Skip to main content

The Evolution of the Frontal Lobe in Humans

  • Chapter
  • First Online:
Digital Endocasts

Abstract

In 1912, Korbinian Brodmann suggested that the “regio frontalis” (i.e., the prefrontal cortex) of the human brain was exceptionally large in comparison to other primates. His observations sparked over a century of neuroscientific inquiry into the frontal lobe and the prefrontal cortex in particular. Later work describing the role of the prefrontal cortex in human intelligence drove anthropologists and evolutionary neuroscientists to study its evolution as a means of revealing the evolutionary history of unique cognitive capacities of humans. Here we discuss the results of investigations into the frontal cortex from the perspectives of multiple disciplines: paleoneurology, comparative neuroanatomy, and phylogenetic comparative neuroanatomy. We will describe the different pieces of the puzzle that each of these disciplines contributes to forming a detailed picture of the evolution of the human frontal lobe. We then hone in on phylogenetic comparative approaches in order to investigate changes in frontal lobe scaling across anthropoids. We find that human frontal lobe enlargement is driven specifically by an expansion of the prefrontal cortex, not the frontal motor areas. These results are confirmed by comparisons of regions within the frontal lobe that indicate the human prefrontal cortex has expanded drastically in comparison to frontal motor areas. Furthermore, evolutionary rate analyses reveal that the rate of evolution of the prefrontal cortex size is higher than for the relative sizes of the frontal lobe or the frontal motor cortex. Overall, phylogenetic comparative analyses converge on the observation that different areas of the frontal lobe evolved at different rates of evolution, favoring exceptional enlargement of the prefrontal cortex, but not necessarily the frontal lobe as a whole. These perspectives thus confirm that the human brain is more than a scaled-up version of the monkey brain and that the putative unique expansion of the “regio frontalis” is indeed an important feature that may support human’s unique cognitive abilities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Adolphs R (2003) Cognitive neuroscience of human social behaviour. Nat Rev Neurosci 4:165–178

    Article  Google Scholar 

  • Adolphs R (2009) The social brain: neural basis of social knowledge. Annu Rev Psychol:693–716

    Google Scholar 

  • Akert K (1964) In: Warren JM, Akert K (eds) The frontal granular cortex and behavior. McGraw-Hill, New York

    Google Scholar 

  • Almécija S, Smaers JB, Jungers WL (2015) The evolution of human and ape hand proportions. Nat Commun 6:7717

    Article  Google Scholar 

  • Asplund CL, Todd JJ, Snyder AP, Marois R (2010) A central role for the lateral prefrontal cortex in goal-directed and stimulus-driven attention. Nat Neurosci 13:507–512

    Article  Google Scholar 

  • Avants BB, Schoenemann PT, Gee JC (2006) Lagrangian frame diffeomorphic image registration: morphometric comparison of human and chimpanzee cortex. Med Image Anal 10:397–412

    Article  Google Scholar 

  • Bailey P, Von Bonin G (1951) The isocortex of man. University of Illinois Press, Urbana

    Google Scholar 

  • Bailey P, Von Bonin G, McCulloch W (1950) The isocortex of the chimpanzee. University of Illinois Press, Urbana

    Google Scholar 

  • Bauernfeind AL, de Sousa AA, Avasthi T, Dobson SD, Raghanti MA, Lewandowski AH, Zilles K, Semendeferi K, Allman JM, Craig AD, Hof PR, Sherwood CC (2013) A volumetric comparison of the insular cortex and its subregions in primates. J Hum Evol 64:263–279

    Article  Google Scholar 

  • Beck E (1949) A cytoarchitectural investigation into the boundaries of cortical areas 13 and 14 in the human brain. J Anat 83:147–157

    Google Scholar 

  • Blinkov SM, Glezer II (1968) The human brain in figures and tables: a quantitative handbook. Basic Books, New York

    Google Scholar 

  • Bookstein F, Schafer K, Prossinger H, Seidler H, Fieder M, Stringer C, Weber GW, Arsuaga JL, Slice DE, Rohlf FJ, Recheis W, Mariam AJ, Marcus LF (1999) Comparing frontal cranial profiles in archaic and modern homo by morphometric analysis. Anat Rec 257:217–224

    Article  Google Scholar 

  • Brodmann K (1909) Vergleichende Lokalisationslehre der Gro hirnrinde. Verlag von Ambrosius Barth, Leipzig

    Google Scholar 

  • Brodmann K (1912) Neue ergebnisse uber die vergleichende histologische lokalisation der grosshirnrinde mit besondere berucksichtigung des stirnhirns. Anat Anzeiger 41:157–216

    Google Scholar 

  • Bruner E, Holloway RL (2010) A bivariate approach to the widening of the frontal lobes in the genus homo. J Hum Evol 58:138–146

    Article  Google Scholar 

  • Bruner E, Manzi G (2005) CT-based description and phyletic evaluation of the archaic human calvarium from Ceprano, Italy. Anat Rec A: Discov Mol Cell Evol Biol 285:643–658

    Article  Google Scholar 

  • Bruner E, Athreya S, de la Cuétara JM, Marks T (2013) Geometric variation of the frontal squama in the genus homo: frontal bulging and the origin of modern human morphology. Am J Phys Anthropol 150:313–323

    Article  Google Scholar 

  • Bruner E (2017) The fossil evidence of human brain evolution. In: Kaas J (ed) Evolution of nervous systems, vol 4, 2nd edn. Elsevier, Oxford, pp 63–92

    Chapter  Google Scholar 

  • Buckner RL, Krienen FM (2013) The evolution of distributed association networks in the human brain. Trends Cogn Sci 17:648–665

    Article  Google Scholar 

  • Bucy PC (1937) A comparative cytoarchitectonic study of the motor and premotor areas in the primate cortex. J Nerv Ment Dis 85:343

    Article  Google Scholar 

  • Bush EC, Allman JM (2004) The scaling of frontal cortex in primates and carnivores. Proc Natl Acad Sci U S A 101:3962–3966

    Article  Google Scholar 

  • Caminiti R, Innocenti GM, Battaglia-Mayer A (2015) Organization and evolution of parieto-frontal processing streams in macaque monkeys and humans. Neurosci Biobehav Rev 56:73–96

    Article  Google Scholar 

  • Carlson KJ, Stout D, Jashashvili T, de Ruiter DJ, Tafforeau P, Carlson K, Berger LR (2011) The endocast of MH1, Australopithecus sediba. Science 333:1402–1407

    Article  Google Scholar 

  • Cavada C, Goldman-Rakic PS (1989) Posterior parietal cortex in rhesus monkey: I. Parcellation of areas based on distinctive limbic and sensory corticocortical connections. J Comp Neurol 287:393–421

    Article  Google Scholar 

  • Eichenbaum H, Clegg RA, Feeley A (1983) Reexamination of functional subdivisions of the rodent prefrontal cortex. Exp Neurol 79:434–451

    Article  Google Scholar 

  • Enlow DH (1990) Facial growth, 3rd edn. W B Saunders, Philadelphia

    Google Scholar 

  • Falk D (2012) Hominin paleoneurology: where are we now? In: Hofman MA, Falk D (eds) 1st edn. Elsevier B.V., Amsterdam

    Google Scholar 

  • Falk D (2014) Interpreting sulci on hominin endocasts: old hypotheses and new findings. Front Hum Neurosci 8:134

    Article  Google Scholar 

  • Falk D, Zollikofer CPE, Morimoto N, Ponce de León MS (2012) Metopic suture of Taung (Australopithecus africanus) and its implications for hominin brain evolution. Proc Natl Acad Sci 109:8467–8470

    Article  Google Scholar 

  • Finlay BL, Darlington RB (1995) Linked regularities in the development and evolution of mammalian brains. Science 268:1578–1584

    Article  Google Scholar 

  • Fleming SM, Weil RS, Nagy Z, Dolan RJ, Rees G (2010) Relating introspective accuracy to individual differences in brain structure. Science 329:1541–1543

    Article  Google Scholar 

  • Foville M (1864) L’anatomie de la physique et de la pathologie du sys- te’ me nerveux ce re bro-spinal. Fortin, Masson et Companie, Paris

    Google Scholar 

  • Fuster JM (2002) Frontal lobe and cognitive development. J Neurocytol 31:373–385

    Article  Google Scholar 

  • Fuster JM (2008) Anatomy of the Prefrontal Cortex. In: The Prefrontal Cortex, 4th edn. Academic, San Diego, pp 9–62

    Google Scholar 

  • Genovesio A, Wise SP, Passingham RE (2014) Prefrontal-parietal function: from foraging to foresight. Trends Cogn Sci 18:72–81

    Article  Google Scholar 

  • Glasser MF, Van Essen DC (2011) Mapping human cortical areas in vivo based on myelin content as revealed by T1- and T2-weighted MRI. J Neurosci 31:11597–11616

    Article  Google Scholar 

  • Glasser MF, Goyal MS, Preuss TM, Raichle ME, Van Essen DC (2014) Trends and properties of human cerebral cortex: correlations with cortical myelin content. NeuroImage 93(Pt 2):165–175

    Article  Google Scholar 

  • Jackson HJ (1867) Remarks on the disorderly movements of chorea and convulsion, and on localisation. Med Times Gaz II:669–670

    Google Scholar 

  • Kelly RM, Strick PL (2003) Cerebellar loops with motor cortex and prefrontal cortex of a nonhuman primate. J Neurosc: Off J Soc Neurosci 23:8432–8444

    Google Scholar 

  • Khabbazian M, Kriebel R, Rohe K, Ane C (2016) Fast and accurate detection of evolutionary shifts in Ornstein-Uhlenbeck models. Methods Ecol Evol:811–824

    Google Scholar 

  • Kolb B (1984) Functions of the frontal cortex of the rat: a comparative review. Brain Res 320:65–98

    Article  Google Scholar 

  • Koziol LF, Budding D, Andreasen N, D’Arrigo S, Bulgheroni S, Imamizu H, Ito M, Manto M, Marvel C, Parker K, Pezzulo G, Ramnani N, Riva D, Schmahmann J, Vandervert L, Yamazaki T (2014) Consensus paper: the Cerebellum’s role in movement and cognition. Cerebellum 13:151–177

    Article  Google Scholar 

  • Lashley KS, Clark G (1946) The cytoarchitecture of the cerebral cortex of Ateles; a critical examination of architectonic studies. J Comp Neurol 85:223–305

    Article  Google Scholar 

  • Lieberman DE, Mcbratney BM, Krovitz G (2002) The evolution and development of cranial form in Homo sapiens. Proc Natl Acad Sci U S 99:1134–1139

    Article  Google Scholar 

  • MacLeod CE, Zilles K, Schleicher A, Rilling JK, Gibson KR (2003) Expansion of the neocerebellum in Hominoidea. J Hum Evol 44:401–429

    Article  Google Scholar 

  • Mars RB, Jbabdi S, Sallet J, O’Reilly JX, Croxson PL, Olivier E, Noonan MP, Bergmann C, Mitchell AS, Baxter MG, Behrens TEJ, Johansen-Berg H, Tomassini V, Miller KL, Rushworth MFS (2011) Diffusion-weighted imaging Tractography-based Parcellation of the human parietal cortex and comparison with human and macaque resting-state functional connectivity. J Neurosci 31:4087–4100

    Article  Google Scholar 

  • McBride T, Arnold SE, Gur RC (1999) A comparative volumetric analysis of the prefrontal cortex in human and baboon MRI. Brain Behav Evol 54:159–166

    Article  Google Scholar 

  • Neubauer S (2014) Endocasts: possibilities and limitations for the interpretation of human brain evolution. Brain Behav Evol 84:117–134

    Article  Google Scholar 

  • Ongür D, Price JL (2000) The organization of networks within the orbital and medial prefrontal cortex of rats, monkeys and humans. Cereb Cortex 10:206–219

    Article  Google Scholar 

  • Pandya DN, Seltzer B, Barbas H (1988) Input-output organization of the primate cerebral cortex. In: Steklis HD, Erwin J (eds) Comparative primate biology, vol 4. Alan R. Liss, New York, pp 39–80

    Google Scholar 

  • Passingham RE (1973) Anatomical differences between the neocortex of man and other primates. Brain Behav Evol 7:337–359

    Article  Google Scholar 

  • Passingham RE (1975) Changes in the size and organisation of the brain in man and his ancestors. Brain Behav Evol 11:73–90

    Article  Google Scholar 

  • Passingham RE, Ettlinger G (1974) A comparison of cortical functions in man and the other primates. Int Rev Neurobiol 16:233–299

    Article  Google Scholar 

  • Passingham RE, Smaers JB (2014) Is the prefrontal cortex especially enlarged in the human brain? Allometric relations and remapping factors. Brain Behav Evol 84:156–166

    Article  Google Scholar 

  • Passingham RE, Wise SP (2012) The neurobiology of the prefrontal cortex. Oxford University Press, Oxford

    Book  Google Scholar 

  • Passingham RE, Smaers JB, Sherwood CC (2017) Evolutionary specializations of the human prefrontal cortex. In: Kaas JH (ed) Evolution of nervous systems, vol 4, 2nd edn. Elsevier, Oxford, pp 207–226

    Chapter  Google Scholar 

  • Petrides M (2005) Lateral prefrontal cortex: architectonic and functional organization. Philos Trans R Soc Lond 360:781–795

    Article  Google Scholar 

  • Petrides M, Pandya DN (1994) Comparative architectonic analysis of the human and the macaque frontal cortex. In: Boller F, Grafman J (eds) Handbook of neuropsychology. Elsevier, Amsterdam, pp 17–58

    Google Scholar 

  • Preuss TM (1995) Do rats have prefrontal cortex? The rose-Woolsey-Akert program reconsidered. J Cogn Neurosci 7:1–24

    Article  Google Scholar 

  • Preuss TM (2004) What is it like to be human? In: Gazzaniga MS (ed) The cognitive neurosciences III, 3rd edn. MIT Press, Cambridge, pp 5–22

    Google Scholar 

  • Preuss TM, Goldman-Rakic PS (1989) Connections of the ventral granular frontal cortex of macaques with perisylvian premotor and somatosensory areas: anatomical evidence for somatic representation in primate frontal association cortex. J Comp Neurol 282:293–316

    Article  Google Scholar 

  • Preuss TM, Goldman-Rakic PS (1991) Myelo- and cytoarchitecture of the granular frontal cortex and surrounding regions in the strepsirhine primate Galago and the anthropoid primate Macaca. J Comp Neurol 310:429–474

    Article  Google Scholar 

  • Ramnani N (2006) The primate cortico-cerebellar system: anatomy and function. Nat Rev Neurosci 7:511–522

    Article  Google Scholar 

  • Rilling JK, Glasser MF, Preuss TM, Ma X, Zhao T, Hu X, Behrens TEJ (2008) The evolution of the arcuate fasciculus revealed with comparative DTI. Nat Neurosci 11:426–428

    Article  Google Scholar 

  • Rose JE, Woolsey CN (1948) The orbitofrontal cortex and its connections with the mediodorsal nucleus in rabbit, sheep and cat. Res Publ Assoc Res Nerv Ment Dis 27(1 vol):210–232

    Google Scholar 

  • Rowe JB, Owen AM, Johnsrude IS, Passingham RE (2001) Imaging the mental components of a planning task. Neuropsychologia 39:315–327

    Article  Google Scholar 

  • Sanides F (1964) The cyto-myeloarchitecture of the human frontal lobe and its relation to phylogenetic differentiation of the cerebral cortex. J Hirnforsch 7:269–282

    Google Scholar 

  • Sanides F (1970) Functional architecture of motor and sensory cortices in primates in the light of a new concept of neocortex evolution. Primate Brain: Adv Primatol 1:137–201

    Google Scholar 

  • Sayers K, Raghanti MA, Lovejoy CO (2012) Human evolution and the chimpanzee referential doctrine. Annu Rev Anthropol 41:119–138

    Article  Google Scholar 

  • Schoenemann PT, Sheehan MJ, Glotzer LD (2005) Prefrontal white matter volume is disproportionately larger in humans than in other primates. Nat Neurosci 8:242–252

    Article  Google Scholar 

  • Seltzer B, Pandya DN (1989) Frontal lobe connections of the superior temporal sulcus in the rhesus monkey. J Comp Neurol 281:97–113

    Article  Google Scholar 

  • Semendeferi K, Armstrong E, Schleicher A, Zilles K, Van Hoesen GW (1998) Limbic frontal cortex in hominoids: a comparative study of area 13. Am J Phys Anthropol 106:129–155

    Article  Google Scholar 

  • Semendeferi K, Armstrong E, Schleicher A, Zilles K, Van Hoesen GW (2001) Prefrontal cortex in humans and apes: a comparative study of area 10. Am J Phys Anthropol 114:224–241

    Article  Google Scholar 

  • Sherwood CC, Smaers JB (2013) What’s the fuss over human frontal lobe evolution? Trends Cogn Sci 17:432–433

    Article  Google Scholar 

  • Sherwood CC, Holloway RL, Semendeferi K, Hof PR (2005a) Is prefrontal white matter enlargement a human evolutionary specialization? Nat Neurosci 8:537–538. author reply 538

    Article  Google Scholar 

  • Sherwood CC, Hof PR, Holloway RL, Semendeferi K, Gannon PJ, Frahm HD, Zilles K (2005b) Evolution of the brainstem orofacial motor system in primates: a comparative study of trigeminal, facial, and hypoglossal nuclei. J Hum Evol 48:45–84

    Article  Google Scholar 

  • Shulha HP, Crisci JL, Reshetov D, Tushir JS, Cheung I, Bharadwaj R, Chou HJ, Houston IB, Peter CJ, Mitchell AC, Yao WD, Myers RH, Fan CJ, Preuss TM, Rogaev EI, Jensen JD, Weng Z, Akbarian S (2012) Human-specific histone methylation signatures at transcription start sites in prefrontal neurons. PLoS Biol 10

    Google Scholar 

  • Sira CS, Mateer CA (2014) Frontal lobes. In: Aminoff M, Daroff RB (eds) Encyclopedia of the neurological sciences, 2nd edn. Elsevier, San Diego, pp 358–365

    Chapter  Google Scholar 

  • Smaers JB (2014) Modeling the evolution of the cerebellum. From macroevolution to function. 1st edn. Elsevier B.V., Amsterdam

    Google Scholar 

  • Smaers JB, Rohlf FJ (2016) Testing species’ deviation from allometric predictions using the phylogenetic regression. Evolution 70:1145–1149

    Article  Google Scholar 

  • Smaers JB, Soligo C (2013) Brain reorganization, not relative brain size, primarily characterizes anthropoid brain evolution. Proc R Soc B Biol Sci 280:20130269

    Article  Google Scholar 

  • Smaers JB, Schleicher A, Zilles K, Vinicius L (2010) Frontal white matter volume is associated with brain enlargement and higher structural connectivity in anthropoid primates. PLoS One:5

    Google Scholar 

  • Smaers JB, Steele J, Case CR, Cowper A, Amunts K, Zilles K (2011a) Primate prefrontal cortex evolution: human brains are the extreme of a lateralized ape trend. Brain Behav Evol 77:67–78

    Article  Google Scholar 

  • Smaers JB, Steele J, Zilles K (2011b) Modeling the evolution of cortico-cerebellar systems in primates. Ann N Y Acad Sci 1225:176–190

    Article  Google Scholar 

  • Smaers JB, Mulvaney PI, Soligo C, Zilles K, Amunts K (2012) Sexual dimorphism and laterality in the evolution of the primate prefrontal cortex. Brain Behav Evol 79:205–212

    Article  Google Scholar 

  • Smaers JB, Steele J, Case CR, Amunts K (2013) Laterality and the evolution of the prefronto-cerebellar system in anthropoids. Ann N Y Acad Sci 1288:59–69

    Article  Google Scholar 

  • Smaers JB, Mongle CS, Kandler A (2016) A multiple variance Brownian motion framework for estimating variable rates and inferring ancestral states. Biol J Linn Soc 118:78–94

    Article  Google Scholar 

  • Smaers JB, Gomez-Robles A, Parks AN, Sherwood CC (2017) Exceptional evolutionary expansion of prefrontal cortex in great apes and humans. Curr Biol 27:1–7

    Article  Google Scholar 

  • Somel M, Rohlfs R, Liu X (2014) Transcriptomic insights into human brain evolution: acceleration, neutrality, heterochrony. Curr Opin Genet Dev 29:110–119

    Article  Google Scholar 

  • Sylvester JB, Rich CA, YHE L, van Staaden MJ, Fraser GJ, Streelman JT (2010) Brain diversity evolves via differences in patterning. Proc Natl Acad Sci U S A 107:9718–9723

    Article  Google Scholar 

  • Tobias PV (1987) The brain of Homo habilis: a new level of organization in cerebral evolution. J Hum Evol:741–761

    Google Scholar 

  • Van Essen DC, Dierker DL (2007) Surface-based and probabilistic atlases of primate cerebral cortex. Neuron 56:209–225

    Article  Google Scholar 

  • van Schaik CP, Ancrenaz M, Borgen G, Galdikas B, Knott CD, Singleton I, Suzuki A, Utami SS, Merrill M (2003) Orangutan cultures and the evolution of material culture. Science 299:102–105

    Article  Google Scholar 

  • Venditti C, Meade A, Pagel M (2011) Multiple routes to mammalian diversity. Nature 479:393–396

    Article  Google Scholar 

  • Von Bonin G (1948) The frontal lobe of primates; cytoarchitectural studies. Res Publ Assoc Res Nerv Ment Dis 27(1 vol.):67–83

    Google Scholar 

  • von Economo C, Koskinas GN (1925) Die Cytoarchitektonik der Hirnrinde des Erwachsenen Menschen: Textband und Atlas mit 112 Mikrophotographischen Tafeln. Springer, Vienna

    Google Scholar 

  • Walker AE (1940) A cytoarchitectural study of the prefrontal area of the macaque monkey. J Comp Neurol 73:59–86

    Article  Google Scholar 

  • Zilles K, Amunts K, Smaers JB (2011) Three brain collections for comparative neuroanatomy and neuroimaging. In: Johnson JI, Zeigler HP, Hof PR (eds) Resources and technological advances for studies of neurobehavioral evolution. Ann N Y Acad Sci, New York, pp E94–104

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashley N. Parks .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Japan KK

About this chapter

Cite this chapter

Parks, A.N., Smaers, J.B. (2018). The Evolution of the Frontal Lobe in Humans. In: Bruner, E., Ogihara, N., Tanabe, H. (eds) Digital Endocasts. Replacement of Neanderthals by Modern Humans Series. Springer, Tokyo. https://doi.org/10.1007/978-4-431-56582-6_14

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-56582-6_14

  • Published:

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-56580-2

  • Online ISBN: 978-4-431-56582-6

  • eBook Packages: Social SciencesSocial Sciences (R0)

Publish with us

Policies and ethics