Skip to main content

Advertisement

Log in

Principles for studying in vivo attenuation of virus mutants: defining the role of the cytomegalovirus gH/gL/gO complex as a paradigm

  • Review
  • Published:
Medical Microbiology and Immunology Aims and scope Submit manuscript

Abstract

Initial virus entry into cells of host organs and subsequent spread of viral progeny between tissue cells are events fundamental to viral pathogenesis. Glycoprotein complexes inserted in the virion envelope are critically involved in the cell entry process. Here we review and discuss recent work that has shed light on the in vivo role of the trimeric glycoprotein complex gH/gL/gO of murine cytomegalovirus (mCMV) as a model to propose the role of the corresponding complex of human CMV, for which experimental studies in vivo are not feasible due to the host species specificity of CMVs and evident ethical constraints. A novel approach combining gO transcomplementation of a genetically gO-deficient virus and a mathematical log-linear regression analysis of the viral multiplication kinetics in host tissues revealed a critical role of mCMV gH/gL/gO only in first target cell entry of virions arriving with the circulation, whereas intra-tissue spread proceeded unaffected also in the absence of gH/gL/gO. These findings predict that targeting gO for an antiviral intervention may be of prophylactic value in preventing the seeding of virus to organs, but will likely fail to interfere with an established primary organ infection or with recurrent infection after virus reactivation from latency within tissue cells. The demonstration in the murine model of alternative gH/gL complexes gH/gL/gO and gH/gL/MCK-2, substituting one another in a redundant fashion for securing viral spread in tissues, has the medically interesting bearing that targeting the gH/gL core complex directly may be a promising approach to preventing primary, established, and recurrent CMV infections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Heldwein EE, Krummenacher C (2008) Entry of herpesviruses into mammalian cells. Cell Mol Life Sci 65:1653–1668

    Article  CAS  PubMed  Google Scholar 

  2. Britt WJ (1984) Neutralizing antibodies detect a disulfide-linked glycoprotein complex within the envelope of human cytomegalovirus. Virology 135:369–378

    Article  CAS  PubMed  Google Scholar 

  3. Britt WJ, Auger D (1986) Synthesis and processing of the envelope gp55-116 complex of human cytomegalovirus. J Virol 58:185–191

    PubMed Central  CAS  PubMed  Google Scholar 

  4. Boyle KA, Compton T (1998) Receptor-binding properties of a soluble form of human cytomegalovirus glycoprotein B. J Virol 72:1826–1833

    PubMed Central  CAS  PubMed  Google Scholar 

  5. Heldwein EE, Lou H, Bender FC, Cohen GH, Eisenberg RJ, Harrison SC (2006) Crystal structure of glycoprotein B from herpes simplex virus 1. Science 313:217–220

    Article  CAS  PubMed  Google Scholar 

  6. Isaacson MK, Compton T (2009) Human cytomegalovirus glycoprotein B is required for virus entry and cell-to-cell spread but not for virion attachment, assembly, or egress. J Virol 83:3891–3903

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Pötzsch S, Spindler N, Wiegers AK, Fisch T, Rücker P, Sticht H, Grieb N, Baroti T, Weisel F, Stamminger T, Martin-Parras L, Mach M, Winkler TH (2011) B cell repertoire analysis identifies new antigenic domains on glycoprotein B of human cytomegalovirus which are target of neutralizing antibodies. PLoS Pathog 7:e1002172

    Article  PubMed Central  PubMed  Google Scholar 

  8. Mach M, Kropff B, Dal Monte P, Britt W (2000) Complex formation by human cytomegalovirus glycoproteins M (gpUL100) and N (gpUL73). J Virol 74:11881–11892

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Varnum SM, Streblow DN, Monroe ME, Smith P, Auberry KJ, Pasa-Tolic L, Wang D, Camp DG II, Rodland K, Wiley S, Britt W, Shenk T, Smith RD, Nelson JA (2004) Identification of proteins in human cytomegalovirus (HCMV) particles: the HCMV proteome. J Virol 78:10960–10966; Erratum in: J Virol 78:13395

  10. Huber MT, Compton T (1997) Characterization of a novel third member of the human cytomegalovirus glycoprotein H-glycoprotein L complex. J Virol 71:5391–5398

    PubMed Central  CAS  PubMed  Google Scholar 

  11. Huber MT, Compton T (1998) The human cytomegalovirus UL74 gene encodes the third component of the glycoprotein H-glycoprotein L-containing envelope complex. J Virol 72:8191–8197

    PubMed Central  CAS  PubMed  Google Scholar 

  12. Li L, Nelson JA, Britt WJ (1997) Glycoprotein H-related complexes of human cytomegalovirus: identification of a third protein in the gCIII complex. J Virol 71:3090–3097

    PubMed Central  CAS  PubMed  Google Scholar 

  13. Chowdary TK, Cairns TM, Atanasiu D, Cohen GH, Eisenberg RJ, Heldwein EE (2010) Crystal structure of the conserved herpesvirus fusion regulator complex gH–gL. Nat Struct Mol Biol 17:882–888

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Matsuura H, Kirschner AN, Longnecker R, Jardetzky TS (2010) Crystal structure of the Epstein–Barr virus (EBV) glycoprotein H/glycoprotein L (gH/gL) complex. Proc Natl Acad Sci USA 107:22641–22646

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Wang D, Shenk T (2005) Human cytomegalovirus virion protein complex required for epithelial and endothelial cell tropism. Proc Natl Acad Sci USA 102:18153–18158

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Adler B, Scrivano L, Ruzcics Z, Rupp B, Sinzger C, Koszinowski U (2006) Role of human cytomegalovirus UL131A in cell type-specific virus entry and release. J Gen Virol 87:2451–2460

    Article  CAS  PubMed  Google Scholar 

  17. Ryckman BJ, Rainish BL, Chase MC, Borton JA, Nelson JA, Jarvis MA, Johnson DC (2008) Characterization of the human cytomegalovirus gH/gL/UL128-131 complex that mediates entry into epithelial and endothelial cells. J Virol 82:60–70

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Sinzger C, Digel M, Jahn G (2008) Cytomegalovirus cell tropism. Curr Top Microbiol Immunol 325:63–83

    CAS  PubMed  Google Scholar 

  19. Feire AL, Compton T (2013) Virus entry and activation of innate defence. In: Reddehase MJ (ed) Cytomegaloviruses: from molecular pathogenesis to intervention, Chapter 8, vol I. Caister Academic Press, Norfolk, pp 125–141

    Google Scholar 

  20. Adler B, Sinzger C (2013) Cytomegalovirus interstrain variance in cell type tropism. In: Reddehase MJ (ed) Cytomegaloviruses: from molecular pathogenesis to intervention, Chapter 17, vol I. Caister Academic Press, Norfolk, pp 297–321

    Google Scholar 

  21. Ciferri C, Chandramouli S, Donnarumma D, Nikitin PA, Cianfrocco MA, Gerrein R, Feire AL, Barnett SW, Lilja AE, Rappuoli R, Norais N, Settembre EC, Carfi A (2015) Structural and biochemical studies of HCMV gH/gL/gO and Pentamer reveal mutually exclusive cell entry complexes. Proc Natl Acad Sci USA 112:1767–1772

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Hertel L (2014) Human cytomegalovirus tropism for mucosal myeloid dendritic cells. Rev Med Virol 24:379–395

    Article  CAS  PubMed  Google Scholar 

  23. Lauron EJ, Yu D, Fehr AR, Hertel L (2014) Human cytomegalovirus infection of langerhans-type dendritic cells does not require the presence of the gH/gL/UL128-131A complex and is blocked after nuclear deposition of viral genomes in immature cells. J Virol 88:403–416

    Article  PubMed Central  PubMed  Google Scholar 

  24. Zydek M, Petitt M, Fang-Hoover J, Adler B, Kauvar LM, Pereira L, Tabata T (2014) HCMV infection of human trophoblast progenitor cells of the placenta is neutralized by a human monoclonal antibody to glycoprotein B and not by antibodies to the pentamer complex. Viruses 6:1346–1364

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Wagner FM, Brizic I, Prager A, Trsan T, Arapovic M, Lemmermann NA, Podlech J, Reddehase MJ, Lemnitzer F, Bosse JB, Gimpfl M, Marcinowski L, MacDonald M, Adler H, Koszinowski UH, Adler B (2013) The viral chemokine MCK-2 of murine cytomegalovirus promotes infection as part of a gH/gL/MCK-2 complex. PLoS Pathog 9:e1003493

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Fleming P, Davis-Poynter N, Degli-Esposti M, Densley E, Papadimitriou J, Shellam G, Farrell H (1999) The murine cytomegalovirus chemokine homolog, m131/129, is a determinant of viral pathogenicity. J Virol 73:6800–6809

    PubMed Central  CAS  PubMed  Google Scholar 

  27. Saederup N, Aguirre SA, Sparer TE, Bouley DM, Mocarski ES (2001) Murine cytomegalovirus CC chemokine homolog MCK-2 (m131-129) is a determinant of dissemination that increases inflammation at initial sites of infection. J Virol 75:9966–9976

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Noda S, Aguirre SA, Bitmansour A, Brown JM, Sparer TE, Huang J, Mocarski ES (2006) Cytomegalovirus MCK-2 controls mobilization and recruitment of myeloid progenitor cells to facilitate dissemination. Blood 107:30–38

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Straschewski S, Patrone M, Walther P, Gallina A, Mertens T, Frascaroli G (2011) Protein pUL128 of human cytomegalovirus is necessary for monocyte infection and blocking of migration. J Virol 85:5150–5158

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Lemmermann NA, Krmpotic A, Podlech J, Brizic I, Prager A, Adler H, Karbach A, Wu Y, Jonjic S, Reddehase MJ, Adler B (2015) Non-redundant and redundant roles of cytomegalovirus gH/gL complexes in host organ entry and intra-tissue spread. PLoS Pathog 11:e1004640

    Article  PubMed  Google Scholar 

  31. Scrivano L, Esterlechner J, Mühlbach H, Ettischer N, Hagen C, Grünewald K, Mohr CA, Ruzsics Z, Koszinowski U, Adler B (2010) The m74 gene product of murine cytomegalovirus (MCMV) is a functional homolog of human CMV gO and determines the entry pathway of MCMV. J Virol 84:4469–4480

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Kropp KA, Simon CO, Fink A, Renzaho A, Kühnapfel B, Podlech J, Reddehase MJ, Grzimek NK (2009) Synergism between the components of the bipartite major immediate-early transcriptional enhancer of murine cytomegalovirus does not accelerate virus replication in cell culture and host tissues. J Gen Virol 90:2395–2401

    Article  CAS  PubMed  Google Scholar 

  33. Wilhelmi V, Simon CO, Podlech J, Böhm V, Däubner T, Emde S, Strand D, Renzaho A, Lemmermann NA, Seckert CK, Reddehase MJ, Grzimek NK (2008) Transactivation of cellular genes involved in nucleotide metabolism by the regulatory IE1 protein of murine cytomegalovirus is not critical for viral replicative fitness in quiescent cells and host tissues. J Virol 82:9900–9916

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Lemmermann NA, Podlech J, Seckert CK, Kropp KA, Grzimek NK, Reddehase MJ, Holtappels R (2010) CD8 T-cell immunotherapy of cytomegalovirus disease in the murine model. In: Kabelitz D, Kaufmann SHE (eds) Methods in microbiology: immunology of infection, 3rd edn. Academic Press, London, pp 369–420

    Chapter  Google Scholar 

  35. Sacher T, Podlech J, Mohr CA, Jordan S, Ruzsics Z, Reddehase MJ, Koszinowski UH (2008) The major virus-producing cell type during murine cytomegalovirus infection, the hepatocyte, is not the source of virus dissemination in the host. Cell Host Microbe 3:263–272

    Article  CAS  PubMed  Google Scholar 

  36. Braet F, Wisse E (2002) Structural and functional aspects of liver sinusoidal endothelial cell fenestrae: a review. Comp Hepatol 1:1

    Article  PubMed Central  PubMed  Google Scholar 

  37. Jordan S, Krause J, Prager A, Mitrovic M, Jonjic S, Koszinowski UH, Adler B (2011) Virus progeny of murine cytomegalovirus bacterial artificial chromosome pSM3fr show reduced growth in salivary glands due to a fixed mutation of MCK-2. J Virol 85:10346–10353

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Stahl FR, Keyser KA, Heller K, Bischoff Y, Halle S, Wagner K, Messerle M, Förster R (2015) Mck2-dependent infection of alveolar macrophages promotes replication of MCMV in nodular inflammatory foci of the neonatal lung. Mucosal Immunol 8:57–67

    Article  CAS  PubMed  Google Scholar 

  39. Seckert CK, Renzaho A, Tervo HM, Krause C, Deegen P, Kühnapfel B, Reddehase MJ, Grzimek NKA (2009) Liver sinusoidal endothelial cells are a site of murine cytomegalovirus latency and rectivation. J Virol 83:8869–8884

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Seckert CK, Griessl M, Büttner JK, Scheller S, Simon CO, Kropp KA, Renzaho A, Kühnapfel B, Grzimek NK, Reddehase MJ (2012) Viral latency drives ‘memory inflation': a unifying hypothesis linking two hallmarks of cytomegalovirus infection. Med Microbiol Immunol 201:551–566

    Article  PubMed  Google Scholar 

  41. Seckert CK, Griessl M, Büttner JK, Freitag K, Lemmermann NA, Hummel MA, Liu X-F, Abecassis MI, Angulo A, Messerle M, Cook CH, Reddhase MJ (2013) Immune surveillance of cytomegalovirus latency and reactivation in murine models: link to ‘memory Inflation’. In: Reddehase MJ (ed) Cytomegaloviruses: from molecular pathogenesis to intervention, Chapter 22, vol I. Caister Academic Press, Norfolk, pp 374–416

    Google Scholar 

  42. Wirtz N, Schader SI, Holtappels R, Simon CO, Lemmermann NA, Reddehase MJ, Podlech J (2008) Polyclonal cytomegalovirus-specific antibodies not only prevent virus dissemination from the portal of entry but also inhibit focal virus spread within target tissues. Med Microbiol Immunol 197:151–158

    Article  CAS  PubMed  Google Scholar 

  43. Holtappels R, Ebert S, Podlech J, Fink A, Böhm V, Lemmermann NA, Freitag K, Renzaho A, Thomas D, Reddehase MJ (2013) Murine model for cytoimmuntherapy of CMV disease after haematopoietic cell transplantation. In: Reddehase MJ (ed) Cytomegaloviruses: from molecular pathogenesis to intervention, Chapter 17, vol II. Caister Academic Press, Norfolk, pp 352–379

    Google Scholar 

  44. Grzimek NK, Podlech J, Steffens HP, Holtappels R, Schmalz S, Reddehase MJ (1999) In vivo replication of recombinant murine cytomegalovirus driven by the paralogous major immediate-early promoter–enhancer of human cytomegalovirus. J Virol 73:5043–5055

    PubMed Central  CAS  PubMed  Google Scholar 

  45. Reddehase MJ (2002) Antigens and immunoevasins: opponents in cytomegalovirus immune surveillance. Nat Rev Immunol 2:831–844

    Article  CAS  PubMed  Google Scholar 

  46. Wagner M, Gutermann A, Podlech J, Reddehase MJ, Koszinowski UH (2002) Major histocompatibility complex class I allele-specific cooperative and competitive interactions between immune evasion proteins of cytomegalovirus. J Exp Med 196:805–816

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Holtappels R, Podlech J, Pahl-Seibert MF, Jülch M, Thomas D, Simon CO, Wagner M, Reddehase MJ (2004) Cytomegalovirus misleads its host by priming of CD8 T cells specific for an epitope not presented in infected tissues. J Exp Med 199:131–136

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Podlech J, Pintea R, Kropp KA, Fink A, Lemmermann NA, Erlach KC, Isern E, Angulo A, Ghazal P, Reddehase MJ (2010) Enhancerless cytomegalovirus is capable of establishing a low-level maintenance infection in severely immunodeficient host tissues but fails in exponential growth. J Virol 84:6254–6261

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  49. DuRose JB, Li J, Chien S, Spector DH (2012) Infection of vascular endothelial cells with human cytomegalovirus under fluid shear stress reveals preferential entry and spread of virus in flow conditions simulating atheroprone regions of the artery. J Virol 86:13745–13755

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  50. Sattentau Q (2008) Avoiding the void: cell-to-cell spread of human viruses. Nat Rev Microbiol 6:815–826

    Article  CAS  PubMed  Google Scholar 

  51. Jabs DA, Gilpin AM, Min YI, Erice A, Kempen JH, Quinn TC, Studies of Ocular Complications of AIDS Research Group (2002) HIV and cytomegalovirus viral load and clinical outcomes in AIDS and cytomegalovirus retinitis patients: monoclonal antibody cytomegalovirus retinitis trial. AIDS 16:877–887

    Article  PubMed  Google Scholar 

  52. Borucki MJ, Spritzler J, Asmuth DM, Gnann J, Hirsch MS, Nokta M, Aweeka F, Nadler PI, Sattler F, Alston B, Nevin TT, Owens S, Waterman K, Hubbard L, Caliendo A, Pollard RB, AACTG 266 Team (2004) A phase II, double-masked, randomized, placebo-controlled evaluation of a human monoclonal anti-Cytomegalovirus antibody (MSL-109) in combination with standard therapy versus standard therapy alone in the treatment of AIDS patients with Cytomegalovirus retinitis. Antiviral Res 64:103–111

    Article  CAS  PubMed  Google Scholar 

  53. Fouts AE, Comps-Agrar L, Stengel KF, Ellerman D, Schoeffler AJ, Warming S, Eaton DL, Feierbach B (2014) Mechanism for neutralizing activity by the anti-CMV gH/gL monoclonal antibody MSL-109. Proc Natl Acad Sci USA 111:8209–8214

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  54. Boeckh M, Bowden RA, Storer B, Chao NJ, Spielberger R, Tierney DK, Gallez-Hawkins G, Cunningham T, Blume KG, Levitt D, Zaia JA (2001) Randomized, placebo-controlled, double-blind study of a cytomegalovirus-specific monoclonal antibody (MSL-109) for prevention of cytomegalovirus infection after allogeneic hematopoietic stem cell transplantation. Biol Blood Marrow Transplant 7:343–351

    Article  CAS  PubMed  Google Scholar 

  55. Seo S, Boeckh M (2013) Clinical cytomegalovirus research: hematopoietic cell transplantation. In: Reddehase MJ (ed) Cytomegaloviruses: from molecular pathogenesis to intervention, Chapter 16, vol II. Caister Academic Press, Norfolk, pp 337–353

    Google Scholar 

  56. Reddehase MJ, Weiland F, Münch K, Jonjic S, Lüske A, Koszinowski UH (1985) Interstitial murine cytomegalovirus pneumonia after irradiation: characterization of cells that limit viral replication during established infection of the lungs. J Virol 55:264–273

    PubMed Central  CAS  PubMed  Google Scholar 

  57. Reddehase MJ, Mutter W, Koszinowski UH (1987) In vivo application of recombinant interleukin 2 in the immunotherapy of established cytomegalovirus infection. J Exp Med 165:650–666

    Article  CAS  PubMed  Google Scholar 

  58. Holtappels R, Böhm V, Podlech J, Reddehase MJ (2008) CD8 T-cell-based immunotherapy of cytomegalovirus infection: “proof of concept” provided by the murine model. Med Microbiol Immunol 197:125–134

    Article  PubMed  Google Scholar 

  59. Manley K, Anderson J, Yang F, Szustakowski J, Oakeley EJ, Compton T, Feire AL (2011) Human cytomegalovirus escapes a naturally occurring neutralizing antibody by incorporating it into assembling virions. Cell Host Microbe 10:197–209

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Deutsche Forschungsgemeinschaft through grant AD131/3-2 (BA) and the Clinical Research Group KFO 183 (NAWL and MJR). NAWL received intramural funding from the young investigator program MAIFOR of the University Medical Center Mainz.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Niels A. W. Lemmermann.

Additional information

B. Adler and N. A. W. Lemmermann are co-senior authors.

This article is part of the Special Issue on Cytomegalovirus.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Podlech, J., Reddehase, M.J., Adler, B. et al. Principles for studying in vivo attenuation of virus mutants: defining the role of the cytomegalovirus gH/gL/gO complex as a paradigm. Med Microbiol Immunol 204, 295–305 (2015). https://doi.org/10.1007/s00430-015-0405-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00430-015-0405-2

Keywords

Navigation