Skip to main content

Advertisement

Log in

Neurophysiological considerations for visual implants

  • Review
  • Published:
Brain Structure and Function Aims and scope Submit manuscript

Abstract

Neural implants have the potential to restore visual capabilities in blind individuals by electrically stimulating the neurons of the visual system. This stimulation can produce visual percepts known as phosphenes. The ideal location of electrical stimulation for achieving vision restoration is widely debated and dependent on the physiological properties of the targeted tissue. Here, the neurophysiology of several potential target structures within the visual system will be explored regarding their benefits and downfalls in producing phosphenes. These regions will include the lateral geniculate nucleus, primary visual cortex, visual area 2, visual area 3, visual area 4 and the middle temporal area. Based on the existing engineering limitations of neural prostheses, we anticipate that electrical stimulation of any singular brain region will be incapable of achieving high-resolution naturalistic perception including color, texture, shape and motion. As improvements in visual acuity facilitate improvements in quality of life, emulating naturalistic vision should be one of the ultimate goals of visual prostheses. To achieve this goal, we propose that multiple brain areas will need to be targeted in unison enabling different aspects of vision to be recreated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Availability of data and material

Not applicable.

Code availability

Not applicable.

References

  • Adams DL, Zeki S (2001) Functional organization of macaque V3 for stereoscopic depth. J Neurophysiol 86:2195–2203

    Article  CAS  PubMed  Google Scholar 

  • Allison-Walker T, Hagan MA, Price NSC, Wong YT (2021) Microstimulation-evoked neural responses in visual cortex are depth dependent. Brain Stimul 14:741–750

    Article  PubMed  Google Scholar 

  • Andrews TJ, Halpern SD, Purves D (1997) Correlated size variations in human visual cortex, lateral geniculate nucleus, and optic tract. J Neurosci 17:2859

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bak M, Girvin JP, Hambrecht FT, Kufta CV, Loeb GE, Schmidt EM (1990) Visual sensations produced by intracortical microstimulation of the human occipital cortex. Med Biol Eng Comput 28:257–259

    Article  CAS  PubMed  Google Scholar 

  • Barry MP et al (2020) Video-mode percepts are smaller than sums of single-electrode phosphenes with the Orion® visual cortical prosthesis. Invest Ophthalmol vis Sci 61:927–927

    Google Scholar 

  • Beauchamp MS et al (2020) Dynamic stimulation of visual cortex produces form vision in sighted and blind humans. Cell 181:774-783.e775

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Becker HGT, Haarmeier T, Tatagiba M, Gharabaghi A (2013) Electrical stimulation of the human homolog of the medial superior temporal area induces visual motion blindness. J Neurosci 33:18288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bender DB (1981) Retinotopic organization of macaque pulvinar. J Neurophysiol 46:672–693

    Article  CAS  PubMed  Google Scholar 

  • Beyeler M, Rokem A, Boynton GM, Fine I (2017) Learning to see again: biological constraints on cortical plasticity and the implications for sight restoration technologies. J Neural Eng 14:051003

    Article  PubMed  PubMed Central  Google Scholar 

  • Boi F, Moraitis T, De Feo V, Diotalevi F, Bartolozzi C, Indiveri G, Vato A (2016) A bidirectional brain-machine interface featuring a neuromorphic hardware decoder. Front Neurosci 10:563

    Article  PubMed  PubMed Central  Google Scholar 

  • Bosking WH, Sun P, Ozker M, Pei X, Foster BL, Beauchamp MS, Yoshor D (2017) Saturation in phosphene size with increasing current levels delivered to human visual cortex. J Neurosci 37:7188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bourkiza B, Vurro M, Jeffries A, Pezaris JS (2013) Visual acuity of simulated thalamic visual prostheses in normally sighted humans. PLoS ONE 8:e73592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brelén ME, Duret F, Gérard B, Delbeke J, Veraart C (2005) Creating a meaningful visual perception in blind volunteers by optic nerve stimulation. J Neural Eng 2:S22

    Article  PubMed  Google Scholar 

  • Brindley GS, Lewin WS (1968) The sensations produced by electrical stimulation of the visual cortex. J Physiol 196:479–493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Britten KH, van Wezel RJA (1998) Electrical microstimulation of cortical area MST biases heading perception in monkeys. Nat Neurosci 1:59–63

    Article  CAS  PubMed  Google Scholar 

  • Brown GC (1999) Vision and quality-of-life. Trans Am Ophthalmol Soc 97:473–511

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brunton E, Lowery A, Rajan R (2012) A comparison of microelectrodes for a visual cortical prosthesis using finite element analysis. Front Neuroeng 5:23

    Article  PubMed  PubMed Central  Google Scholar 

  • Buhlmann J, Hofmann L, Tass P, Hauptmann C (2011) Modeling of a segmented electrode for desynchronizing deep brain stimulation. Front Neuroeng 4:15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bushnell BN, Pasupathy A (2012) Shape encoding consistency across colors in primate V4. J Neurophysiol 108:1299–1308

    Article  PubMed  PubMed Central  Google Scholar 

  • Büttner-Ennever JA, Cohen B, Horn AKE, Reisine H (1996) Efferent pathways of the nucleus of the optic tract in monkey and their role in eye movements. J Comp Neurol 373:90–107

    Article  PubMed  Google Scholar 

  • Carandini M et al (2005) Do we know what the early visual system does? J Neurosci 25:10577–10597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cha K, Horch K, Normann RA (1992) Simulation of a phosphene-based visual field: Visual acuity in a pixelized vision system. Ann Biomed Eng 20:439–449

    Article  CAS  PubMed  Google Scholar 

  • Chen SC, Hallum LE, Lovell NH, Suaning GJ (2005) Visual acuity measurement of prosthetic vision: a virtual-reality simulation study. J Neural Eng 2:S135–S145

    Article  CAS  PubMed  Google Scholar 

  • Chen G, Lu HD, Roe AW (2008) A map for horizontal disparity in monkey V2. Neuron 58:442–450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen L, Wassermann D, Abrams DA, Kochalka J, Gallardo-Diez G, Menon V (2019) The visual word form area (VWFA) is part of both language and attention circuitry. Nat Commun 10:5601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen X, Wang F, Fernandez E, Roelfsema P (2020) Shape perception via a high-channel-count neuroprosthesis in monkey visual cortex. Science 370:1191

    Article  CAS  PubMed  Google Scholar 

  • Choi CW, Kim PS, Shin SA, Yang JY, Yang YS (2014) Lateral geniculate body evoked potentials elicited by visual and electrical stimulation. Korean J Ophthalmol 28:337–342

    Article  PubMed  PubMed Central  Google Scholar 

  • Cowey A, Walsh V (2000) Magnetically induced phosphenes in sighted, blind and blindsighted observers. NeuroReport 11:3269–3273

    Article  CAS  PubMed  Google Scholar 

  • Czuba TB, Huk AC, Cormack LK, Kohn A (2014) Area MT encodes three-dimensional motion. J Neurosci 34:15522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dagnino B, Gariel-Mathis M-A, Roelfsema PR (2014) Microstimulation of area V4 has little effect on spatial attention and on perception of phosphenes evoked in area V1. J Neurophysiol 113:730–739

    Article  PubMed  PubMed Central  Google Scholar 

  • DeAngelis GC, Newsome WT (1999) Organization of disparity-selective neurons in macaque area MT. J Neurosci 19:1398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • DeAngelis GC, Cumming BG, Newsome WT (1998) Cortical area MT and the perception of stereoscopic depth. Nature 394:677–680

    Article  CAS  PubMed  Google Scholar 

  • Deng Z-D, Lisanby SH, Peterchev AV (2013) Electric field depth-focality tradeoff in transcranial magnetic stimulation: simulation comparison of 50 coil designs. Brain Stimul 6:1–13

    Article  PubMed  Google Scholar 

  • DeYoe EA, Lewine JD, Doty RW (2005) Laminar variation in threshold for detection of electrical excitation of striate cortex by macaques. J Neurophysiol 94:3443–3450

    Article  PubMed  Google Scholar 

  • Dobelle WH, Mladejovsky MG (1974) Phosphenes produced by electrical stimulation of human occipital cortex, and their application to the development of a prosthesis for the blind. J Physiol 243:553–576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dorn JD (2020) Progress with the Orion Cortical Visual Prosthesis. In: 2020 42nd Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 20-24 July 2020

  • Dumm G, Fallon JB, Williams CE, Shivdasani MN (2014) Virtual electrodes by current steering in retinal prostheses. Invest Ophthalmol vis Sci 55:8077–8085

    Article  PubMed  Google Scholar 

  • Ekstrom LB, Roelfsema PR, Arsenault JT, Bonmassar G, Vanduffel W (2008) Bottom-up dependent gating of frontal signals in early visual cortex. Science (new York, NY) 321:414–417

    Article  CAS  Google Scholar 

  • Ekstrom LB, Roelfsema PR, Arsenault JT, Kolster H, Vanduffel W (2009) Modulation of the contrast response function by electrical microstimulation of the macaque frontal eye field. J Neurosci 29:10683–10694

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elward A et al (2015) Risk factors for craniotomy or spinal fusion surgical site infection. Pediatr Infect Dis J 34:1323–1328

    Article  PubMed  Google Scholar 

  • Engel SA, Glover GH, Wandell BA (1997) Retinotopic organization in human visual cortex and the spatial precision of functional MRI. Cereb Cortex 7:181–192

    Article  CAS  PubMed  Google Scholar 

  • Epstein CM, Davey KR (2002) Iron-core coils for transcranial magnetic stimulation. J Clin Neurophysiol 19:376–381

    Article  PubMed  Google Scholar 

  • Felleman DJ, Van Essen DC (1987) Receptive field properties of neurons in area V3 of macaque monkey extrastriate cortex. J Neurophysiol 57:889–920

    Article  CAS  PubMed  Google Scholar 

  • Felleman DJ, Van Essen DC (1991) Distributed hierarchical processing in the primate cerebral cortex. Cerebral Cortex (new York, NY: 1991) 1:1–47

    CAS  Google Scholar 

  • Fernandez E, Normann R (2017) CORTIVIS approach for an intracortical visual prostheses. In: Fernández E, Normann RA (eds) Artificial Vision. Springer, Cam, pp 191–201

    Chapter  Google Scholar 

  • Fertonani A, Ferrari C, Miniussi C (2015) What do you feel if I apply transcranial electric stimulation? Safety, sensations and secondary induced effects. Clin Neurophysiol 126:2181–2188

    Article  PubMed  Google Scholar 

  • Fornos AP, Sommerhalder J, Rappaz B, Safran AB, Pelizzone M (2005) Simulation of artificial vision, III: do the spatial or temporal characteristics of stimulus pixelization really matter? Invest Ophthalmol vis Sci 46:3906–3912

    Article  PubMed  Google Scholar 

  • Gegenfurtner KR, Kiper DC, Levitt JB (1997) Functional properties of neurons in macaque area V3. J Neurophysiol 77:1906–1923

    Article  CAS  PubMed  Google Scholar 

  • Gerboni G et al (2018) Visual evoked potentials determine chronic signal quality in a stent-electrode endovascular neural interface. Biomed Phys Eng Express. https://doi.org/10.1088/2057-1976/aad714

    Article  Google Scholar 

  • Ghahremani M, Johnston KD, Ma L, Hayrynen LK, Everling S (2019) Electrical microstimulation evokes saccades in posterior parietal cortex of common marmosets. J Neurophysiol 122:1765–1776

    Article  PubMed  Google Scholar 

  • Hodgkin AL, Huxley AF, Katz B (1952) Measurement of current-voltage relations in the membrane of the giant axon of Loligo. J Physiol 116:424–448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holloway KL, Gaede SE, Starr PA, Rosenow JM, Ramakrishnan V, Henderson JM (2005) Frameless stereotaxy using bone fiducial markers for deep brain stimulation. J Neurosurg 103:404–413

    Article  PubMed  Google Scholar 

  • House PA, MacDonald JD, Tresco PA, Normann RA (2006) Acute microelectrode array implantation into human neocortex: preliminary technique and histological considerations. Neurosurg Focus. https://doi.org/10.3171/foc.2006.20.5.5

    Article  PubMed  Google Scholar 

  • Hu JM, Qian MZ, Tanigawa H, Song XM, Roe AW (2020) Focal electrical stimulation of cortical functional networks. Cereb Cortex 30:5532–5543

    Article  PubMed  Google Scholar 

  • Indahlastari A et al (2018) Methods to compare predicted and observed phosphene experience in tACS subjects. Neural Plast 2018:8525706–8525706

    Article  PubMed  PubMed Central  Google Scholar 

  • Irons JL, Gradden T, Zhang A, He X, Barnes N, Scott AF, McKone E (2017) Face identity recognition in simulated prosthetic vision is poorer than previously reported and can be improved by caricaturing. Vision Res 137:61–79

    Article  PubMed  Google Scholar 

  • John SE, Grayden DB, Yanagisawa T (2019) The future potential of the Stentrode. Expert Rev Med Devices 16:841–843

    Article  CAS  PubMed  Google Scholar 

  • Kammer T, Puls K, Erb M, Grodd W (2005) Transcranial magnetic stimulation in the visual system. II. Characterization of induced phosphenes and scotomas. Exp Brain Res 160:129–140

    Article  PubMed  Google Scholar 

  • Kanai R, Chaieb L, Antal A, Walsh V, Paulus W (2008) Frequency-dependent electrical stimulation of the visual cortex. Curr Biol 18:1839–1843

    Article  CAS  PubMed  Google Scholar 

  • Kaskan PM, Dillenburger BC, Lu HD, Roe AW, Kaas JH (2010) Orientation and direction-of-motion response in the middle temporal visual area (MT) of new world owl monkeys as revealed by intrinsic-signal optical imaging. Front Neuroanat 4:23–23

    PubMed  PubMed Central  Google Scholar 

  • Kastner S, Demmer I, Ziemann U (1998) Transient visual field defects induced by transcranial magnetic stimulation over human occipital pole. Exp Brain Res 118:19–26

    Article  CAS  PubMed  Google Scholar 

  • Kastner S, O’Connor DH, Fukui MM, Fehd HM, Herwig U, Pinsk MA (2004) Functional imaging of the human lateral geniculate nucleus and pulvinar. J Neurophysiol 91:438–448

    Article  PubMed  Google Scholar 

  • Kermani E, Asemani D (2014) A robust adaptive algorithm of moving object detection for video surveillance. EURASIP J Image Video Process 2014:27

    Article  Google Scholar 

  • Killian NJ, Vurro M, Keith SB, Kyada MJ, Pezaris JS (2016) Perceptual learning in a non-human primate model of artificial vision. Sci Rep 6:36329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim T, Bair W, Pasupathy A (2019) Neural coding for shape and texture in macaque area V4. J Neurosci 39:4760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klink PC, Dagnino B, Gariel-Mathis M-A, Roelfsema PR (2017) Distinct feedforward and feedback effects of microstimulation in visual cortex reveal neural mechanisms of texture segregation. Neuron 95:209-220.e203

    Article  CAS  PubMed  Google Scholar 

  • Koessler L, Colnat-Coulbois S, Cecchin T, Hofmanis J, Dmochowski JP, Norcia AM, Maillard LG (2017) In-vivo measurements of human brain tissue conductivity using focal electrical current injection through intracerebral multicontact electrodes. Hum Brain Mapp 38:974–986

    Article  PubMed  Google Scholar 

  • Kosslyn SM et al (1999) The role of area 17 in visual imagery: convergent evidence from PET and rTMS. Science 284:167–170

    Article  CAS  PubMed  Google Scholar 

  • Kosta P et al (2018) Electromagnetic safety assessment of a cortical implant for vision restoration. IEEE J Electromagn RF Microw Med Biol 2:56–63

    Article  Google Scholar 

  • Kral A, Hartmann R, Tillein J, Heid S, Klinke R (2000) Congenital auditory deprivation reduces synaptic activity within the auditory cortex in a layer-specific manner. Cereb Cortex 10:714–726

    Article  CAS  PubMed  Google Scholar 

  • Lamme VAF, Supèr H, Spekreijse H (1998) Feedforward, horizontal, and feedback processing in the visual cortex. Curr Opin Neurobiol 8:529–535

    Article  CAS  PubMed  Google Scholar 

  • Lee SW, Fallegger F, Casse BDF, Fried SI (2016) Implantable microcoils for intracortical magnetic stimulation. Sci Adv 2:e1600889

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lehmann SJ, Corneil BD (2016) Transient pupil dilation after subsaccadic microstimulation of primate frontal eye fields. J Neurosci 36:3765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liang H, Gong X, Chen M, Yan Y, Li W, Gilbert CD (2017) Interactions between feedback and lateral connections in the primary visual cortex. Proc Natl Acad Sci 114:8637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Limnuson K, Lu H, Chiel HJ, Mohseni P (2015) A bidirectional neural interface SoC with an integrated spike recorder, microstimulator, and low-power processor for real-time stimulus artifact rejection. Analog Integr Circ Sig Process 82:457–470

    Article  Google Scholar 

  • Liu Y et al (2020) Hierarchical representation for chromatic processing across macaque V1, V2, and V4. Neuron 108:538-550.e535

    Article  CAS  PubMed  Google Scholar 

  • Liu X et al (2021) A Fully Integrated Sensor-Brain–Machine Interface System for Restoring Somatosensation. IEEE Sens J 21:4764–4775

    Article  Google Scholar 

  • Logothetis NK, Kayser C, Oeltermann A (2007) In vivo measurement of cortical impedance spectrum in monkeys: implications for signal propagation. Neuron 55:809–823

    Article  CAS  PubMed  Google Scholar 

  • Logothetis NK et al (2010) The effects of electrical microstimulation on cortical signal propagation. Nat Neurosci 13:1283–1291

    Article  CAS  PubMed  Google Scholar 

  • Lowery AJ et al (2015) Restoration of vision using wireless cortical implants: the Monash Vision Group project. In: 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 25–29 Aug. 2015, pp 1041–1044

  • Luo YH-L, da Cruz L (2016) The Argus® II retinal prosthesis system. Prog Retin Eye Res 50:89–107

    Article  PubMed  Google Scholar 

  • Mandonnet E, Gatignol P, Duffau H (2009) Evidence for an occipito-temporal tract underlying visual recognition in picture naming. Clin Neurol Neurosurg 111:601–605

    Article  PubMed  Google Scholar 

  • Maunsell JHR, Nealey TA, DePriest DD (1990) Magnocellular and parvocellular contributions to responses in the middle temporal visual area (MT) of the macaque monkey. J Neurosci 10:3323–3334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McAdams CJ, Maunsell JHR (1999) Effects of attention on orientation-tuning functions of single neurons in macaque cortical area V4. J Neurosci 19:431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McCreery DB, Agnew WF, Yuen TGH, Bullara LA (1988) Comparison of neural damage induced by electrical stimulation with faradaic and capacitor electrodes. Ann Biomed Eng 16:463–481

    Article  CAS  PubMed  Google Scholar 

  • McCreery D, Pikov V, Troyk PR (2010) Neuronal loss due to prolonged controlled-current stimulation with chronically implanted microelectrodes in the cat cerebral cortex. J Neural Eng 7:036005

    Article  PubMed  PubMed Central  Google Scholar 

  • McIntyre CC, Grill WM (2001) Finite element analysis of the current-density and electric field generated by metal microelectrodes. Ann Biomed Eng 29:227–235

    Article  CAS  PubMed  Google Scholar 

  • Moore T, Armstrong KM (2003) Selective gating of visual signals by microstimulation of frontal cortex. Nature 421:370–373

    Article  CAS  PubMed  Google Scholar 

  • Moore T, Fallah M (2004) Microstimulation of the frontal eye field and its effects on covert spatial attention. J Neurophysiol 91:152–162

    Article  PubMed  Google Scholar 

  • Murphey DK, Yoshor D, Beauchamp Michael S (2008) Perception matches selectivity in the human anterior color center. Curr Biol 18:216–220

    Article  CAS  PubMed  Google Scholar 

  • Murphey DK, Maunsell JHR, Beauchamp MS, Yoshor D, Romo R (2009) Perceiving electrical stimulation of identified human visual areas. Proc Natl Acad Sci USA 106:5389–5393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nasr S, Polimeni JR, Tootell RBH (2016) Interdigitated color- and disparity-selective columns within human visual cortical areas V2 and V3. J Neurosci 36:1841

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nathan SS, Sinha SR, Gordon B, Lesser RP, Thakor NV (1993) Determination of current density distributions generated by electrical stimulation of the human cerebral cortex. Electroencephalogr Clin Neurophysiol 86:183–192

    Article  CAS  PubMed  Google Scholar 

  • Niketeghad S, Muralidharan A, Patel U, Dorn JD, Bonelli L, Greenberg RJ, Pouratian N (2019) Phosphene perceptions and safety of chronic visual cortex stimulation in a blind subject. J Neurosurg 132:2000–2007

    Article  PubMed  Google Scholar 

  • Obaid A et al (2020) Massively parallel microwire arrays integrated with CMOS chips for neural recording. Sci Adv 6:eaay2789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oxley TJ et al (2016) Minimally invasive endovascular stent-electrode array for high-fidelity, chronic recordings of cortical neural activity. Nat Biotechnol 34:320–327

    Article  CAS  PubMed  Google Scholar 

  • Oxley TJ et al (2020) Motor neuroprosthesis implanted with neurointerventional surgery improves capacity for activities of daily living tasks in severe paralysis: first in-human experience. J NeuroIntervent Surg. https://doi.org/10.1136/neurintsurg-2020-016862

    Article  Google Scholar 

  • Panetsos F, Sanchez-Jimenez A, Diaz-de Cerio E, Diaz-Guemes I, Sanchez F (2011) Consistent phosphenes generated by electrical microstimulation of the visual thalamus. An experimental approach for thalamic visual neuroprostheses. Front Neurosci 5:84

    Article  PubMed  PubMed Central  Google Scholar 

  • Panetsos F, Diaz-de Cerio E, Sanchez-Jimenez A, Herrera-Rincon C (2009) Thalamic visual neuroprostheses: Comparison of visual percepts generated by natural stimulation of the eye and electrical stimulation of the thalamus. In: 2009 4th International IEEE/EMBS Conference on Neural Engineering, 29 April-2 May 2009 pp 56–59

  • Parvizi J, Jacques C, Foster BL, Withoft N, Rangarajan V, Weiner KS, Grill-Spector K (2012) Electrical stimulation of human fusiform face-selective regions distorts face perception. J Neurosci 32:14915–14920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pascual-Leone A, Walsh V (2001) Fast backprojections from the motion to the primary visual area necessary for visual awareness. Science 292:510–512

    Article  CAS  PubMed  Google Scholar 

  • Pavone L et al (2020) Chronic neural interfacing with cerebral cortex using single-walled carbon nanotube-polymer grids. J Neural Eng 17:036032

    Article  PubMed  Google Scholar 

  • Penfield W, Perot P (1963) The brain’s record of auditory and visual experience: a final summary and discussion. Brain 86:595–696

    Article  CAS  PubMed  Google Scholar 

  • Pezaris JS, Reid RC (2007) Demonstration of artificial visual percepts generated through thalamic microstimulation. Proc Natl Acad Sci USA 104:7670–7675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pezaris JS, Reid RC (2009) Simulations of electrode placement for a thalamic visual prosthesis. IEEE Trans Biomed Eng 56:172–178

    Article  PubMed  PubMed Central  Google Scholar 

  • Pinggera D, Bauer M, Unterhofer M, Thomé C, Unterhofer C (2021) Craniotomy size for traumatic acute subdural hematomas in elderly patients—same procedure for every age? Neurosurg Rev. https://doi.org/10.1007/s10143-021-01548-8

    Article  PubMed  PubMed Central  Google Scholar 

  • Pollen DA (1977) Responses of single neurons to electrical stimulation of the surface of the visual cortex. Brain Behav Evol 14:67–86

    Article  CAS  PubMed  Google Scholar 

  • Ponce CR, Lomber SG, Born RT (2008) Integrating motion and depth via parallel pathways. Nat Neurosci 11:216–223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pudenz RH (1993) Neural stimulation: clinical and laboratory experiences. Surg Neurol 39:235–242

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez-Oroz MC et al (2005) Bilateral deep brain stimulation in Parkinson’s disease: a multicentre study with 4 years follow-up. Brain 128:2240–2249

    Article  CAS  PubMed  Google Scholar 

  • Rokers B, Cormack LK, Huk AC (2009) Disparity- and velocity-based signals for three-dimensional motion perception in human MT+. Nat Neurosci 12:1050–1055

    Article  CAS  PubMed  Google Scholar 

  • Rosa MGP (2002) Visual maps in the adult primate cerebral cortex: some implications for brain development and evolution. Braz J Med Biol Res 35:1485–1498

    Article  CAS  PubMed  Google Scholar 

  • Rosa MGP, Tweedale R (2005) Brain maps, great and small: lessons from comparative studies of primate visual cortical organization. Phil Trans R Soc B Biol Sci 360:665–691

    Article  Google Scholar 

  • Rosenfeld JV et al (2020) Tissue response to a chronically implantable wireless intracortical visual prosthesis (Gennaris array). J Neural Eng. https://doi.org/10.1088/1741-2552/ab9e1c

    Article  PubMed  Google Scholar 

  • Ruff DA, Cohen MR (2016) Attention increases spike count correlations between visual cortical areas. J Neurosci 36:7523–7534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salzman CD, Britten KH, Newsome WT (1990) Cortical microstimulation influences perceptual judgements of motion direction. Nature 346:174–177

    Article  CAS  PubMed  Google Scholar 

  • Schalk G et al (2017) Facephenes and rainbows: causal evidence for functional and anatomical specificity of face and color processing in the human brain. Proc Natl Acad Sci USA 114:12285–12290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schiller PH, Slocum WM, Kwak MC, Kendall GL, Tehovnik EJ (2011) New methods devised specify the size and color of the spots monkeys see when striate cortex (area V1) is electrically stimulated. Proc Natl Acad Sci 108:17809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schira MM, Tyler CW, Rosa MGP (2012) Brain mapping: The (un)folding of striate cortex. Curr Biol 22:R1051–R1053

    Article  CAS  PubMed  Google Scholar 

  • Schmidt EM, Bak MJ, Hambrecht FT, Kufta CV, O’Rourke DK, Vallabhanath P (1996) Feasibility of a visual prosthesis for the blind based on intracortical micro stimulation of the visual cortex. Brain 119:507–522

    Article  PubMed  Google Scholar 

  • Schroeder CE, Mehta AD, Givre SJ (1998) A spatiotemporal profile of visual system activation revealed by current source density analysis in the awake macaque. Cereb Cortex 8:575–592

    Article  CAS  PubMed  Google Scholar 

  • Silvanto J, Bona S, Cattaneo Z (2017) Initial activation state, stimulation intensity and timing of stimulation interact in producing behavioral effects of TMS. Neuroscience 363:134–141

    Article  CAS  PubMed  Google Scholar 

  • Sincich LC, Park KF, Wohlgemuth MJ, Horton JC (2004) Bypassing V1: a direct geniculate input to area MT. Nat Neurosci 7:1123–1128

    Article  CAS  PubMed  Google Scholar 

  • Smith DT, Ball K, Ellison A (2012) Inhibition of return impairs phosphene detection. J Cogn Neurosci 24:2262–2267

    Article  PubMed  Google Scholar 

  • Solomon SG, Rosa MGP (2014) A simpler primate brain: the visual system of the marmoset monkey. Front Neural Circuits 8:96

    Article  PubMed  PubMed Central  Google Scholar 

  • Spencer TC, Fallon JB, Shivdasani MN (2018) Creating virtual electrodes with 2D current steering. J Neural Eng 15:035002

    Article  PubMed  Google Scholar 

  • Srivastava NR, Troyk PR, Towle VL, Curry D, Schmidt E, Kufta C, Dagnelie G (2007) Estimating Phosphene Maps for Psychophysical Experiments used in Testing a Cortical Visual Prosthesis Device. In: 2007 3rd International IEEE/EMBS Conference on Neural Engineering, 2–5 May 2007, pp 130–133

  • Tanaka Y, Nomoto T, Shiki T, Sakata Y, Shimada Y, Hayashida Y, Yagi T (2019) Focal activation of neuronal circuits induced by microstimulation in the visual cortex. J Neural Eng 16:036007

    Article  PubMed  Google Scholar 

  • Tangutooru SM, Yoon WJ, Troy JB (2014) Early design considerations for a thalamic visual prosthesis to treat blindness resulting from glaucoma. In: 2014 2nd Middle East Conference on Biomedical Engineering, 17-20 Feb. 2014, pp 249–252

  • Tehovnik EJ, Slocum WM (2007) Phosphene induction by microstimulation of macaque V1. Brain Res Rev 53:337–343

    Article  CAS  PubMed  Google Scholar 

  • Tehovnik EJ, Slocum WM, Schiller PH (2003) Saccadic eye movements evoked by microstimulation of striate cortex. Eur J Neurosci 17:870–878

    Article  PubMed  Google Scholar 

  • Tehovnik EJ, Tolias AS, Sultan F, Slocum WM, Logothetis NK (2006) Direct and indirect activation of cortical neurons by electrical microstimulation. J Neurophysiol 96:512–521

    Article  CAS  PubMed  Google Scholar 

  • Tolias AS, Sultan F, Augath M, Oeltermann A, Tehovnik EJ, Schiller PH, Logothetis NK (2005) Mapping cortical activity elicited with electrical microstimulation using fMRI in the macaque. Neuron 48:901–911

    Article  CAS  PubMed  Google Scholar 

  • Ts’o DY, Roe AW, Gilbert CD (2001) A hierarchy of the functional organization for color, form and disparity in primate visual area V2. Vision Res 41:1333–1349

    Article  CAS  PubMed  Google Scholar 

  • Van Der Aa H, Comijs H, Penninx B, Van Rens G, Van Nispen R (2015) Major depressive and anxiety disorders in visually impaired older adults. Invest Ophthalmol vis Sci 56:849–854

    Article  PubMed  Google Scholar 

  • Van Essen DC (2004) Organization of visual areas in macaque and human cerebral cortex. In: Chalupa L, Werner J (ed) The visual neurosciences. MIT Press, Cambridge, pp 507–521

    Google Scholar 

  • Van Essen DC, Drury HA (1997) Structural and functional analyses of human cerebral cortex using a surface-based atlas. J Neurosci 17:7079

    Article  PubMed  PubMed Central  Google Scholar 

  • Van Essen DC, Lewis JW, Drury HA, Hadjikhani N, Tootell RBH, Bakircioglu M, Miller MI (2001) Mapping visual cortex in monkeys and humans using surface-based atlases. Vision Res 41:1359–1378

    Article  PubMed  Google Scholar 

  • Viventi J et al (2011) Flexible, foldable, actively multiplexed, high-density electrode array for mapping brain activity in vivo. Nat Neurosci 14:1599–1605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vurro M, Crowell AM, Pezaris JS (2014) Simulation of thalamic prosthetic vision: reading accuracy, speed, and acuity in sighted humans. Front Hum Neurosci 8:816

    Article  PubMed  PubMed Central  Google Scholar 

  • Weinreb SF, Yang L, Kaskhedikar G, Sadeghi R, Troyk P, Dagnelie G (2019) Phosphene mapping for intracortical visual prostheses. Invest Ophthalmol vis Sci 60:4378–4378

    Google Scholar 

  • Wiesel TN, Hubel DH (1966) Spatial and chromatic interactions in the lateral geniculate body of the rhesus monkey. J Neurophysiol 29:1115–1156

    Article  CAS  PubMed  Google Scholar 

  • Wong YT, Feleppa T, Mohan A, Browne D, Szlawski J, Rosenfeld JV, Lowery A (2019) CMOS stimulating chips capable of wirelessly driving 473 electrodes for a cortical vision prosthesis. J Neural Eng. https://doi.org/10.1088/1741-2552/ab021b

    Article  PubMed  Google Scholar 

  • Woolnough O et al (2021) Spatiotemporal dynamics of orthographic and lexical processing in the ventral visual pathway. Nat Hum Behav 5:389–398

    Article  PubMed  Google Scholar 

  • World Health Organization (2019) World report on vision. World Health Organization, Geneva

    Google Scholar 

  • Wurm LH, Legge GE, Isenberg LM, Luebker A (1993) Color improves object recognition in normal and low vision. J Exp Psychol Hum Percept Perform 19:899–911

    Article  CAS  PubMed  Google Scholar 

  • Xiao Y, Felleman DJ (2004) Projections from primary visual cortex to cytochrome oxidase thin stripes and interstripes of macaque visual area 2. Proc Natl Acad Sci USA 101:7147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiao Y, Wang Y, Felleman DJ (2003) A spatially organized representation of colour in macaque cortical area V2. Nature 421:535–539

    Article  CAS  PubMed  Google Scholar 

  • Xiao Y, Casti A, Xiao J, Kaplan E (2007) Hue maps in primate striate cortex. Neuroimage 35:771–786

    Article  PubMed  Google Scholar 

  • Yoshor D et al (2018) 206 Dynamic stimulation of human visual cortex produces useful percepts of visual forms in sighted and blind subjects. Neurosurgery 65:117–117

    Article  Google Scholar 

  • Zandvakili A, Kohn A (2015) Coordinated neuronal activity enhances corticocortical communication. Neuron 87:827–839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zimmermann J et al (2011) Mapping the organization of axis of motion selective features in human area MT using high-field fMRI. PLoS ONE 6:e28716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Maureen Hagan for her comments on this review.

Funding

We acknowledge the Australian Research Council (DP200100179) for financial support.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the research and writing of the final manuscript.

Corresponding author

Correspondence to Yan T. Wong.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest.

Ethical approval

Not applicable.

Humans and/or animals rights

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meikle, S.J., Wong, Y.T. Neurophysiological considerations for visual implants. Brain Struct Funct 227, 1523–1543 (2022). https://doi.org/10.1007/s00429-021-02417-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-021-02417-2

Keywords

Navigation