Skip to main content
Log in

Evolutionary scaling and cognitive correlates of primate frontal cortex microstructure

  • Original Article
  • Published:
Brain Structure and Function Aims and scope Submit manuscript

Abstract

Investigating evolutionary changes in frontal cortex microstructure is crucial to understanding how modifications of neuron and axon distributions contribute to phylogenetic variation in cognition. In the present study, we characterized microstructural components of dorsolateral prefrontal cortex, orbitofrontal cortex, and primary motor cortex from 14 primate species using measurements of neuropil fraction and immunohistochemical markers for fast-spiking inhibitory interneurons, large pyramidal projection neuron subtypes, serotonergic innervation, and dopaminergic innervation. Results revealed that the rate of evolutionary change was similar across these microstructural variables, except for neuropil fraction, which evolves more slowly and displays the strongest correlation with brain size. We also found that neuropil fraction in orbitofrontal cortex layers V–VI was associated with cross-species variation in performance on experimental tasks that measure self-control. These findings provide insight into the evolutionary reorganization of the primate frontal cortex in relation to brain size scaling and its association with cognitive processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The dataset generated during the current study is available in Table 1.

References

  • Aboitiz F, Garcia VR (1997) The evolutionary origin of the language areas in the human brain. A neuroanatomical perspective. Brain Res Rev 25:381–396

    Article  CAS  PubMed  Google Scholar 

  • Adams DC (2014) Quantifying and comparing phylogenetic evolutionary rates for shape and other high-dimensional phenotypic data. Syst Biol 63:166–177

    Article  PubMed  Google Scholar 

  • Akil M, Lewis DA (1993) The dopaminergic innervation of monkey entorhinal cortex. Cereb Cortex 3(6):533–550

    Article  CAS  PubMed  Google Scholar 

  • Amiez C, Petrides M (2007) Selective involvement of the mid-dorsolateral prefrontal cortex in the coding of the serial order of visual stimuli in working memory. Proc Nat Acad Sci USA 104(34):13786–13791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arnold C, Matthews LJ, Nunn CL (2010) The 10k trees website: a new online resource for primate phylogeny. Evol Anthropol 19:114–118

    Article  Google Scholar 

  • Barbey AK, Koenigs M, Graman J (2013) Dorsolateral prefrontal contributions to human working memory. Cortex 49(5):1195–1205

    Article  PubMed  Google Scholar 

  • Bechara A, Damasio H, Damasio AR (2000) Emotion, decision making and the orbitofrontal cortex. Cereb Cortex 10(3):295–307

    Article  CAS  PubMed  Google Scholar 

  • Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Series B Stat Methodol 57:289–300

    Google Scholar 

  • Beran MJ (2018) Self-Control in Animals and People. Academic Press, London

    Google Scholar 

  • Berger B, Gaspar P, Verney C (1991) Dopaminergic innervation of the cerebral cortex: unexpected differences between rodents and primates. Trends Neurosci 14(1):21–27

    Article  CAS  PubMed  Google Scholar 

  • Bianchi S, Stimpson CD, Bauernfeind AL, Schapiro SJ, Baze WB, McArthur MJ, Bronson E, Hopkins WD, Semendeferi K, Jacobs B, Hof PR, Sherwood CC (2013) Dendritic morphology of pyramidal neurons in the chimpanzee neocortex: regional specializations and comparison to humans. Cereb Cortex 23(10):2429–2436

    Article  PubMed  Google Scholar 

  • Borra E, Ferroni CG, Gerbella M, Giorgetti V, Mangiaracina C, Rozzi S, Luppino G (2019) Rostro-caudal connectional heterogeneity of the dorsal part of the macaque prefrontal area 46. Cereb Cortex 29(2):485–504

    Article  PubMed  Google Scholar 

  • Butler MA, King AA (2004) Phylogenetic comparative analysis: a modeling approach for adaptive evolution. Am Natural 164:683–695

    Article  Google Scholar 

  • Campbell MJ, Morrison JH (1989) Monoclonal antibody to neurofilament protein (SMI-32) labels a subpopulation of pyramidal neurons in the human and monkey neocortex. J Comp Neurol 282:181–205

    Article  Google Scholar 

  • Cardinal RN, Parkinson JA, Hall J, Everitt BJ (2002) Emotion and motivation: the role of the amygdala, ventral striatum, and prefrontal cortex. Neurosci Biobehav Rev 26(3):321–352

    Article  PubMed  Google Scholar 

  • Carmichael ST, Price JL (1994) Architectonic subdivision of the orbital and medial prefrontal cortex in the macaque monkey. J Comp Neurol 346:366–402

    Article  CAS  PubMed  Google Scholar 

  • Charvet CJ (2023) Mapping human brain pathways: challenges and opportunities in the integration of scales. Brain Behav Evol 98(4):194–209

    Article  PubMed  Google Scholar 

  • Cools R, Arnsten AFT (2022) Neuromodulation of prefrontal cortex cognitive function in primates: the powerful roles of monoamines and acetylcholine. Neuropsychopharmacology 47(1):309–328

    Article  PubMed  Google Scholar 

  • Daubner SC, Le T, Wang S (2011) Tyrosine hydroxylase and regulation of dopamine synthesis. Arch Biochem Biophys 508(1):1–12

    Article  CAS  PubMed  Google Scholar 

  • de Lima AD, Voigt T, Morrison JH (1990) Morphology of the cells within the inferior temporal gyrus that project to the prefrontal cortex in the macaque monkey. J Comp Neurol 296:158–172

    Google Scholar 

  • Deaner RO, Isler K, Burkart J, van Schaik C (2007) Overall brain size, and not encephalization quotient, best predicts cognitive ability across non-human primates. Brain Behav Evol 70:115–124

    Article  PubMed  Google Scholar 

  • DeCasien AR, Higham JP (2019) Primate mosaic brain evolution reflects selection on sensory and cognitive specialization. Nat Ecol Evol 3(10):1483–1493

    Article  PubMed  Google Scholar 

  • Elston GN, Benavides-Piccione R, Elston A, Manger PR, DeFelipe J (2011) Pyramidal cells in prefrontal cortex of primates: marked differences in neuronal structure among species. J Front Neuroanat 5(2):1–17

    Google Scholar 

  • Fishell G, Kepecs A (2020) Interneuron types as attractors and controllers. Annu Rev Neurosci 8(43):1–30

    Article  Google Scholar 

  • Folloni D, Sallet J, Khrapitchev AA, Sibson N, Verhagen L, Mars RG (2019) Dichotomous organization of amygdala/temporal-prefrontal bundles in both humans and monkeys. Elife 8:e47175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frey S, Zlatkina V, Petrides M (2009) Encoding touch and the orbitofrontal cortex. Hum Brain Mapp 30:650–659

    Article  PubMed  Google Scholar 

  • Gabbott PLA, Bacon SJ (1996) Local circuit neurons in the medial prefrontal cortex (areas 24a, b, c, 25 and 32) in the monkey: II. Quantitative areal and laminar distributions. J Comp Neurol 364:609–636

    Article  CAS  PubMed  Google Scholar 

  • Gabbott PLA, Dickie BGM, Vail RR, Headlam AJN, Bacon SJ (1997) Local-circuit neurons in the medial prefrontal cortex (areas 25, 32, 24b) in the rat: morphology and quantitative distribution. J Comp Neurol 377:465–499

    Article  CAS  PubMed  Google Scholar 

  • Galakhova AA, Hunt S, Wilbers R, Heyer DB, de Kock CPJ, Mansvelder HD, Goriounova NA (2022) Evolution of cortical neurons supporting human cognition. Trends Cogn Sci 26(11):909–922

    Article  CAS  PubMed  Google Scholar 

  • Gaspar P, Berger B, Febvret A, Vigny A, Henry JP (1989) Catecholamine innervation of the human cerebral cortex as revealed by comparative immunohistochemistry of tyrosine hydroxylase and dopamine-beta-hydroxylase. J Comp Neurol 279(2):249–271

    Article  CAS  PubMed  Google Scholar 

  • Ghashghaei HT, Hilgetag CC, Barbas H (2007) Sequence of information processing for emotions based on the anatomic dialogue between prefrontal cortex and amygdala. Neuroimage 34(3):905–923

    Article  CAS  PubMed  Google Scholar 

  • Goldman-Rakic PC (1988) Topography of cognition: parallel distributed networks in primate association cortex. Ann Rev Neurosci 11:137–156

    Article  CAS  PubMed  Google Scholar 

  • Gundersen HJ (1988) The nucleator. J Microsc 151(Pt 1):3–21

    Article  CAS  PubMed  Google Scholar 

  • Herculano-Houzel S (2017) Numbers of neurons as biological correlates of cognitive capability. Curr Opin Behav Sci 16:1–7

    Article  Google Scholar 

  • Herculano-Houzel S, Collins CE, Wong P, Kaas JH (2007) Cellular scaling rules for primate brains. Proc Natl Acad Sci USA 104(9):3562–3567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hilgetag CC, Beul SF, van Albada SJ, Goulas A (2019) An architectonic type principle integrates macroscopic cortico-cortical connections with intrinsic cortical circuits of the primate brain. Netw Neurosci 3(4):905–923

    Article  PubMed  PubMed Central  Google Scholar 

  • Hof PR, Sherwood CC (2005) Morphomolecular neuronal phenotypes in the neocortex reflect phylogenetic relationships among certain mammalian orders. Anat Rec Part A 287:1153–1163

    Article  Google Scholar 

  • Hof PR, Mufson EJ, Morrison JH (1995a) Human orbitofrontal cortex: cytoarchitecture and quantitative immohistochemical parcellation. J Comp Neurol 359:48–68

    Article  CAS  PubMed  Google Scholar 

  • Hof PR, Nimchinsky EA, Morrison JH (1995b) Neurochemical phenotype of corticocortical connections in the macaque monkey: quantitative analysis of a subset of neurofilament protein-immunoreactive projection neurons in frontal, parietal, temporal and cingulate cortex. J Comp Neurol 362:109–133

    Article  CAS  PubMed  Google Scholar 

  • Issa HA, Staes N, Diggs-Galligan S, Stimpson CD, Gendron-Fitzpatrick A, Taglialatela JP, Hof PR, Hopkins WD, Sherwood CC (2019) Comparison of bonobo and chimpanzee brain microstructure reveals differences in socio-emotional circuits. Brain Str Funct 224(1):239–251

    Article  CAS  Google Scholar 

  • Jacobs B, Schall M, Prather M, Kapler E, Driscoll L, Baca S, Jacobs J, Ford K, Wainwright M, Treml M (2001) Regional dendritic and spine variation in human cerebral cortex: a quantitative Golgi study. Cereb Cortex 11:558–571

    Article  CAS  PubMed  Google Scholar 

  • Jacobs B, Lubs J, Hannan M, Anderson K, Butti C, Sherwood CC, Hof PR, Manger PR (2011) Neuronal morphology in the African elephant (Loxodonta africana) neocortex. Brain Str Funct 215:273–298

    Article  Google Scholar 

  • Jacobs B, Garcia ME, Shea-Shumsky NB, Tennison ME, Schall M, Saviano MS, Tummino TA, Bull AJ, Driscoll LL, Raghanti MA, Lewandowski AH, Wicinski B, Ki Chui H, Bertelsen MF, Walsh T, Bhagwandin A, Spocter MA, Hof PR, Sherwood CC, Manger PR (2018) Comparative morphology of gigantopyramidal neurons in primary motor cortex across mammals. J Comp Neurol 526(3):496–536

    Article  PubMed  Google Scholar 

  • Kass JH (2013) The evolution of brains from early mammals to humans. Rev Cog Sci 4(1):33–45

    Google Scholar 

  • Khabbazian M, Kriebel R, Rohe K, Ané C (2016) Fast and accurate detection of evolutionary shifts in Ornstein-Uhlenbeck models. Methods Ecol Evol 7:811–824

    Article  Google Scholar 

  • MacLean EL, Hare B, Nunn CL, Addessi E, Amici F, Anderson RC, Aureli F, Baker JM, Bania AE, Barnard AM, Boogert NJ, Brannon EM, Bray EE, Bray J, Brent LJ, Burkart JM, Call J, Cantlon JF, Cheke LG, Clayton NS, Delgado MM, DiVincenti LJ, Fujita K, Herrmann E, Hiramatsu C, Jacobs LF, Jordan KE, Laude JR, Leimgruber KL, Messer EJ, Moura AC, Ostojić L, Picard A, Platt ML, Plotnik JM, Range F, Reader SM, Reddy RB, Sandel AA, Santos LR, Schumann K, Seed AM, Sewall KB, Shaw RC, Slocombe KE, Su Y, Takimoto A, Tan J, Tao R, van Schaik CP, Virányi Z, Visalberghi E, Wade JC, Watanabe A, Widness J, Young JK, Zentall TR, Zhao Y (2014) The evolution of self-control. Proc Natl Acad Sci USA 111(20):E2140–E2148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mai JK, Paxinos G, Voss T (2007) Atlas of the Human Brain, 3rd edn. Academic Press, Amsterdam

    Google Scholar 

  • Pagel M (1999) Inferring the historical patterns of biological evolution. Nature 401:877–884

    Article  CAS  PubMed  Google Scholar 

  • Passingham RE, Lau H (2022) Do we understand the prefrontal cortex? Brain Str Funct 228(5):1095–1105

    Article  Google Scholar 

  • Passingham RE, Wise SP (2012) The Neurobiology of the Prefrontal Cortex. Oxford University Press, Oxford

    Book  Google Scholar 

  • Paxinos G, Petrides M, Huang X, Toga AW (2008) The Rhesus Monkey Brain in Stereotaxic Coordinates, 2nd edn. Academic Press, Amsterdam

    Google Scholar 

  • Paxinos G, Watson C, Petrides M, Rosa M, Tokuno H (2011) The Marmoset Brain in Stereotaxic Coordinates, 1st edn. Academic Press, Amsterdam

    Google Scholar 

  • Petrides M (1991) Functional specialization within the dorsolateral frontal cortex for serial order memory. Proc R Soc Lond B 246:299–306

    Article  CAS  Google Scholar 

  • Petrides M, Alivistos B, Mayer E, Evans AC (1993) Functional activation of the human frontal cortex during the performance of verbal working memory tasks. Proc Natl Acad Sci USA 90:878–882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Preuss TM, Goldman-Rakic PS (1991) Myelo- and cytoarchitechture of the granular frontal cortex and surrounding regions in the strepsirhine primate Galago and the anthropoid primate Macaca. J Comp Neurol 310:429–474

    Article  CAS  PubMed  Google Scholar 

  • Preuss TM, Wise SP (2022) Evolution of prefrontal cortex. Neuropsychopharmacology 47(1):3–19

    Article  PubMed  Google Scholar 

  • Provost J, Petrides M, Monchi O (2010) Dissociating the role of the caudate nucleus and dorsolateral prefrontal cortex in the monitoring of events within human working memory. Eur J Neurosci 32:873–880

    Article  PubMed  Google Scholar 

  • Raghanti MA, Stimpson CD, Marcinkiewicz JL, Erwin JM, Hof PR, Sherwood CC (2008a) Differences in cortical serotonergic innervation among humans, chimpanzees and macaque monkeys: a comparative study. Cereb Cortex 18(3):584–597

    Article  PubMed  Google Scholar 

  • Raghanti MA, Stimpson CD, Marcinkiewicz JL, Erwin JM, Hof PR, Sherwood CC (2008b) Cortical dopaminergic innervation among human, chimpanzees, and macaque monkeys: a comparative study. Neuroscience 155(1):203–220

    Article  CAS  PubMed  Google Scholar 

  • Raghanti MA, Spocter MA, Stimpson CD, Erwin JM, Bonar CJ, Allman JM, Hof PR, Sherwood CC (2009) Species-specific distributions of tyrosine hydroxylase-immunoreactive neurons in the prefrontal cortex of anthropoid primates. Neuroscience 158:1551–1559

    Article  CAS  PubMed  Google Scholar 

  • Rapan L, Froudist-Walsh S, Niu M, Xu T, Zhao L, Funck T, Wang XJ, Amunts K, Palomero-Gallagher N (2023) Cytoarchitectonic, receptor distribution and functional connectivity analyses of the macaque frontal lobe. Elife 12:e82850

    Article  PubMed  PubMed Central  Google Scholar 

  • Rash BG, Arellano JI, Duque A, Rakic P (2023) Role of intracortical neuropil growth in the gyrification of the primate cerebral cortex. Proc Natl Acad Sci USA 120(1):e2210967120

    Article  CAS  PubMed  Google Scholar 

  • Reader SM, Laland KN (2002) Social intelligence, innovation, and enhanced brain size in primates. Proc Natl Acad Sci USA 99(7):4436–4441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rohlf FJ (2001) Comparative methods for the analysis of continuous variables: geometric interpretations. Evolution 55:2143–2160

    CAS  PubMed  Google Scholar 

  • Rolls ET (2004) The functions of the orbitofrontal cortex. Brain Cogn 55(1):11–29

    Article  PubMed  Google Scholar 

  • Sallet J, Mars RB, Noonan MP, Neubert F, Jbabdi S, O’Reilly JX, Filippini N, Thomas AG, Rushworth MF (2013) The organization of dorsal frontal cortex in humans and macaques. J Neurosci 33(30):12255–12274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sara SJ, Bouret S (2012) Orienting and reorienting: the locus coeruleus mediates cognition through arousal. Neuron 76(1):130–141

    Article  CAS  PubMed  Google Scholar 

  • Schwartz E, Nenning KH, Heuer K, Jeffery N, Bertrand OC, Toro R, Kasprian G, Prayer D, Langs G (2023) Evolution of cortical geometry and its link to function, behaviour and ecology. Nat Commun 14(1):2252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Semendeferi K, Armstrong E, Schleicher A, Zilles K, van Hoesen GW (1998) Limbic frontal cortex in hominoids: a comparative study of area 13. Am J Phys Anthropol 106:129–155

    Article  CAS  PubMed  Google Scholar 

  • Semendeferi K, Teffer K, Buxhoeveden DP, Park MS, Blusau S, Amunts K, Travis K, Buckwalter J (2011) Spatial organization of neurons in the frontal pole sets humans apart from great apes. Cereb Cortex 21(7):11485–11497

    Article  Google Scholar 

  • Sharma Y, Xu T, Graf WM, Fobbs A, Sherwood CC, Hof PR, Allman JM, Manaye KF (2010) Comparative anatomy of the locus coeruleus in humans and nonhuman primates. J Comp Neurol 518(7):963–971

    Article  PubMed  PubMed Central  Google Scholar 

  • Sherwood CC, Lee PWH, Rivara C, Holloway RL, Gilissen EPE, Simmons RMT, Hakeem A, Allman JM, Erwin JM, Hof PR (2003) Evolution of specialized pyramidal neurons in primate visual and motor cortex. Brain Behav Evol 61:28–44

    Article  PubMed  Google Scholar 

  • Sherwood CC, Holloway RL, Erwin JM, Hof PR (2004) Cortical orofacial motor representation in Old World monkeys, great apes, and humans. II. Stereologic analysis of chemoarchitecture. Brain Behav Evol 63(2):82–106

    Article  PubMed  Google Scholar 

  • Sherwood CC, Raghanti MA, Stimpson CD, Donar CJ, de Sousa AA, Preuss TM, Hof PR (2007) Scaling of inhibitory interneurons in areas V1 and V2 of anthropoid primates as revealed by calcium-binding protein immunohistochemistry. Brain Behav Evol 69:176–195

    Article  PubMed  Google Scholar 

  • Sherwood CC, Miller SB, Karl M, Stimpson CD, Phillips KA, Jacobs B, Hof PR, Raghanti MA, Smaers JB (2020) Invariant synapse density and neuronal connectivity scaling in primate neocortical evolution. Cereb Cortex 30(10):5604–5615

    Article  PubMed  PubMed Central  Google Scholar 

  • Shi Y, Wang M, Mi D, Lu T, Wang B, Dong H, Zhong S, Chen Y, Sun L, Zhou X, Ma Q, Liu Z, Wang W, Zhang J, Wu Q, Marín O, Wang X (2021) Mouse and human share conserved transcriptional programs for interneuron development. Science 374(6573):eabj6641

    Article  CAS  PubMed  Google Scholar 

  • Shu SY, Ju G, Fan LZ (1988) The glucose oxidase-DAB-nickel method in peroxidase histochemistry of the nervous system. Neurosci Lett 85:169–171

    Article  CAS  PubMed  Google Scholar 

  • Shultz S, Dunbar RIM (2010) Species differences in executive function correlate with hippocampus volume and neocortex ratio across nonhuman primates. J Comp Psychol 123(3):252–260

    Article  Google Scholar 

  • Smaers JB, Gómez-Robles A, Parks AN, Sherwood CC (2017) Exceptional evolutionary expansion of prefrontal cortex in great apes and humans. Curr Biol 27:714–720

    Article  CAS  PubMed  Google Scholar 

  • Spocter MA, Hopkins WD, Barks SK, Bianchi S, Hehmeyer AE, Anderson SM, Stimpson CD, Fobbs AJ, Hof PR, Sherwood CC (2012) Neuropil distribution in the cerebral cortex differs between humans and chimpanzees. J Comp Neurol 520:2917–2929

    Article  PubMed  PubMed Central  Google Scholar 

  • Stimpson CD, Barger N, Taglialatela JP, Gendron-Fitzpatrick A, Hof PR, Hopkins WD, Sherwood CC (2016) Differential serotonergic innervation of the amygdala in bonobos and chimpanzees. Soc Cogn Affect Neurosci 11:413–422

    Article  PubMed  Google Scholar 

  • Tacutu R, Thornton D, Johnson E, Budovsky A, Barardo D, Craig T, Diana E, Lehmann G, Toren D, Wang J, Fraifeld VE, de Magalhães JP (2018) Human Ageing Genomic Resources: new and updated databases. Nucleic Acids Res 46(D1):D1083–D1090

    Article  CAS  PubMed  Google Scholar 

  • Van der Gucht E, Vandesande F, Arckens L (2001) Neurofilament protein: a selective marker for the architectonic parcellation of the visual cortex in adult cat brain. J Comp Neurol 441(4):345–368

    Article  PubMed  Google Scholar 

  • Vanderhaeghen P, Polleux F (2023) Developmental mechanisms underlying the evolution of human cortical circuits. Nat Rev Neurosci 24(4):213–232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wallis JD, Dias R, Robbins TW, Roberts AC (2001) Dissociable contributions of the orbitofrontal and lateral prefrontal cortex of the marmoset to performance on a detour reaching task. Eur J Neurosci 13(9):1797–1808

    Article  CAS  PubMed  Google Scholar 

  • Wendland JR, Lesch KP, Newman TK, Timme A, Gachot-Neveu H, Thierry B, Suomi SJ (2005) Differential functional variability of serotonin transporter and monoamine oxidase A genes in the macaque species displaying contrasting levels of aggression-related behavior. Behav Genet 36(2):163–172

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We acknowledge Cleveland Metroparks Zoo, Smithsonian National Zoological Park, Milwaukee County Zoo, and the National Chimpanzee Brain Resource (funded by NIH NS092988) for contributing brain specimens used in this study.

Funding

This research was supported by James S. McDonnell Foundation (220020293), NSF (SMA-1542848, EF-2021785, DRL-2219759), and NIH (AG067419, HG011641).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by Cheryl Stimpson, Jeroen Smaers, and Chet Sherwood. The first draft of the manuscript was written by Cheryl Stimpson, Jeroen Smaers, and Chet Sherwood and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Chet C. Sherwood.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose. This study utilized human tissue that was procured via the El Paso County coroner’s office in Colorado, which provides de-identified samples. Requests for human tissue samples, particularly in biomedical research, are typically processed through the medical examiner or coroner’s office, which serves as the legal authority responsible for verifying that all necessary consents and regulations are followed. The George Washington University Research Ethics Committee has confirmed that no ethical approval is required. The protocols are in accordance with the ethical standards of our institution and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Ethical statement

The opinions expressed herein are those of the authors and are not necessarily representative of those of the government of the United States, the Uniformed Services University of the Health Sciences, the Department of Defense (DoD), or the United States Army, Navy or Air Force or the Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stimpson, C.D., Smaers, J.B., Raghanti, M.A. et al. Evolutionary scaling and cognitive correlates of primate frontal cortex microstructure. Brain Struct Funct (2023). https://doi.org/10.1007/s00429-023-02719-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00429-023-02719-7

Keywords

Navigation