Skip to main content
Log in

Simulation of a phosphene-based visual field: Visual acuity in a pixelized vision system

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

A visual prosthesis for the blind using electrical stimulation of the visual cortex will require the development of an array of electrodes. Passage of current through these electrodes is expected to create a visual image made up of a matrix of discrete phosphenes. The quality of the visual sense thus provided will be a function of many parameters, particularly the number of electrodes and their spacing. We are conducting a series of psychophysical experiments with a portable “phosphene” simulator to obtain estimates of suitable values for electrode number and spacing. The simulator consists of a small video camera and monitor worn by a normally sighted human subject. To simulate a discrete phosphene field, the monitor is masked by an opaque perforated film. The visual angle subtended by images from the masked monitor is 1.7° or less, depending on the mask, and falls within the fovea of the subject. In the study presented here, we measured visual acuity as a function of the number of pixels and their spacing in the mask. Visual acuity was inversely proportional to pixel density, and trained subjects could achieve about 20/26 visual acuity with a 1024 pixel image. We conclude that 625 electrodes implanted in a 1 cm by 1 cm area near the foveal representation of the visual cortex should produce a phosphene image with a visual acuity of approximately 20/30. Such an acuity could provide useful restoration of functional vision for the profoundly blind.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bak, M.; Girvin, J.P.; Hambrecht, F.T.; Kufta, C.V.; Loeb, G.E.; Schmidt, E.M. Visual sensations produced by intracortical microstimulation of the human occipital cortex. Med. Biol. Eng. Comput. 28:257–259; 1990.

    CAS  PubMed  Google Scholar 

  2. Baron, W.S.; Westheimer, G. Visual acuity as a function of exposure duration. J. Opt. Soc. Am. 63:212–219; 1973.

    CAS  PubMed  Google Scholar 

  3. Bartlett, J.R.; Doty, R.W. An exploration of the ability of macaques to detect microstimulation of striate cortex. Acta Neurobiol. Exp. 40:713–728; 1980.

    CAS  Google Scholar 

  4. BeMent, S.L.; Wise, K.D.; Anderson, D.J.; Najafi, K.; Drake, K.L. Solid-state electrodes for multichannel multiplexed intracortical neuronal recording. IEEE Trans. Biomed. Eng. BME-33:230–241; 1986.

    CAS  Google Scholar 

  5. Brindley, G.S. The number of information channels needed for efficient reading. J. Physiol. 177:44; 1965.

    Google Scholar 

  6. Brindley, G.S.; Lewin, W.S. The sensations produced by electrical stimulation of the visual cortex. J. Physiol. 196:479–493; 1968.

    CAS  PubMed  Google Scholar 

  7. Campbell, P.K.; Jones, K.E.; Huber, R.J.; Horch, K.W.; Normann, R.A. A silicon-based three dimensional-neural interface: Manufacturing processes for an intracortical electrode array. IEEE Trans. Biomed. Eng. 38:758–768; 1991.

    Article  CAS  PubMed  Google Scholar 

  8. Cowey, A.; Rolls, E.T. Human cortical magnification factor and its relation to visual acuity. Exp. Brain Res. 21:447–454; 1974.

    Article  CAS  PubMed  Google Scholar 

  9. Daniel, P.M.; Whitteridge, D. The representation of the visual field on the calcarine cortex in baboons and monkeys. J. Physiol. 148:33–34; 1959.

    Google Scholar 

  10. DeYoe, E.A.; Lewine, J.; Doty, R.W. Optimal stimuli for detection of intracortical currents applied to striate cortex of awake macaque monkeys. Proc. Ann. Intl. Conf. IEEE Eng. Med. Biol. Soc. 11:934–936; 1986.

    Google Scholar 

  11. Dobelle, W.H.; Mladejovsky, M.G. Phosphenes produced by electrical stimulation of human occipital cortex, and their application to the development of a prosthesis for the blind. J. Physiol. 243:553–576; 1974.

    CAS  PubMed  Google Scholar 

  12. Dobelle, W.H.; Mladejovsky, M.G.; Evans, J.R.; Roberts, T.S.; Girvin, J.P. ‘Braille’ reading by a blind volunteer by visual cortex stimulation. Nature 259:111–112; 1976.

    Article  CAS  PubMed  Google Scholar 

  13. Dobelle, W.H.; Mladejovsky, M.G.; Girvin, J.P. Artificial vision for the blind: Electrical stimulation of visual cortex offers hope for a functional prosthesis. Science 183:440–444; 1974.

    CAS  PubMed  Google Scholar 

  14. Dobelle, W.H.; Turkel, J.; Henderson, D.C.; Evans, J.R. Mapping the representation of the visual field by electrical stimulation of human visual cortex. Am. J. Ophthal. 88:727–735; 1979.

    CAS  PubMed  Google Scholar 

  15. Faye, E.E. Clinical low vision. Boston: Little, Brown and Company; 1984: pp. 192–193.

    Google Scholar 

  16. Fern, K.D.; Manny, R.E. Visual acuity of the preschool child: A review. Am. J. Optom. Physiol. Opt. 63:319–345; 1986.

    CAS  PubMed  Google Scholar 

  17. Fox, P.T.; Miezin, F.M.; Allman, J.M.; van Essen, D.C.; Raichle, M.E. Retinotopic organization of human visual cortex mapped with positron-emission tomography. J. Neurosci. 7:913–922; 1987.

    CAS  PubMed  Google Scholar 

  18. Hirsch, J.; Curcio, C.A. The spatial resolution capacity of human foveal retina. Vision Res. 29:1095–1101; 1989.

    Article  CAS  PubMed  Google Scholar 

  19. Hoeft, W.W.; Feinbloom, W.; Brilliant, R.; Gordon, R.; Hollander, C.; Newman, J.; Novak, E.; Rosenthal, B.; Voss, E. Amorphic lenses: A mobility aid for patients with retinitis pigmentosa. Am. J. Optom. Physiol. Opt. 62:142–148; 1985.

    CAS  PubMed  Google Scholar 

  20. Holm, O.C. A simple method for widening restricted visual fields. Arch. Ophthal. 84:611–612; 1970.

    CAS  PubMed  Google Scholar 

  21. Hubel, D.H. Eye, brain and vision. New York: Scientific American Library; 1988: pp. 127–135.

    Google Scholar 

  22. Hubel, D.H.; Wiesel, T.N. Receptive fields and functional architecture of monkey striate cortex. J. Physiol. 195:215–243; 1968.

    CAS  PubMed  Google Scholar 

  23. Jones, K.E.; Campbell, P.K.; Normann, R.A. A glass/silicon composite intracortical electrode array. Ann. Biomed. Eng. 20:423–437; 1992.

    CAS  PubMed  Google Scholar 

  24. Keesey, U.T. Effects of involuntary eye movements on visual acuity. J. Opt. Soc. Am. 50:769–774; 1960.

    CAS  PubMed  Google Scholar 

  25. Legge, G.E.; Pelli, D.G.; Rubin, G.S.; Schleske, M.M. Psychophysics of reading-I. Normal vision. Vision Res. 25:239–252; 1985.

    CAS  PubMed  Google Scholar 

  26. Legge, G.E.; Rubin, G.S.; Pelli, D.G.; Schleske, M.M. Psychophysics of reading-II. Low vision. Vision Res. 25:253–266; 1985.

    CAS  PubMed  Google Scholar 

  27. Marron, J.A.; Bailey, I.L. Visual factors and orientation-mobility performance. Am. J. Optom. Physiol. Opt. 59:413–426; 1982.

    CAS  PubMed  Google Scholar 

  28. Najafi, K.; Wise, K.D. An implantable multielectrode array with on-chip signal processing. IEEE J. Solid-State Circuits SC-21:1035–1044; 1986.

    Google Scholar 

  29. Normann, R.A.; Campbell, P.K.; Jones, K.E. A silicon based electrode array for intracortical stimulation: Structure and electrical properties. Proc. Ann. Intl. Conf. IEEE Eng. Med. Biol. Soc., 11:939–940; 1989.

    Google Scholar 

  30. Pan American Health Organization. Primary eye care manual. Washington, DC: World Health Organization; 1985.

    Google Scholar 

  31. Prohaska, O.J.; Olcaytug, F.; Pfunder, P.; Dragaun, H. Thin-film multiple electrode probes: Possibilities and limitations. IEEE Trans. Biomed. Eng. BME-33:223–229; 1986.

    CAS  Google Scholar 

  32. Simons, K. Visual acuity and the functional definition of blindness. In: Tasman, W. ed. Clinical ophthalmology, Vol. 5, Chapter 51. New York: J.B. Lippincott Co.; 1990.

    Google Scholar 

  33. Stensaas, S.S.; Eddington, D.K.; Dobelle, W.H. The topography and variability of the primary visual cortex in man. J. Neurosurg. 40:747–755; 1974.

    CAS  PubMed  Google Scholar 

  34. Westheimer, G.; McKee, S.P. Visual acuity in the presence of retinal-image motion. J. Opt. Soc. Am. 65:847–850; 1975.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cha, K., Horch, K. & Normann, R.A. Simulation of a phosphene-based visual field: Visual acuity in a pixelized vision system. Ann Biomed Eng 20, 439–449 (1992). https://doi.org/10.1007/BF02368135

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02368135

Keywords

Navigation