Skip to main content
Log in

Helicobacter pylori SabA adhesin evokes a strong inflammatory response in human neutrophils which is down-regulated by the neutrophil-activating protein

  • Original Investigation
  • Published:
Medical Microbiology and Immunology Aims and scope Submit manuscript

Abstract

The human pathogen Helicobacter pylori expresses two dominant adhesins; the Lewis b blood group antigen binding adhesin, BabA, and the sialic acid-binding adhesin, SabA. These adhesins recognize specific carbohydrate moieties of the gastric epithelium, i.e. the Lewis b antigen, Leb, and the sialyl-Lewis x antigen, sLex, respectively, which promote infection and inflammatory processes in the gastroduodenal tract. To assess the contribution of each of BabA, SabA and the neutrophil activating protein (HP-NAP) in a local inflammation, we investigated the traits of H. pylori mutants in their capacity to interact with and stimulate human neutrophils. We thence found that the SabA adhesin was not only the key inducer of oxidative metabolism (Unemo et al. J Biol Chem 280:15390–15397, 2005), but also essential in phagocytosis induction, as evaluated by flow cytometry, fluorescence microscopy and luminol-enhanced chemiluminescence. The napA deletion resulted in enhanced generation of reactive oxygen species and impaired adherence to the host cells. In conclusion, the SabA adhesin stimulates human neutrophils through selectin-mimicry. Interestingly, HP-NAP modulates the oxidative burst, which could tune the impact of the H. pylori infection for establishment of balanced and chronic inflammation of the gastric mucosa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Alm RA, Ling LS, Moir DT, King BL, Brown ED, Doig PC, Smith DR, Noonan B, Guild BC, deJonge BL, Carmel G, Tummino PJ, Caruso A, Uria-Nickelsen M, Mills DM, Ives C, Gibson R, Merberg D, Mills SD, Jiang Q, Taylor DE, Vovis GF, Trust TJ (1999) Genomic-sequence comparison of two unrelated isolates of the human gastric pathogen Helicobacter pylori. Nature 397:176–180

    Article  PubMed  CAS  Google Scholar 

  2. Amieva MR, Salama NR, Tompkins LS, Falkow S (2002) Helicobacter pylori enter and survive within multivesicular vacuoles of epithelial cells. Cell Microbiol 4:677–690

    Article  PubMed  CAS  Google Scholar 

  3. Ångstrom J, Teneberg S, Milh MA, Larsson T, Leonardsson I, Olsson BM, Halvarsson MO, Danielsson D, Näslund I, Ljungh A, Wadström T, Karlsson KA (1998) The lactosylceramide binding specificity of Helicobacter pylori. Glycobiology 8:297–309

    Article  PubMed  Google Scholar 

  4. Baggiolini M, Dewald B, Moser B (1997) Human chemokines: an update. Annu Rev Immunol 15:675–705

    Article  PubMed  CAS  Google Scholar 

  5. Björkholm B, Zhukhovitsky V, Löfman C, Hulten K, Enroth H, Block M, Rigo R, Falk P, Engstrand L (2000) Helicobacter pylori entry into human gastric epithelial cells: a potential determinant of virulence, persistence, and treatment failures. Helicobacter 5:148–154

    Article  PubMed  Google Scholar 

  6. Borén TWT, Normark S, Gordon JI, Falk PG (1997) Methods for the identification of H. pylori host receptors. In: Clayton CL, Mobley HTL (eds) Helicobacter pylori protocols. Humana Press Inc, New Jersey pp 205–224

    Google Scholar 

  7. Bøyum A (1968) A one-stage procedure for isolation of granulocytes and lymphocytes from human blood. General sedimentation properties of white blood cells in a 1 g gravity field. Scand J Clin Lab Invest Suppl 97:51–76

    PubMed  Google Scholar 

  8. Bylund J, Dahlgren C (2002) Problems in identifying microbial-derived neutrophil activators, focusing on Helicobacter pylori. Trends Microbiol 10:12–14

    Article  PubMed  CAS  Google Scholar 

  9. Cooksley C, Jenks PJ, Green A, Cockayne A, Logan RP, Hardie KR (2003) NapA protects Helicobacter pylori from oxidative stress damage, and its production is influenced by the ferric uptake regulator. J Med Microbiol 52:461–469

    Article  PubMed  CAS  Google Scholar 

  10. Cotran RS, Kumar V, Collins T (1999) Robbins pathology basis of disease, 6th edn. W.B. Saunders Company, London 315:787–802

  11. Crabtree JE (2001) Cytokine responses in Helicobacter pylori infection. In: Achtman M, Suerbaum S (eds) Helicobacter pylori: molecular and cellular biology. Horizon Scientific Press, Norfolk, pp 63–83

    Google Scholar 

  12. Crabtree JE, Covacci A, Farmery SM, Xiang Z, Tompkins DS, Perry S, Lindley IJ, Rappuoli R (1995) Helicobacter pylori induced interleukin-8 expression in gastric epithelial cells is associated with CagA positive phenotype. J Clin Pathol 48:41–45

    PubMed  CAS  Google Scholar 

  13. Dahlgren C, Karlsson A (1999) Respiratory burst in human neutrophils. J Immunol Methods 232:3–14

    Article  PubMed  CAS  Google Scholar 

  14. Dixon M (1996) Pathological consequences of Helicobacter pylori infection. Scand J Gastroenterol Suppl 215:21

    PubMed  CAS  Google Scholar 

  15. Dixon MF, Genta RM, Yardley JH, Correa P (1996) Classification and grading of gastritis. The updated sydney system. International workshop on the histopathology of gastritis, Houston 1994. Am J Surg Pathol 20:1161–1181

    Article  PubMed  CAS  Google Scholar 

  16. Dundon WG, Nishioka H, Polenghi A, Papinutto E, Zanotti G, Montemurro P, Del GG, Rappuoli R, Montecucco C (2002) The neutrophil-activating protein of Helicobacter pylori. Int J Med Microbiol 291:545–550

    Article  PubMed  CAS  Google Scholar 

  17. el-Shoura SM (1995) Helicobacter pylori: I. Ultrastructural sequences of adherence, attachment, and penetration into the gastric mucosa. Ultrastruct Pathol 19:323–333

    PubMed  CAS  Google Scholar 

  18. Ernst PB, Gold BD (2000) The disease spectrum of Helicobacter pylori: the immunopathogenesis of gastroduodenal ulcer and gastric cancer. Annu Rev Microbiol 54:615–640

    Article  PubMed  CAS  Google Scholar 

  19. Evans DJ Jr, Evans DG, Takemura T, Nakano H, Lampert HC, Graham DY, Granger DN, Kvietys PR (1995) Characterization of a Helicobacter pylori neutrophil-activating protein. Infect Immun 63:2213–2220

    PubMed  CAS  Google Scholar 

  20. Falk P, Borén T, Haslam D, Caparon M (1994) Bacterial adhesion and colonization assays. Methods Cell Biol 45:165–192

    Article  PubMed  CAS  Google Scholar 

  21. Feldman RA (2001) Epidemiologic observation and open questions about disease and infection caused by Helicobacter pylori. In: Achtman M, Suerebaum S (eds) Helicobacter pylori: molecular and cellular biology. Horizon Scientific Press, Norfolk pp 29–51

    Google Scholar 

  22. Ferrante A, Thong YH (1980) Optimal conditions for simultaneous purification of mononuclear and polymorphonuclear leucocytes from human blood by the Hypaque-Ficoll method. J Immunol Methods 36:109–117

    Article  PubMed  CAS  Google Scholar 

  23. Graham DY (2000) Helicobacter pylori infection is the primary cause of gastric cancer. J Gastroenterol 35(Suppl 12):90–97

    PubMed  Google Scholar 

  24. Hartmann P, Becker R, Franzen C, Schell-Frederick E, Romer J, Jacobs M, Fatkenheuer G, Plum G (2001) Phagocytosis and killing of Mycobacterium avium complex by human neutrophils. J Leukoc Biol 69:397–404

    PubMed  CAS  Google Scholar 

  25. Hed J (1977) The extinction of fluorescence by crystal violet and its use to differentiate between attached and ingested microorganisms in phagocytosis. FEMS Microbiol Lett 1:357–361

    Article  Google Scholar 

  26. Heinzelmann M, Gardner SA, Mercer-Jones M, Roll AJ, Polk HC Jr (1999) Quantification of phagocytosis in human neutrophils by flow cytometry. Microbiol Immunol 43:505–512

    PubMed  CAS  Google Scholar 

  27. Hirmo S, Kelm S, Schauer R, Nilsson B, Wadström T (1996) Adhesion of Helicobacter pylori strains to alpha-2,3-linked sialic acids. Glycoconj J 13:1005–1011

    Article  PubMed  CAS  Google Scholar 

  28. Hofman V, Ricci V, Galmiche A, Brest P, Auberger P, Rossi B, Boquet P, Hofman P (2000) Effect of Helicobacter pylori on polymorphonuclear leukocyte migration across polarized T84 epithelial cell monolayers: role of vacuolating toxin VacA and cag pathogenicity island. Infect Immun 68:5225–5233

    Article  PubMed  CAS  Google Scholar 

  29. Ilver D, Arnqvist A, Ögren J, Frick IM, Kersulyte D, Incecik ET, Berg DE, Covacci A, Engstrand L, Borén T (1998) Helicobacter pylori adhesin binding fucosylated histo-blood group antigens revealed by retagging. Science 279:373–377

    Article  PubMed  CAS  Google Scholar 

  30. Karlsson A, Dahlgren C (2002) Assembly and activation of the neutrophil NADPH oxidase in granule membranes. Antioxid Redox Signal 4:49–60

    Article  PubMed  CAS  Google Scholar 

  31. Karlsson KA (2000) The human gastric colonizer Helicobacter pylori: a challenge for host-parasite glycobiology. Glycobiology 10:761–771

    Article  PubMed  CAS  Google Scholar 

  32. Keenan JI, Peterson RA 2nd, Hampton MB (2005) NADPH oxidase involvement in the pathology of Helicobacter pylori infection. Free Radic Biol Med 38:1188–1196

    Article  PubMed  CAS  Google Scholar 

  33. Kennedy CJ, Rakoczy PE, Constable IJ (1996) A simple flow cytometric technique to quantify rod outer segment phagocytosis in cultured retinal pigment epithelial cells. Curr Eye Res 15:998–1003

    PubMed  CAS  Google Scholar 

  34. Kim JS, Jung HC, Kim JM, Song IS, Kim CY (2000) Helicobacter pylori water-soluble surface proteins activate human neutrophils and up-regulate expression of CXC chemokines. Dig Dis Sci 45:83–92

    Article  PubMed  CAS  Google Scholar 

  35. Ko GH, Kang SM, Kim YK, Lee JH, Park CK, Youn HS, Baik SC, Cho MJ, Lee WK, Rhee KH (1999) Invasiveness of Helicobacter pylori into human gastric mucosa. Helicobacter 4:77–81

    Article  PubMed  CAS  Google Scholar 

  36. Kuipers EJ (1997) Helicobacter pylori and the risk and management of associated diseases: gastritis, ulcer disease, atrophic gastritis and gastric cancer. Aliment Pharmacol Ther 11(Suppl 1):71–88

    Article  PubMed  Google Scholar 

  37. Kwok T, Backert S, Schwarz H, Berger J, Meyer TF (2002) Specific entry of Helicobacter pylori into cultured gastric epithelial cells via a zipper-like mechanism. Infect Immun 70:2108–2120

    Article  PubMed  CAS  Google Scholar 

  38. Leakey A, La Brooy J, Hirst R (2000) The ability of Helicobacter pylori to activate neutrophils is determined by factors other than H. pylori neutrophil-activating protein. J Infect Dis 182:1749–1755

    Article  PubMed  CAS  Google Scholar 

  39. Lin JC, Chang FY, Fung CP, Xu JZ, Cheng HP, Wang JJ, Huang LY, Siu LK (2004) High prevalence of phagocytic-resistant capsular serotypes of Klebsiella pneumoniae in liver abscess. Microb Infect 6:1191–1198

    Article  CAS  Google Scholar 

  40. Lindén S, Nordman H, Hedenbro J, Hurtig M, Borén T, Carlstedt I (2002) Strain- and blood group-dependent binding of Helicobacter pylori to human gastric MUC5AC glycoforms. Gastroenterology 123:1923–1930

    Article  PubMed  CAS  Google Scholar 

  41. Logan RPH, Hirschl AM (1996) Epidemiology of Helicobacter pylori infection. Curr Opin Gastroenterol 12:1–5

    Google Scholar 

  42. Lun S, Willson PJ (2004) Expression of green fluorescent protein and its application in pathogenesis studies of serotype 2 streptococcus suis. J Microbiol Methods 56:401–412

    Article  PubMed  CAS  Google Scholar 

  43. Mahdavi J, Sondén B, Hurtig M, Olfat FO, Forsberg L, Roche N, Ångström J, Larsson T, Teneberg S, Karlsson KA, Altraja S, Wadström T, Kersulyte D, Berg DE, Dubois A, Petersson C, Magnusson KE, Norberg T, Lindh F, Lundskog BB, Arnqvist A, Hammarström L, Boren T (2002) Helicobacter pylori SabA adhesin in persistent infection and chronic inflammation. Science 297:573–578

    Article  PubMed  CAS  Google Scholar 

  44. Marshall BJ (2002) Helicobacter in the year 2000. WWW-document. URL: http://www.barryjmarshall.com/helicobacter/hpy2 k/frMain.htm

  45. Marshall BJ, Warren JR (1984) Unidentified curved bacilli in the stomach of patients with gastritis and peptic ulceration. Lancet 1:1311–1315

    Article  PubMed  CAS  Google Scholar 

  46. Miller-Podraza H, Bergström J, Teneberg S, Milh MA, Longard M, Olsson BM, Uggla L, Karlsson KA (1999) Helicobacter pylori and neutrophils: sialic acid-dependent binding to various isolated glycoconjugates. Infect Immun 67:6309–6313

    PubMed  CAS  Google Scholar 

  47. Namavar F, Sparrius M, Veerman EC, Appelmelk BJ, Vandenbroucke-Grauls CM (1998) Neutrophil-activating protein mediates adhesion of Helicobacter pylori to sulfated carbohydrates on high-molecular-weight salivary mucin. Infect Immun 66:444–447

    PubMed  CAS  Google Scholar 

  48. Nishioka H, Baesso I, Semenzato G, Trentin L, Rappuoli R, Del Giudice G, Montecucco C (2003) The neutrophil-activating protein of Helicobacter pylori (HP-NAP) activates the MAPK pathway in human neutrophils. Eur J Immunol 33:840–849

    Article  PubMed  CAS  Google Scholar 

  49. Noach LA, Bosma NB, Jansen J, Hoek FJ, van Deventer SJ, Tytgat GN (1994a) Mucosal tumor necrosis factor-alpha, interleukin-1 beta, and interleukin-8 production in patients with Helicobacter pylori infection. Scand J Gastroenterol 29:425–429

    CAS  Google Scholar 

  50. Noach LA, Rolf TM, Tytgat GN (1994b) Electron microscopic study of association between Helicobacter pylori and gastric and duodenal mucosa. J Clin Pathol 47:699–704

    CAS  Google Scholar 

  51. Nuutila J, Lilius EM (2005) Flow cytometric quantitative determination of ingestion by phagocytes needs the distinguishing of overlapping populations of binding and ingesting cells. Cytometry Part A 65:93–102

    Article  Google Scholar 

  52. Oh JD, Karam SM, Gordon JI (2005) Intracellular Helicobacter pylori in gastric epithelial progenitors. Proc Natl Acad Sci USA 102:5186–5191

    Article  PubMed  CAS  Google Scholar 

  53. Olfat FO, Naslund E, Freedman J, Boren T, Engstrand L (2002) Cultured human gastric explants: a model for studies of bacteria-host interaction during conditions of experimental Helicobacter pylori infection. J Infect Dis 186:423–427

    Article  PubMed  Google Scholar 

  54. Ota A, Genta RM (1997) Morphological characterisation of the gastric mucosa during infection with H. pylori. In: Ernst PB, Michetti P, Smith PD (eds) The immunbiology of H. pylori: from pathogenesis to prevention. Lippincott-Raven Publishers, Philadelphia, pp 15–27

    Google Scholar 

  55. Satin B, Del Giudice G, Della Bianca V, Dusi S, Laudanna C, Tonello F, Kelleher D, Rappuoli R, Montecucco C, Rossi F (2000) The neutrophil-activating protein (HP-NAP) of Helicobacter pylori is a protective antigen and a major virulence factor. J Exp Med 191:1467–1476

    Article  PubMed  CAS  Google Scholar 

  56. Schreiber S, Konradt M, Groll C, Scheid P, Hanauer G, Werling HO, Josenhans C, Suerbaum S (2004) The spatial orientation of Helicobacter pylori in the gastric mucus. Proc Natl Acad Sci USA 101:5024–5029

    Article  PubMed  CAS  Google Scholar 

  57. Semino-Mora C, Doi SQ, Marty A, Simko V, Carlstedt I, Dubois A (2003) Intracellular and interstitial expression of Helicobacter pylori virulence genes in gastric precancerous intestinal metaplasia and adenocarcinoma. J Infect Dis 187:1165–1177

    Article  PubMed  CAS  Google Scholar 

  58. Sharma SA, Tummuru MK, Miller GG, Blaser MJ (1995) Interleukin-8 response of gastric epithelial cell lines to Helicobacter pylori stimulation in vitro. Infect Immun 63:1681–1687

    PubMed  CAS  Google Scholar 

  59. Shimoyama T, Everett SM, Dixon MF, Axon AT, Crabtree JE (1998) Chemokine mRNA expression in gastric mucosa is associated with Helicobacter pylori cagA positivity and severity of gastritis. J Clin Pathol 51:765–770

    Article  PubMed  CAS  Google Scholar 

  60. Sobala GM, Crabtree JE, Dixon MF, Schorah CJ, Taylor JD, Rathbone BJ, Heatley RV, Axon AT (1991) Acute infection: clinical features, local and systemic immune response, gastric mucosal histology, and gastric juice ascorbic acid concentrations. Gut 32:1415–1418

    PubMed  CAS  Google Scholar 

  61. Steer HW (1975) Ultrastructure of cell migration throught the gastric epithelium and its relationship to bacteria. J Clin Pathol 28:639–646

    PubMed  CAS  Google Scholar 

  62. Stocks SC, Albrechtsen M, Kerr MA (1990) Expression of the CD15 differentiation antigen (3-fucosyl-N-acetyl-lactosamine, LeX) on putative neutrophil adhesion molecules CR3 and NCA-160. Biochem J 268:275–280

    PubMed  CAS  Google Scholar 

  63. Stocks SC, Kerr MA (1993) Neutrophil NCA-160 (CD66) is the major protein carrier of selectin binding carbohydrate groups LewisX and sialyl LewisX. Biochem Biophys Res Commun 195:478–483

    Article  PubMed  CAS  Google Scholar 

  64. Suerbaum S (2000) Genetic variability within Helicobacter pylori. Int J Med Microbiol 290:175–181

    PubMed  CAS  Google Scholar 

  65. Suerbaum S, Josenhans C, Labigne A (1993) Cloning and genetic characterization of the Helicobacter pylori and Helicobacter mustelae flaB flagellin genes and construction of H. pylori flaA- and flaB-negative mutants by electroporation-mediated allelic exchange. J Bacteriol 175:3278–3288

    PubMed  CAS  Google Scholar 

  66. Teneberg S, Jurstrand M, Karlsson KA, Danielsson D (2000) Inhibition of nonopsonic Helicobacter pylori-induced activation of human neutrophils by sialylated oligosaccharides. Glycobiology 10:1171–1181

    Article  PubMed  CAS  Google Scholar 

  67. Teneberg S, Leonardsson I, Karlsson H, Jovall PA, Ångström J, Danielsson D, Näslund I, Ljungh A, Wadström T, Karlsson KA (2002) Lactotetraosylceramide, a novel glycosphingolipid receptor for Helicobacter pylori, present in human gastric epithelium. J Biol Chem 277:19709–19719

    Article  PubMed  CAS  Google Scholar 

  68. Teneberg S, Miller-Podraza H, Lampert HC, Evans DJ Jr, Evans DG, Danielsson D, Karlsson KA (1997) Carbohydrate binding specificity of the neutrophil-activating protein of Helicobacter pylori. J Biol Chem 272:19067–19071

    Article  PubMed  CAS  Google Scholar 

  69. Thomas JE, Dale A, Harding M, Coward WA, Cole TJ, Weaver LT (1999) Helicobacter pylori colonization in early life. Pediatr Res 45:218–223

    PubMed  CAS  Google Scholar 

  70. Tonello F, Dundon WG, Satin B, Molinari M, Tognon G, Grandi G, Del Giudice G, Rappuoli R, Montecucco C (1999) The Helicobacter pylori neutrophil-activating protein is an iron-binding protein with dodecameric structure. Mol Microbiol 34:238–246

    Article  PubMed  CAS  Google Scholar 

  71. Unemo M, Aspholm-Hurtig M, Ilver D, Bergström J, Boren T, Danielsson D, Teneberg S (2005) The sialic acid binding SabA adhesin of Helicobacter pylori is essential for nonopsonic activation of human neutrophils. J Biol Chem 280:15390–15397

    Article  PubMed  CAS  Google Scholar 

  72. Warren JR, Marshall BJ (1983) Unidentified curved bacilli on gastric epithelium in active chronic gastritis. Lancet 1:1273–1275

    Google Scholar 

  73. Westblom T, Czinn SJ, Nedrud JG (1999) Gastroduodenal disease and Helicobacter pylori. Pathophysiology, diagnosis and treatment. Curr Top Microbiol Immunol. Springer, Berlin Heidelberg New York

    Google Scholar 

  74. Wyle FA, Tarnawski A, Schulman D, Dabros W (1990) Evidence for gastric mucosal cell invasion by C. pylori an ultrastructural study. J Clin Gastroenterol 12(Suppl 1):S92–S98

    Article  PubMed  Google Scholar 

  75. Zanotti G, Papinutto E, Dundon W, Battistutta R, Seveso M, Giudice G, Rappuoli R, Montecucco C (2002) Structure of the neutrophil-activating protein from Helicobacter pylori. J Mol Biol 323:125–130

    Article  PubMed  CAS  Google Scholar 

  76. Zu Y, Cassai ND, Sidhu GS (2000) Light microscopic and ultrastructural evidence of in vivo phagocytosis of Helicobacter pylori by neutrophils. Ultrastruct Pathol 24:319–323

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the Program of Infection and Vaccinology (CP/KEM and MA/TB) and the Program of Inflammation (MF), Foundation for Strategic Research (SSF); the ELFA Research Foundation (CP); the Swedish Society for Medical Research (CP); the Swedish Research Council, Project Nos. 621-2001-3570, 521-2001-6565, 11218 (KEM/TB), the King Gustav V 80-Year Foundation (KEM); Swedish Cancer Society, Project No 4101-B00-03XAB (TB); Umeå University Biotechnology Fund (TB), County Council of Västerbotten (TB), the JC Kempe and Seth M Kempe Memorial Foundation (TB), the Mizutani Foundation Glycoscience Award 2003 (TB). We are grateful to Dr. Per-Eric Lindgren for constructive criticism of the material.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoffer Petersson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Petersson, C., Forsberg, M., Aspholm, M. et al. Helicobacter pylori SabA adhesin evokes a strong inflammatory response in human neutrophils which is down-regulated by the neutrophil-activating protein. Med Microbiol Immunol 195, 195–206 (2006). https://doi.org/10.1007/s00430-006-0018-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00430-006-0018-x

Keywords

Navigation