resistance and cardiometabolic risk in childhood obesity. Pediatr Diabetes 21:194–202. https://doi.org/10.1111/pedi.12964

    Article  CAS  PubMed  Google Scholar 

  29. Phillips CM, Shivappa N, Hébert JR, Perry IJ (2018) Dietary inflammatory index and biomarkers of lipoprotein metabolism, inflammation and glucose homeostasis in adults. Nutrients 10:1033. https://doi.org/10.3390/nu10081033

    Article  CAS  PubMed Central  Google Scholar 

  30. Farjo KM, Farjo RA, Halsey S, Moiseyev G, Ma J-X (2012) Retinol-Binding protein 4 induces inflammation in human endothelial cells by an NADPH oxidase- and nuclear factor kappa B-dependent and retinol-independent mechanism. Mol Cell Biol 32:5103–5115. https://doi.org/10.1128/MCB.00820-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Yang Q, Graham TE, Mody N, Preitner F, Peroni OD, Zabolotny JM et al (2005) Serum retinol binding protein 4 contributes to insulin resistance in obesity and type 2 diabetes. Nature 436:356–362. https://doi.org/10.1038/nature03711

    Article  CAS  PubMed  Google Scholar 

  32. Jing L, Xiao M, Dong H, Lin J, Chen G, Ling W, Chen Y (2018) Serum carotenoids are inversely associated with RBP4 and other inflammatory markers in middle-aged and elderly adults. Nutrients 10:260. https://doi.org/10.3390/nu10030260

    Article  CAS  PubMed Central  Google Scholar 

  33. Hermsdorff HH, Zulet MÁ, Puchau B, Bressan J, Martínez JA (2009) Association of retinol-binding protein-4 with dietary selenium intake and other lifestyle features in young healthy women. Nutrition 25:392–399. https://doi.org/10.1016/j.nut.2008.09.015

    Article  CAS  PubMed  Google Scholar 

  34. Daneshzad E, Farsad-Naeimi A, Heshmati J, Mirzaei K, Maghbooli Z, Keshavarz SA (2019) The association between dietary antioxidants and adipokines level among obese women. Diabetes Metab Synd Clin Res Rev 13:1369–1373. https://doi.org/10.1016/j.dsx.2019.02.022

    Article  Google Scholar 

  35. Quadro L, Blaner WS, Salchow DJ, Vogel S, Piantedosi R, Gouras P, Freeman S, Cosma MP, Colantuoni V, Gottesman ME (1999) Impaired retinal function and vitamin a availability in mice lacking retinol-binding protein. EMBO J 18:4633–4644. https://doi.org/10.1093/emboj/18.17.4633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Bates CJ (1995) Vitamin A. Lancet 345:31–35. https://doi.org/10.1016/s0140-6736(95)91157-x

    Article  CAS  PubMed  Google Scholar 

  37. Sureda A, Bibiloni MD, Julibert A, Bouzas C, Argelich E, Llompart I, Pons A, Tur JA (2018) Adherence to the mediterranean diet and inflammatory markers. Nutrients 10:62. https://doi.org/10.3390/nu10010062

    Article  CAS  PubMed Central  Google Scholar 

  38. Arouca A, Moreno LA, Gonzalez-Gil EM, Marcos A, Widhalm K, Molnár D, Manios Y, Gottrand F, Kafatos A, Kersting M, Sjöström M (2019) Diet as moderator in the association of adiposity with inflammatory biomarkers among adolescents in the HELENA study. Eur J Nutr 58:1947–1960. https://doi.org/10.1007/s00394-018-1749-3

    Article  CAS  PubMed  Google Scholar 

  39. Dimitriadis GK, Kaur J, Adya R, Miras AD, Mattu HS, Hattersley JG, Kaltsas G, Tan BK, Randeva HS (2018) Chemerin induces endothelial cell inflammation: activation of nuclear factor-kappa beta and monocyte-endothelial adhesion. Oncotarget 9:16678. https://doi.org/10.18632/oncotarget.24659

    Article  PubMed  PubMed Central  Google Scholar 

  40. Landgraf K, Friebe D, Ullrich T, Kratzsch J, Dittrich K, Herberth G, Adams V, Kiess W, Erbs S, Körner A (2012) Chemerin as a mediator between obesity and vascular inflammation in children. J Clin Endocrinol Metab 97:E556–E564. https://doi.org/10.1210/jc.2011-2937

    Article  CAS  PubMed  Google Scholar 

  41. Niklowitz P, Rothermel J, Lass N, Barth A, Reinehr T (2018) Link between chemerin, central obesity, and parameters of the Metabolic Syndrome: findings from a longitudinal study in obese children participating in a lifestyle intervention. Int J Obesity 42:1743–1752. https://doi.org/10.1038/s41366-018-0157-3

    Article  CAS  Google Scholar 

  42. Mirmajidi S, Izadi A, Saghafi-Asl M, Vahid F, Karamzad N, Amiri P, Shivappa N, Hébert JR (2019) Inflammatory potential of diet: association with chemerin, omentin, lipopolysaccharide-binding protein, and insulin resistance in the apparently healthy obese. J Am Coll Nutr 38:302–310. https://doi.org/10.1080/07315724.2018.1504348

    Article  CAS  PubMed  Google Scholar 

  43. Almeida-de-Souza J, Santos R, Barros R, Abreu S, Moreira C, Lopes L, Mota J, Moreira P (2018) Dietary inflammatory index and inflammatory biomarkers in adolescents from LabMed physical activity study. Eur J Clin Nutr 72:710–719. https://doi.org/10.1038/s41430-017-0013-x

    Article  CAS  PubMed  Google Scholar 

  44. Shivappa N, Hebert JR, Marcos A, Diaz LE, Gomez S, Nova E, Michels N, Arouca A, González-Gil E, Frederic G, González-Gross M (2017) Association between dietary inflammatory index and inflammatory markers in the HELENA study. Mol Nutr Food Res 61:1600707. https://doi.org/10.1002/mnfr.201600707

    Article  CAS  Google Scholar 

  45. Lopes AE, Araújo LF, Levy RB, Barreto SM, Giatti L (2019) Association between consumption of ultra-processed foods and serum C-reactive protein levels: cross-sectional results from the ELSA-Brasil study. Sao Paulo Med J 137:169–176. https://doi.org/10.1590/1516-3180.2018.0363070219

    Article  PubMed  Google Scholar 

  46. Koebnick C, Black MH, Wu J, Shu YH, MacKay AW, Watanabe RM, Buchanan TA, Xiang AH (2018) A diet high in sugar-sweetened beverage and low in fruits and vegetables is associated with adiposity and a pro-inflammatory adipokine profile. Br J Nutr 120:1230–1239. https://doi.org/10.1017/S0007114518002726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Galland L (2010) Diet and inflammation. Nutr Clin Pract 25:634–640. https://doi.org/10.1177/0884533610385703

    Article  PubMed  Google Scholar 

  48. Ambroszkiewicz J, Chełchowska M, Rowicka G, Klemarczyk W, Strucińska M, Gajewska J (2018) Anti-inflammatory and pro-inflammatory adipokine profiles in children on vegetarian and omnivorous diets. Nutrients 10:1241. https://doi.org/10.3390/nu10091241

    Article  CAS  PubMed Central  Google Scholar 

  49. Notario-Barandiaran L, Valera-Gran D, Gonzalez-Palacios S, Garcia-de-la-Hera M, Fernández-Barrés S, Pereda-Pereda E, Fernández-Somoano A, Guxens M, Iñiguez C, Romaguera D, Vrijheid M (2020) High adherence to a mediterranean diet at age 4 reduces overweight, obesity and abdominal obesity incidence in children at the age of 8. Int J Obesity 9:1–2. https://doi.org/10.1038/s41366-020-0557-z

    Article  Google Scholar 

  50. Widmer RJ, Flammer AJ, Lerman LO, Lerman A (2015) The Mediterranean diet, its components, and cardiovascular disease. Am J Med 128:229–238. https://doi.org/10.1016/j.amjmed.2014.10.014

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful for Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG—CDS-APQ-02979-16), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq—478910/2013-4 and 407547/2012-6), and the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES—code 001) for the financial support and doctorate scholarships granted. We also thank all the children and parents who participated in this study.

Funding

This work was supported by Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG—CDS-APQ-02979-16), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq—478910/2013-4 and 407547/2012-6), and the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES—code 001). HHM Hermsdorff has a Research Fellowship from CNPq (1D-level). The CNPq, FAPEMIG, and CAPES had no role in the design, analysis or writing of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lara Gomes Suhett.

Ethics declarations

Conflict of interest

We declare no conflicts of interest. Dr. James R. Hébert owns controlling interest in Connecting Health Innovations LLC (CHI), a company that has licensed the right to his invention of the dietary inflammatory index (DII®) from the University of South Carolina in order to develop computer and smart phone applications for patient counseling and dietary intervention in clinical settings. Dr. Nitin Shivappa is an employee of CHI. The subject matter of this paper will not have any direct bearing on that work, nor has that activity exerted any influence on this project.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suhett, L.G., Hermsdorff, H.H.M., Ribeiro, S.A.V. et al. The dietary inflammatory index is associated with anti- and pro-inflammatory adipokines in Brazilian schoolchildren. Eur J Nutr 60, 2841–2849 (2021). https://doi.org/10.1007/s00394-021-02500-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00394-021-02500-8

Keywords

Navigation