Skip to main content

Advertisement

Log in

Macaca arctoides gammaherpesvirus 1 (strain herpesvirus Macaca arctoides): virus sequence, phylogeny and characterisation of virus-transformed macaque and rabbit cell lines

  • Original Investigation
  • Published:
Medical Microbiology and Immunology Aims and scope Submit manuscript

Abstract

Herpesvirus Macaca arctoides (HVMA) has the propensity to transform macaque lymphocytes to lymphoblastoid cells (MAL-1). Inoculation of rabbits with cell-free virus-containing supernatant resulted in the development of malignant lymphomas and allowed isolation of immortalised HVMA-transformed rabbit lymphocytes (HTRL). In this study, the HVMA genome sequence (approx. 167 kbp), its organisation, and novel aspects of virus latency are presented. Ninety-one open reading frames were identified, of which 86 were non-repetitive. HVMA was identified as a Lymphocryptovirus closely related to Epstein–Barr virus, suggesting the designation as ‘Macaca arctoides gammaherpesvirus 1’ (MarcGHV-1). In situ lysis gel and Southern blot hybridisation experiments revealed that the MAL-1 cell line contains episomal and linear DNA, whereas episomal DNA is predominantly present in HTRL. Integration of viral DNA into macaque and rabbit host cell genomes was demonstrated by fluorescence in situ hybridisation on chromosomal preparations. Analysis of next-generation sequencing data confirmed this finding. Approximately 400 read pairs represent the overlap between macaque and MarcGHV-1 DNA. Both, MAL-1 cells and HTRL show characteristics of a polyclonal tumour with B- and T-lymphocyte markers. Based on analysis of viral gene expression and immunohistochemistry, the persistence of MarcGHV-1 in MAL-1 cells resemble the latency type III, whereas the expression pattern observed in HTRL was more comparable with latency type II. There was no evidence of the presence of STLV-1 proviral DNA in MAL-1 and HTRL. Due to the similarity to EBV-mediated cell transformation, MarcGHV-1 expands the available in vitro models by simian and rabbit cell lines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Jha HC, Banerjee S, Robertson ES (2016) The role of gammaherpesviruses in cancer pathogenesis. Pathogens 5 (1). https://doi.org/10.3390/pathogens5010018

  2. Thorley-Lawson DA, Gross A (2004) Persistence of the Epstein–Barr virus and the origins of associated lymphomas. N Engl J Med 350(13):1328–1337. https://doi.org/10.1056/NEJMra032015

    Article  CAS  PubMed  Google Scholar 

  3. Klein E, Kis LL, Klein G (2007) Epstein–Barr virus infection in humans: from harmless to life endangering virus-lymphocyte interactions. Oncogene 26(9):1297–1305. https://doi.org/10.1038/sj.onc.1210240

    Article  CAS  PubMed  Google Scholar 

  4. Hatton OL, Harris-Arnold A, Schaffert S, Krams SM, Martinez OM (2014) The interplay between Epstein–Barr virus and B lymphocytes: implications for infection, immunity, and disease. Immunol Res 58(2–3):268–276. https://doi.org/10.1007/s12026-014-8496-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Young LS, Rickinson AB (2004) Epstein–Barr virus: 40 years on. Nat Rev Cancer 4(10):757–768. https://doi.org/10.1038/nrc1452

    Article  CAS  PubMed  Google Scholar 

  6. Stanfield BA, Luftig MA (2017) Recent advances in understanding Epstein–Barr virus. F1000Res 6:386. https://doi.org/10.12688/f1000research.10591.1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Shannon-Lowe C, Rickinson AB, Bell AI (2017) Epstein–Barr virus-associated lymphomas. Philos Trans R Soc Lond B Biol Sci 372 (1732). https://doi.org/10.1098/rstb.2016.0271

  8. Krumbholz A, Sandhaus T, Gohlert A, Heim A, Zell R, Egerer R, Breuer M, Straube E, Wutzler P, Sauerbrei A (2010) Epstein–Barr virus-associated pneumonia and bronchiolitis obliterans syndrome in a lung transplant recipient. Med Microbiol Immunol 199(4):317–322. https://doi.org/10.1007/s00430-010-0165-y

    Article  PubMed  Google Scholar 

  9. Kamperschroer C, Gosink MM, Kumpf SW, O’Donnell LM, Tartaro KR (2016) The genomic sequence of lymphocryptovirus from cynomolgus macaque. Virology 488:28–36. https://doi.org/10.1016/j.virol.2015.10.025

    Article  CAS  PubMed  Google Scholar 

  10. Blossom D (2007) EBV and KSHV-related herpesviruses in non-human primates. In: Arvin A, Campadelli-Fiume G, Mocarski E et al (eds) Human herpesviruses: biology, therapy, and immunoprophylaxis. Cambridge University Press, Cambridge, pp 1093–1114

    Google Scholar 

  11. Ehlers B, Dural G, Yasmum N, Lembo T, de Thoisy B, Ryser-Degiorgis MP, Ulrich RG, McGeoch DJ (2008) Novel mammalian herpesviruses and lineages within the Gammaherpesvirinae: cospeciation and interspecies transfer. J Virol 82(7):3509–3516. https://doi.org/10.1128/JVI.02646-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Pellett P, Davison A, Eberle R, Ehlers B, Hayward G, Lacoste V, Minson A, Nicholas J, Roizman B, Studdert M (2012) Order herpesvirales. Virus taxonomy: Classification and nomenclature of viruses: ninth report of the International Committee on Taxonomy of Viruses, King AMQ, Adams MJA, Carstens EB, Lefkowitz EJ, Academic Press, Waltham, pp 99–123

    Google Scholar 

  13. Rivailler P, Carville A, Kaur A, Rao P, Quink C, Kutok JL, Westmoreland S, Klumpp S, Simon M, Aster JC, Wang F (2004) Experimental rhesus lymphocryptovirus infection in immunosuppressed macaques: an animal model for Epstein–Barr virus pathogenesis in the immunosuppressed host. Blood 104(5):1482–1489. https://doi.org/10.1182/blood-2004-01-0342

    Article  CAS  PubMed  Google Scholar 

  14. Voevodin AF, Marx PA (2009) Lymphocryptoviruses. simian virology:323–346

  15. Rivailler P, Jiang H, Cho YG, Quink C, Wang F (2002) Complete nucleotide sequence of the rhesus lymphocryptovirus: genetic validation for an Epstein–Barr virus animal model. J Virol 76(1):421–426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Wang F, Rivailler P, Rao P, Cho Y (2001) Simian homologues of Epstein–Barr virus. Philos Trans R Soc Lond B Biol Sci 356(1408):489–497. https://doi.org/10.1098/rstb.2000.0776

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Cho Y, Ramer J, Rivailler P, Quink C, Garber RL, Beier DR, Wang F (2001) An Epstein–Barr-related herpesvirus from marmoset lymphomas. Proc Natl Acad Sci U S A 98(3):1224–1229. https://doi.org/10.1073/pnas.98.3.1224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lapin BA, Timanovskaya VV, Yakovleva LA (1985) Herpesvirus HVMA: a new representative in the group of the EBV-like B-lymphotropic herpesviruses of primates. Haematol Blood Transfus 29:312–313

    CAS  PubMed  Google Scholar 

  19. Meerbach A, Friedrichs C, Thust R, Wutzler P (2004) Transformation of rabbit lymphocytes by an Epstein–Barr virus-related herpesvirus from Macaca arctoides. Arch Virol 149(6):1083–1094. https://doi.org/10.1007/s00705-004-0293-z

    Article  CAS  PubMed  Google Scholar 

  20. Iakovleva LA, Timanovskaia VV, Indzhiia LV, Lapin BA, Voevodin AF (1987) Modelling of malignant lymphoma in rabbits using primate oncogenic viruses. Preliminary report. Biull Eksp Biol Med 103(3):336–338

    Article  CAS  PubMed  Google Scholar 

  21. Timanovskaia VV, Voevodin AF, Iakovleva LA, Markarian DS, Ivanov MT (1988) Malignant lymphoma in rabbits induced by the administration of herpes virus-containing material from brown macaques. Eksp Onkol 10(3):47–51

    CAS  PubMed  Google Scholar 

  22. Wutzler P, Meerbach A, Farber I, Wolf H, Scheibner K (1995) Malignant lymphomas induced by an Epstein–Barr virus-related herpesvirus from Macaca arctoides—a rabbit model. Arch Virol 140(11):1979–1995

    Article  CAS  PubMed  Google Scholar 

  23. Yakovleva LA, Timanovskaya VV, Voevodin AF, Indzhiia LV, Lapin BA, Ivanov MT, Markaryan DS (1987) Modelling of malignant lymphoma in rabbits, using oncogenic viruses of non-human primates. Haematol Blood Transfus 31:445–447

    CAS  PubMed  Google Scholar 

  24. Schatzl H, Tschikobava M, Rose D, Voevodin A, Nitschko H, Sieger E, Busch U, von der Helm K, Lapin B (1993) The Sukhumi primate monkey model for viral lymphomogenesis: high incidence of lymphomas with presence of STLV-I and EBV-like virus. Leukemia 7(Suppl 2):S86–S92

    PubMed  Google Scholar 

  25. Pulvertaft RJV (1964) Cytology of Burkitt’s tumor (African lymphoma). Lancet 1(7327):238–240

    Article  CAS  PubMed  Google Scholar 

  26. Karpova MB, Schoumans J, Ernberg I, Henter JI, Nordenskjold M, Fadeel B (2005) Raji revisited: cytogenetics of the original Burkitt’s lymphoma cell line. Leukemia 19(1):159–161. https://doi.org/10.1038/sj.leu.2403534

    Article  CAS  PubMed  Google Scholar 

  27. Klein G, Giovanella B, Westman A, Stehlin JS, Mumford D (1975) An EBV-genome-negative cell line established from an American Burkitt lymphoma; receptor characteristics. EBV infectibility and permanent conversion into EBV-positive sublines by in vitro infection. Intervirology 5(6):319–334. https://doi.org/10.1159/000149930

    Article  CAS  PubMed  Google Scholar 

  28. Davies AH, Grand RJ, Evans FJ, Rickinson AB (1991) Induction of Epstein–Barr virus lytic cycle by tumor-promoting and non-tumor-promoting phorbol esters requires active protein kinase C. J Virol 65(12):6838–6844

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods 9(4):357–359. https://doi.org/10.1038/nmeth.1923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. d’Offay JM, Eberle R, Sucol Y, Schoelkopf L, White MA, Valentine BD, White GL, Lerche NW (2007) Transmission dynamics of simian T-lymphotropic virus type 1 (STLV1) in a baboon breeding colony: predominance of female-to-female transmission. Comp Med 57(1):105–114

    PubMed  Google Scholar 

  31. Govert F, Krumbholz A, Witt K, Hopfner F, Feldkamp T, Korn K, Knoll A, Jansen O, Deuschl G, Fickenscher H (2015) HTLV-1 associated myelopathy after renal transplantation. J Clin Virol 72:102–105. https://doi.org/10.1016/j.jcv.2015.09.010

    Article  PubMed  Google Scholar 

  32. Dehee A, Cesaire R, Desire N, Lezin A, Bourdonne O, Bera O, Plumelle Y, Smadja D, Nicolas JC (2002) Quantitation of HTLV-I proviral load by a TaqMan real-time PCR assay. J Virol Methods 102(1–2):37–51

    Article  CAS  PubMed  Google Scholar 

  33. Edgar RC (2004) MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinf 5:113. https://doi.org/10.1186/1471-2105-5-113

    Article  CAS  Google Scholar 

  34. Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32(5):1792–1797. https://doi.org/10.1093/nar/gkh340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol Biol Evol 30(12):2725–2729. https://doi.org/10.1093/molbev/mst197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Davison AJ (2010) Herpesvirus systematics. Vet Microbiol 143(1):52–69. https://doi.org/10.1016/j.vetmic.2010.02.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Gardella T, Medveczky P, Sairenji T, Mulder C (1984) Detection of circular and linear herpesvirus DNA molecules in mammalian cells by gel electrophoresis. J Virol 50(1):248–254

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Stuhlmann-Laeisz C, Szczepanowski M, Borchert A, Bruggemann M, Klapper W (2015) Epstein–Barr virus-negative diffuse large B-cell lymphoma hosts intra- and peritumoral B-cells with activated Epstein–Barr virus. Virchows Arch 466(1):85–92. https://doi.org/10.1007/s00428-014-1661-z

    Article  CAS  PubMed  Google Scholar 

  39. Stuhlmann-Laeisz C, Borchert A, Quintanilla-Martinez L, Hoeller S, Tzankov A, Oschlies I, Kreuz M, Trappe R, Klapper W (2016) In Europe expression of EBNA2 is associated with poor survival in EBV-positive diffuse large B-cell lymphoma of the elderly. Leuk Lymphoma 57(1):39–44. https://doi.org/10.3109/10428194.2015.1040014

    Article  CAS  PubMed  Google Scholar 

  40. Claussen U, Michel S, Muhlig P, Westermann M, Grummt UW, Kromeyer-Hauschild K, Liehr T (2002) Demystifying chromosome preparation and the implications for the concept of chromosome condensation during mitosis. Cytogenet Genome Res 98(2–3):136–146. https://doi.org/10.1159/000069817

    Article  CAS  PubMed  Google Scholar 

  41. Liehr T, Weise A, Heller A, Starke H, Mrasek K, Kuechler A, Weier HU, Claussen U (2002) Multicolor chromosome banding (MCB) with YAC/BAC-based probes and region-specific microdissection DNA libraries. Cytogenet Genome Res 97(1–2):43–50. https://doi.org/10.1159/000064043

    Article  CAS  PubMed  Google Scholar 

  42. Liehr T, Weise A, Hamid AB, Fan X, Klein E, Aust N, Othman MA, Mrasek K, Kosyakova N (2013) Multicolor FISH methods in current clinical diagnostics. Expert Rev Mol Diagn 13(3):251–255. https://doi.org/10.1586/erm.12.146

    Article  CAS  PubMed  Google Scholar 

  43. Weise A, Gross M, Mrasek K, Mkrtchyan H, Horsthemke B, Jonsrud C, Von Eggeling F, Hinreiner S, Witthuhn V, Claussen U, Liehr T (2008) Parental-origin-determination fluorescence in situ hybridization distinguishes homologous human chromosomes on a single-cell level. Int J Mol Med 21(2):189–200

    CAS  PubMed  Google Scholar 

  44. Bentley DR, Balasubramanian S, Swerdlow HP, Smith GP, Milton J, Brown CG, Hall KP,Evers DJ, Barnes CL, Bignell HR, Boutell JM, Bryant J, Carter RJ, Keira Cheetham R,Cox AJ, Ellis DJ, Flatbush MR, Gormley NA, Humphray SJ, Irving LJ, Karbelashvili MS,Kirk SM, Li H, Liu X, Maisinger KS, Murray LJ, Obradovic B, Ost T, Parkinson ML, Pratt MR, Rasolonjatovo IM, Reed MT, Rigatti R, Rodighiero C, Ross MT, Sabot A, Sankar SV, Scally A, Schroth GP, Smith ME, Smith VP, Spiridou A, Torrance PE, Tzonev SS, Vermaas EH, Walter K, Wu X, Zhang L, Alam MD, Anastasi C, Aniebo IC, Bailey DM, Bancarz IR, Banerjee S, Barbour SG, Baybayan PA, Benoit VA, Benson KF, Bevis C, Black PJ, Boodhun A, Brennan JS, Bridgham JA, Brown RC, Brown AA, Buermann DH, Bundu AA, Burrows JC,Carter NP, Castillo N, Chiara ECM, Chang S, Neil Cooley R, Crake NR, Dada OO, Diakoumakos KD, Dominguez-Fernandez B, Earnshaw DJ, Egbujor UC, Elmore DW, Etchin SS, Ewan MR,Fedurco M, Fraser LJ, Fuentes Fajardo KV, Scott Furey W, George D, Gietzen KJ, Goddard CP, Golda GS, Granieri PA, Green DE, Gustafson DL, Hansen NF, Harnish K, Haudenschild CD, Heyer NI, Hims MM, Ho JT, Horgan AM, Hoschler K, Hurwitz S, Ivanov DV, Johnson MQ, James T, Huw Jones TA, Kang GD, Kerelska TH, Kersey AD, Khrebtukova I, Kindwall AP, Kingsbury Z, Kokko-Gonzales PI, Kumar A, Laurent MA, Lawley CT, Lee SE, Lee X,Liao AK, Loch JA, Lok M, Luo S, Mammen RM, Martin JW, McCauley PG, McNitt P, Mehta P, Moon KW, Mullens JW, Newington T, Ning Z, Ling Ng B, Novo SM, O’Neill MJ, Osborne MA, Osnowski A, Ostadan O, Paraschos LL, Pickering L, Pike AC, Pike AC, Chris Pinkard D, Pliskin DP, Podhasky J, Quijano VJ, Raczy C, Rae VH, Rawlings SR, Chiva Rodriguez A, Roe PM, Rogers J, Rogert Bacigalupo MC, Romanov N, Romieu A, Roth RK, Rourke NJ,Ruediger ST, Rusman E, Sanches-Kuiper RM, Schenker MR, Seoane JM, Shaw RJ, Shiver MK, Short SW, Sizto NL, Sluis JP, Smith MA, Ernest Sohna Sohna J, Spence EJ, Stevens K, Sutton N, Szajkowski L, Tregidgo CL, Turcatti G, Vandevondele S, Verhovsky Y, Virk SM, Wakelin S, Walcott GC, Wang J, Worsley GJ, Yan J, Yau L, Zuerlein M, Rogers J,Mullikin JC, Hurles ME, McCooke NJ, West JS, Oaks FL, Lundberg PL, Klenerman D, Durbin R, Smith AJ (2008) Accurate whole human genome sequencing using reversible terminator chemistry. Nature 456(7218):53–59. https://doi.org/10.1038/nature07517

  45. Ning S (2011) Innate immune modulation in EBV infection. Herpesviridae 2(1):1. https://doi.org/10.1186/2042-4280-2-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Levitskaya J, Coram M, Levitsky V, Imreh S, Steigerwald-Mullen PM, Klein G, Kurilla MG, Masucci MG (1995) Inhibition of antigen processing by the internal repeat region of the Epstein–Barr virus nuclear antigen-1. Nature 375(6533):685–688. https://doi.org/10.1038/375685a0

    Article  CAS  PubMed  Google Scholar 

  47. Roizman B, Baines J (1991) The diversity and unity of herpesviridae. Comp Immunol Microbiol Infect Dis 14(2):63–79

    Article  CAS  PubMed  Google Scholar 

  48. Le SQ, Gascuel O (2008) An improved general amino acid replacement matrix. Mol Biol Evol 25(7):1307–1320. https://doi.org/10.1093/molbev/msn067

    Article  CAS  PubMed  Google Scholar 

  49. McKillen J, Hogg K, Lagan P, Ball C, Doherty S, Reid N, Collins L, Dick JTA (2017) Detection of a novel gammaherpesvirus (genus Rhadinovirus) in wild muntjac deer in Northern Ireland. Arch Virol 162(6):1737–1740. https://doi.org/10.1007/s00705-017-3254-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Nei M, Kumar S (2000) Molecular evolution and phylogenetics. Oxford University Press, New York

    Google Scholar 

  51. Jackson SA, DeLuca NA (2003) Relationship of herpes simplex virus genome configuration to productive and persistent infections. Proc Natl Acad Sci USA 100(13):7871–7876. https://doi.org/10.1073/pnas.1230643100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Sandri-Goldin RM (2003) Replication of the herpes simplex virus genome: does it really go around in circles? Proc Natl Acad Sci USA 100(13):7428–7429. https://doi.org/10.1073/pnas.1432875100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Chau CM, Zhang XY, McMahon SB, Lieberman PM (2006) Regulation of Epstein–Barr virus latency type by the chromatin boundary factor CTCF. J Virol 80(12):5723–5732. https://doi.org/10.1128/JVI.00025-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Hurley EA, Agger S, McNeil JA, Lawrence JB, Calendar A, Lenoir G, Thorley-Lawson DA (1991) When Epstein–Barr virus persistently infects B-cell lines, it frequently integrates. J Virol 65(3):1245–1254

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Watanabe T, Seiki M, Tsujimoto H, Miyoshi I, Hayami M, Yoshida M (1985) Sequence homology of the simian retrovirus genome with human T-cell leukemia virus type I. Virology 144(1):59–65

    Article  CAS  PubMed  Google Scholar 

  56. Bushman F, Lewinski M, Ciuffi A, Barr S, Leipzig J, Hannenhalli S, Hoffmann C (2005) Genome-wide analysis of retroviral DNA integration. Nat Rev Microbiol 3(11):848–858. https://doi.org/10.1038/nrmicro1263

    Article  CAS  PubMed  Google Scholar 

  57. Pezzutto A, Ulrichs T, Burmester G-R (2007) Taschenatlas der Immunologie, vol 2. Georg Thieme Verlag, Stuttgart

    Google Scholar 

  58. Ok CY, Li L, Young KH (2015) EBV-driven B-cell lymphoproliferative disorders: from biology, classification and differential diagnosis to clinical management. Exp Mol Med 47:e132. https://doi.org/10.1038/emm.2014.82

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Wienberg J, Stanyon R, Jauch A, Cremer T (1992) Homologies in human and Macaca fuscata chromosomes revealed by in situ suppression hybridization with human chromosome specific DNA libraries. Chromosoma 101(5–6):265–270

    Article  CAS  PubMed  Google Scholar 

  60. Fan X, Sangpakdee W, Tanomtong A, Chaveerach A, Pinthong K, Pornnarong S, Supiwong W, Trifonov V, Hovhannisyan G, Aroutouinian R (2014) Molecular cytogenetic analysis of Thai southern pig-tailed macaque (Macaca nemestrina) by multicolor banding. Proceedings of Yerevan State University 2014:46–50

  61. Fan X, Sangpakdee W, Tanomtong A, Chaveerach A, Pinthong K, Pornnarong S, Supiwong W, Trifonov V, Hovhannisyan G, Loth K (2014) Comprehensive molecular cytogenetic analysis of Barbary macaque (Macaca sylvanus). J Armenia 66(1):98–102

    Google Scholar 

  62. O’Brien SJ, Menninger JC, Nash WG (2006) Atlas of mammalian chromosomes. Wiley, Hoboken

    Book  Google Scholar 

  63. Ono K, Satoh M, Yoshida T, Ozawa Y, Kohara A, Takeuchi M, Mizusawa H, Sawada H (2007) Species identification of animal cells by nested PCR targeted to mitochondrial DNA. In Vitro Cell Dev Biol Anim 43(5–6):168–175. https://doi.org/10.1007/s11626-007-9033-5

    Article  CAS  PubMed  Google Scholar 

  64. Ahmed EH, Baiocchi RA (2016) Murine models of Epstein–Barr virus-associated lymphomagenesis. ILAR J 57(1):55–62. https://doi.org/10.1093/ilar/ilv074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Ito R, Takahashi T, Katano I, Ito M (2012) Current advances in humanized mouse models. Cell Mol Immunol 9(3):208–214. https://doi.org/10.1038/cmi.2012.2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Gujer C, Chatterjee B, Landtwing V, Raykova A, McHugh D, Munz C (2015) Animal models of Epstein Barr virus infection. Curr Opin Virol 13:6–10. https://doi.org/10.1016/j.coviro.2015.03.014

    Article  CAS  PubMed  Google Scholar 

  67. Kakubava VV, Agrba VZ, Timanovskaia VV, Brzhikhachek B (1990) Analysis of B-lymphotropic oncogenic herpesvirus of Macaca arctoides. Eksp Onkol 12(6):44–46

    CAS  PubMed  Google Scholar 

  68. Gillet L, Minner F, Detry B, Farnir F, Willems L, Lambot M, Thiry E, Pastoret PP, Schynts F, Vanderplasschen A (2004) Investigation of the susceptibility of human cell lines to bovine herpesvirus 4 infection: demonstration that human cells can support a nonpermissive persistent infection which protects them against tumor necrosis factor alpha-induced apoptosis. J Virol 78(5):2336–2347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Agrba VZ, Lapin BA, Medvedeva NM, Yakovleva LA (2004) Immunophenotypical characteristics of permanent cultures of lymphoid cells from Papio hamadryas and Macaca arctoides. Bull Exp Biol Med 137(2):190–194

    Article  CAS  PubMed  Google Scholar 

  70. Kang MS, Kieff E (2015) Epstein–Barr virus latent genes. Exp Mol Med 47:e131. https://doi.org/10.1038/emm.2014.84

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Blake NW, Moghaddam A, Rao P, Kaur A, Glickman R, Cho YG, Marchini A, Haigh T, Johnson RP, Rickinson AB, Wang F (1999) Inhibition of antigen presentation by the glycine/alanine repeat domain is not conserved in simian homologues of Epstein–Barr virus nuclear antigen 1. J Virol 73(9):7381–7389

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Murata T (2014) Regulation of Epstein–Barr virus reactivation from latency. Microbiol Immunol 58(6):307–317. https://doi.org/10.1111/1348-0421.12155

    Article  CAS  PubMed  Google Scholar 

  73. Haider S, Pal R (2013) Integrated analysis of transcriptomic and proteomic data. Curr Genomics 14(2):91–110. https://doi.org/10.2174/1389202911314020003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Morissette G, Flamand L (2010) Herpesviruses and chromosomal integration. J Virol 84(23):12100–12109. https://doi.org/10.1128/JVI.01169-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Lestou VS, De Braekeleer M, Strehl S, Ott G, Gadner H, Ambros PF (1993) Non-random integration of Epstein–Barr virus in lymphoblastoid cell lines. Genes Chromosomes Cancer 8(1):38–48

    Article  CAS  PubMed  Google Scholar 

  76. Caporossi D, Vernole P, Porfirio B, Tedeschi B, Frezza D, Nicoletti B, Calef E (1988) Specific sites for EBV association in the Namalwa Burkitt lymphoma cell line and in a lymphoblastoid line transformed in vitro with EBV. Cytogenet Cell Genet 48(4):220–223. https://doi.org/10.1159/000132632

    Article  CAS  PubMed  Google Scholar 

  77. Gao J, Luo X, Tang K, Li X, Li G (2006) Epstein–Barr virus integrates frequently into chromosome 4q, 2q, 1q and 7q of Burkitt’s lymphoma cell line (Raji). J Virol Methods 136(1–2):193–199. https://doi.org/10.1016/j.jviromet.2006.05.013

    Article  CAS  PubMed  Google Scholar 

  78. Davison AJ (2007) Comparative analysis of the genomes. In: Arvin A, Campadelli-Fiume G, Mocarski E et al (eds) Human herpesviruses—biology, therapy and immunoprophylaxis. Cambridge University Press, Cambridge, pp 10–26

    Chapter  Google Scholar 

  79. Young LS, Arrand JR, Murray PG (2007) EBV gene expression and regulation. In: Arvin A, Campadelli-Fiume G, Mocarski E et al (eds) Human herpesviruses: biology, therapy, and immunoprophylaxis. Cambridge University Press, Cambridge, pp 461–489

    Chapter  Google Scholar 

  80. Aubry V, Mure F, Mariame B, Deschamps T, Wyrwicz LS, Manet E, Gruffat H (2014) Epstein–Barr virus late gene transcription depends on the assembly of a virus-specific preinitiation complex. J Virol 88(21):12825–12838. https://doi.org/10.1128/JVI.02139-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Gruffat H, Kadjouf F, Mariame B, Manet E (2012) The Epstein–Barr virus BcRF1 gene product is a TBP-like protein with an essential role in late gene expression. J Virol 86(11):6023–6032. https://doi.org/10.1128/JVI.00159-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Fossum E, Friedel CC, Rajagopala SV, Titz B, Baiker A, Schmidt T, Kraus T, Stellberger T, Rutenberg C, Suthram S, Bandyopadhyay S, Rose D, von Brunn A, Uhlmann M, Zeretzke C, Dong YA, Boulet H, Koegl M, Bailer SM, Koszinowski U, Ideker T, Uetz P, Zimmer R, Haas J (2009) Evolutionarily conserved herpesviral protein interaction networks. PLoS Pathog 5(9):e1000570. https://doi.org/10.1371/journal.ppat.1000570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Chiu SH, Wu MC, Wu CC, Chen YC, Lin SF, Hsu JT, Yang CS, Tsai CH, Takada K, Chen MR, Chen JY (2014) Epstein–Barr virus BALF3 has nuclease activity and mediates mature virion production during the lytic cycle. J Virol 88(9):4962–4975. https://doi.org/10.1128/JVI.00063-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Thompson MP, Kurzrock R (2004) Epstein–Barr virus and cancer. Clin Cancer Res 10(3):803–821

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the Institute of Clinical Molecular Biology (ICMB) in Kiel for providing Sanger sequencing facilities as supported in part by the DFG Cluster of Excellence “Inflammation at Interfaces” and “Future Ocean”. We thank the technicians S. Greve, T. Henke, C. Noack, C. Botz von Drathen, M. Müller, I. Görlich and Dr. N. Kosyakova for excellent technical support. The authors would like to thank Dr. K. Korn (Virological Institute, University of Erlangen-Nuremberg, Erlangen, Germany) for providing a HTLV-1-positive DNA sample with known proviral load. Furthermore, authors are indebted to Dr. L. Harder (Institute of Tumour Genetics, Kiel, Germany) and R. Bunke, M.D. (Wietze, Germany) for critical reading of the manuscript and valuable comments.

Funding

This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

AK, RZ, HF, AS, AM, and PW planned the experiments; MS generated HTRL and performed initial characterisation; JR and MG performed sequencing with help of AK and RZ; these data were then analysed by JR, MG, AK, and RZ and used for phylogenetic comparisons; JR performed in situ lysis gel and Southern blot, and produced cloned MarcGHV-1 DNA for synthesis of FISH probes; chromosomal analysis and FISH were done by TL; AK, JR, and MG performed analysis of transcripts as well as STLV-1/HTLV-1 proviral DNA search; ISH and IHC were done by AK, GM and WK; AK, JR, TL and RZ wrote the paper; all authors approved the final version. Parts of this manuscript are subject of the MD thesis of JR.

Corresponding author

Correspondence to Andi Krumbholz.

Ethics declarations

Ethical statement

Nothing to declare.

Conflict of interest

The authors declare no financial conflict of interest and no non-financial conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 4116 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krumbholz, A., Roempke, J., Liehr, T. et al. Macaca arctoides gammaherpesvirus 1 (strain herpesvirus Macaca arctoides): virus sequence, phylogeny and characterisation of virus-transformed macaque and rabbit cell lines. Med Microbiol Immunol 208, 109–129 (2019). https://doi.org/10.1007/s00430-018-0565-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00430-018-0565-y

Keywords

Navigation