Skip to main content

Advertisement

Log in

Origin of acoustic–vestibular ganglionic neuroblasts in chick embryos and their sensory connections

  • Original Article
  • Published:
Brain Structure and Function Aims and scope Submit manuscript

Abstract

The inner ear is a complex three-dimensional sensory structure with auditory and vestibular functions. It originates from the otic placode, which generates the sensory elements of the membranous labyrinth and all the ganglionic neuronal precursors. Neuroblast specification is the first cell differentiation event. In the chick, it takes place over a long embryonic period from the early otic cup stage to at least stage HH25. The differentiating ganglionic neurons attain a precise innervation pattern with sensory patches, a process presumably governed by a network of dendritic guidance cues which vary with the local micro-environment. To study the otic neurogenesis and topographically-ordered innervation pattern in birds, a quail–chick chimaeric graft technique was used in accordance with a previously determined fate-map of the otic placode. Each type of graft containing the presumptive domain of topologically-arranged placodal sensory areas was shown to generate neuroblasts. The differentiated grafted neuroblasts established dendritic contacts with a variety of sensory patches. These results strongly suggest that, rather than reverse-pathfinding, the relevant role in otic dendritic process guidance is played by long-range diffusing molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Abello G, Alsina B (2007) Establishment of a proneural field in the inner ear. Int J Dev Biol 51:483–493

    Article  PubMed  CAS  Google Scholar 

  • Abelló G, Khatri S, Giráldez F, Alsina B (2007) Early regionalization of the otic placode and its regulation by the Notch signaling pathway. Mech Dev 124:631–645

    Article  PubMed  CAS  Google Scholar 

  • Adam J, Myat A, Le Roux I, Eddison M, Henrique D, Ish-Horowicz D, Lewis J (1998) Cell fate choices and the expression of Notch, Delta and Serrate homologues in the chick inner ear: parallels with Drosophila sense-organ development. Development 125:4645–4654

    Article  PubMed  CAS  Google Scholar 

  • Alsina B, Whitfield TT (2017) Sculpting the labyrinth: morphogenesis of the developing inner ear. Semin Cell Dev Biol 65:47–59

    Article  PubMed  Google Scholar 

  • Alsina B, Giraldez F, Varela-Nieto I (2003) Growth factors and early development of otic neurons: interactions between intrinsic and extrinsic signals. Curr Top Dev Biol 57:177–206

    Article  PubMed  CAS  Google Scholar 

  • Alsina B, Abelló G, Ulloa E, Henrique D, Pujades C, Giraldez F (2004) FGF signaling is required for determination of otic neuroblasts in the chick embryo. Dev Biol 267:119–134

    Article  PubMed  CAS  Google Scholar 

  • Alsina B, Giraldez F, Pujades C (2009) Patterning and cell fate in ear development. Int J Dev Biol 53:1503–1513

    Article  PubMed  Google Scholar 

  • Alvarado-Mallart RM, Sotelo C (1984) Homotopic and heterotopic transplantations of quail tectal primordia in chick embryos: organization of the retinotectal projections in the chimeric embryos. Dev Biol 103:378–398

    Article  PubMed  CAS  Google Scholar 

  • Alvarez IS, Martín-Partido G, Rodríguez-Gallardo L, González-Ramos C, Navascués J (1989) Cell proliferation during early development of the chick embryo otic anlage: quantitative comparison of migratory and nonmigratory regions of the otic epithelium. J Comp Neurol 290:278–288

    Article  PubMed  CAS  Google Scholar 

  • Begbie J, Ballivet M, Graham A (2002) Early steps in the production of sensory neurons by the neurogenic placodes. Mol Cell Neurosci 21:502–511

    Article  PubMed  CAS  Google Scholar 

  • Beisel KW, Wang-Lundberg Y, Maklad A, Fritzsch B (2005) Development and evolution of the vestibular sensory apparatus of the mammalian ear. J Vestib Res 15:225–241

    Article  PubMed  PubMed Central  Google Scholar 

  • Bell D, Streit A, Gorospe I, Varela-Nieto I, Alsina B, Giraldez F (2008) Spatial and temporal segregation of auditory and vestibular neurons in the otic placode. Dev Biol 322:109–120

    Article  PubMed  CAS  Google Scholar 

  • Bermingham NA, Hassan BA, Price SD, Vollrath MA, Ben-Arie N, Eatock RA, Bellen HJ, Lysakowski A, Zoghbi HY (1999) Math1: an essential gene for the generation of inner ear hair cells. Science 284:1837–1841

    Article  PubMed  CAS  Google Scholar 

  • Bok J, Chang W, Wu DK (2007) Patterning and morphogenesis of the vertebrate inner ear. Int J Dev Biol 51:521–533

    Article  PubMed  CAS  Google Scholar 

  • Carney PR, Silver J (1983) Studies on cell migration and axon guidance in the developing distal auditory system of the mouse. J Comp Neurol 215:359–369

    Article  PubMed  CAS  Google Scholar 

  • Chen J, Streit A (2013) Induction of the inner ear: stepwise specification of otic fate from multipotent progenitors. Hear Res 297:3–12

    Article  PubMed  Google Scholar 

  • Coate TM, Kelley MW (2013) Making connections in the inner ear: recent insights into the development of spiral ganglion neurons and their connectivity with sensory hair cells. Semin Cell Dev Biol 24:460–469

    Article  PubMed  PubMed Central  Google Scholar 

  • Coate TM, Spita NA, Zhang KD, Isgrig KT, Kelley MW (2015) Neuropilin-2/Semaphorin-3F-mediated repulsion promotes inner hair cell innervation by spiral ganglion neurons. Elife 4

  • D’Amico-Martel A (1982) Temporal patterns of neurogenesis in avian cranial sensory and autonomic ganglia. Am J Anat 163:351–372

    Article  PubMed  Google Scholar 

  • D’Amico-Martel A, Noden DM (1983) Contributions of placodal and neural crest cells to avian cranial peripheral ganglia. Am J Anat 166:445–468

    Article  PubMed  Google Scholar 

  • Delacroix L, Malgrange B (2015) Cochlear afferent innervation development. Hear Res 330:157–169

    Article  PubMed  Google Scholar 

  • Deng X, Wu DK (2016) Temporal coupling between specifications of neuronal and macular fates of the inner ear. Dev Biol 414:21–33

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dvorakova M, Jahan I, Macova I, Chumak T, Bohuslavova R, Syka J, Fritzsch B, Pavlinkova G (2016) Incomplete and delayed Sox2 deletion defines residual ear neurosensory development and maintenance. Sci Rep 6:38253

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dyballa S, Savy T, Germann P, Mikula K, Remesikova M, Špir R, Zecca A, Peyriéras N, Pujades C (2017) Distribution of neurosensory progenitor pools during inner ear morphogenesis unveiled by cell lineage reconstruction. eLife 6:e22268

    Article  PubMed  PubMed Central  Google Scholar 

  • Echteler SM (1992) Developmental segregation in the afferent projections to mammalian auditory hair cells. PNAS 89:6324–6327

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Elliott KL, Fritzsch B (2018) Ear transplantations reveal conservation of inner ear afferent pathfinding cues. Sci Rep 8:13819

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fariñas I, Jones KR, Tessarollo L, Vigers AJ, Huang E, Kirstein M, de Caprona DC, Coppola V, Backus C, Reichardt LF, Fritzsch B (2001) Spatial shaping of cochlear innervation by temporally regulated neurotrophin expression. J Neurosci 21:6170–6180

    Article  PubMed  PubMed Central  Google Scholar 

  • Fekete DM, Campero AM (2007) Axon guidance in the inner ear. Int J Dev Biol 51:549–556

    Article  PubMed  CAS  Google Scholar 

  • Fekete DM, Wu DK (2002) Revisiting cell fate specification in the inner ear. Curr Opin Neurobiol 12:35–42

    Article  PubMed  CAS  Google Scholar 

  • Freyer L, Aggarwal V, Morrow BE (2011) Dual embryonic origin of the mammalian otic vesicle forming the inner ear. Development 138:5403–5414

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fritzsch B (1993) Fast axonal diffusion of 3000 molecular weight dextran amines. J Neurosci Methods 50:95–103

    Article  PubMed  CAS  Google Scholar 

  • Fritzsch B (2003) Development of inner ear afferent connections: forming primary neurons and connecting them to the developing sensory epithelia. Brain Res Bull 60:423–433

    Article  PubMed  PubMed Central  Google Scholar 

  • Fritzsch B, Beisel KW, Jones K, Fariñas I, Maklad A, Lee J, Reichardt LF (2002) Development and evolution of inner ear sensory epithelia and their innervation. J Neurobiol 53:143–156

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fritzsch B, Tessarollo L, Coppola E, Reichardt LF (2004) Neurotrophins in the ear: their roles in sensory neuron survival and fiber guidance. Prog Brain Res 146:265–278

    Article  PubMed  CAS  Google Scholar 

  • Fritzsch B, Pauley S, Matei V, Katz DM, Xiang M, Tessarollo L (2005) Mutant mice reveal the molecular and cellular basis for specific sensory connections to inner ear epithelia and primary nuclei of the brain. Hear Res 206:52–63

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fritzsch B, Pauley S, Beisel KW (2006) Cells, molecules and morphogenesis: the making of the vertebrate ear. Brain Res 1091:151–171

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fritzsch B, Eberl DF, Beisel KW (2010) The role of bHLH genes in ear development and evolution: revisiting a 10-year-old hypothesis. Cell Mol Life Sci 67:3089–3099

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fritzsch B, Pan N, Jahan I, Elliott KL (2015) Inner ear development: building a spiral ganglion and an organ of Corti out of unspecified ectoderm. Cell Tissue Res 361:7–24

    Article  PubMed  Google Scholar 

  • Gálvez H, Abelló G, Giraldez F (2017) Signaling and Transcription factors during inner ear development: the generation of hair cells and otic neurons. Front Cell Dev Biol 5:21

    Article  PubMed  PubMed Central  Google Scholar 

  • Groves AK, Fekete DM (2012) Shaping sound in space: the regulation of inner ear patterning. Development 139:245–257

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Groves AK, Zhang KD, Fekete DM (2013) The genetics of hair cell development and regeneration. Annu Rev Neurosci 36:361–381

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hamburger V, Hamilton HL (1992) A series of normal stages in the development of the chick embryo. 1951. Dev Dyn 195:231–272

    Article  PubMed  CAS  Google Scholar 

  • Hemond SG, Morest DK (1991) Ganglion formation from the otic placode and the otic crest in the chick embryo: mitosis, migration, and the basal lamina. Anat Embryol 184:1–13

    Article  CAS  Google Scholar 

  • Hemond SG, Morest DK (1992) Tropic effects of otic epithelium on cochleo-vestibular ganglion fiber growth in vitro. Anat Rec 232:273–284

    Article  PubMed  CAS  Google Scholar 

  • Holt JC, Lysakowski A, Goldberg JM (2011) The efferent vestibular system. In: Ryugo DK, Fay RR (eds) Auditory and vestibular efferents. Springer, New York, pp 135–186

    Chapter  Google Scholar 

  • Jahan I, Kersigo J, Pan N, Fritzsch B (2010) Neurod1 regulates survival and formation of connections in mouse ear and brain. Cell Tissue Res 341:95–110

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kawamoto K, Ishimoto S-I, Minoda R, Brough DE, Raphael Y (2003) Math1 gene transfer generates new cochlear hair cells in mature guinea pigs in vivo. J Neurosci 23:4395–4400

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kersigo J, Fritzsch B (2015) Inner ear hair cells deteriorate in mice engineered to have no or diminished innervation. Front Aging Neurosci 7:33

    Article  PubMed  PubMed Central  Google Scholar 

  • Koundakjian EJ, Appler JL, Goodrich LV (2007) Auditory neurons make stereotyped wiring decisions before maturation of their targets. J Neurosci 27:14078–14088

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lassiter RNT, Stark MR, Zhao T, Zhou CJ (2014) Signaling mechanisms controlling cranial placode neurogenesis and delamination. Dev Biol 389:39–49

    Article  PubMed  CAS  Google Scholar 

  • Li H, Liu H, Sage C, Chen ZY, Heller S (2004) Islet-1 expression in the developing chicken inner ear. J Comp Neurol 477:1–10

    Article  PubMed  CAS  Google Scholar 

  • Liu M, Pereira FA, Price SD, Chu MJ, Shope C, Himes D, Eatock RA, Brownell WE, Lysakowski A, Tsai MJ (2000) Essential role of BETA2/NeuroD1 in development of the vestibular and auditory systems. Genes Dev 14:2839–2854

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu H, Li Y, Chen L, Zhang Q, Pan N, Nichols DH, Zhang WJ, Fritzsch B, He DZ (2016) Organ of corti and stria vascularis: is there an Interdependence for survival? PLoS One 11:e0168953

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ma Q, Chen Z, del Barco Barrantes I, de la Pompa JL, Anderson DJ (1998) neurogenin1 is essential for the determination of neuronal precursors for proximal cranial sensory ganglia. Neuron 20:469–482

    Article  PubMed  CAS  Google Scholar 

  • Ma Q, Anderson DJ, Fritzsch B (2000) Neurogenin 1 null mutant ears develop fewer, morphologically normal hair cells in smaller sensory epithelia devoid of innervation. J Assoc Res Otolaryngol 1:129–143

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mahmoud A, Reed C, Maklad A (2013) Central projections of lagenar primary neurons in the chick. J Comp Neurol 521:3524–3540

    Article  PubMed  Google Scholar 

  • Maklad A, Fritzsch B (2003) Development of vestibular afferent projections into the hindbrain and their central targets. Brain Res Bull 60:497–510

    Article  PubMed  PubMed Central  Google Scholar 

  • Maklad A, Kamel S, Wong E, Fritzsch B (2010) Development and organization of polarity-specific segregation of primary vestibular afferent fibers in mice. Cell Tissue Res 340:303–321

    Article  PubMed  PubMed Central  Google Scholar 

  • Mao Y, Reiprich S, Wegner M, Fritzsch B (2014) Targeted deletion of Sox10 by Wnt1-cre defects neuronal migration and projection in the mouse inner ear. PLoS One 9:e94580

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Matei V, Pauley S, Kaing S, Rowitch D, Beisel KW, Morris K, Feng F, Jones K, Lee J, Fritzsch B (2005) Smaller inner ear sensory epithelia in Neurog 1 null mice are related to earlier hair cell cycle exit. Dev Dyn 234:633–650

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Meas SJ, Zhang C-L, Dabdoub A (2018) Reprogramming glia into neurons in the peripheral auditory system as a solution for sensorineural hearing loss: lessons from the central nervous system. Front Mol Neurosci 11:77

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nichols DH, Pauley S, Jahan I, Beisel KW, Millen KJ, Fritzsch B (2008) Lmx1a is required for segregation of sensory epithelia and normal ear histogenesis and morphogenesis. Cell Tissue Res 334:339–358

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Noden DM, van de Water T (1986) The developing ear: tissue origins and interactions. Biol Change Otolaryngol 15–46

  • Pauley S, Wright TJ, Pirvola U, Ornitz D, Beisel K, Fritzsch B (2003) Expression and function of FGF10 in mammalian inner ear development. Dev Dyn 227:203–215

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Puligilla C, Dabdoub A, Brenowitz SD, Kelley MW (2010) Sox2 induces neuronal formation in the developing mammalian cochlea. J Neurosci 30:714–722

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Radde-Gallwitz K, Pan L, Gan L, Lin X, Segil N, Chen P (2004) Expression of Islet1 marks the sensory and neuronal lineages in the mammalian inner ear. J Comp Neurol 477:412–421

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Radosevic M, Robert-Moreno A, Coolen M, Bally-Cuif L, Alsina B (2011) Her9 represses neurogenic fate downstream of Tbx1 and retinoic acid signaling in the inner ear. Development 138:397–408

    Article  PubMed  CAS  Google Scholar 

  • Raft S, Groves AK (2015) Segregating neural and mechanosensory fates in the developing ear: patterning, signaling, and transcriptional control. Cell Tissue Res 359:315–332

    Article  PubMed  CAS  Google Scholar 

  • Raft S, Nowotschin S, Liao J, Morrow BE (2004) Suppression of neural fate and control of inner ear morphogenesis by Tbx1. Development 131:1801–1812

    Article  PubMed  CAS  Google Scholar 

  • Raft S, Koundakjian EJ, Quinones H, Jayasena CS, Goodrich LV, Johnson JE, Segil N, Groves AK (2007) Cross-regulation of Ngn1 and Math1 coordinates the production of neurons and sensory hair cells during inner ear development. Development 134:4405–4415

    Article  PubMed  CAS  Google Scholar 

  • Rubel EW, Fritzsch B (2002) Auditory system development: primary auditory neurons and their targets. Annu Rev Neurosci 25:51–101

    Article  PubMed  CAS  Google Scholar 

  • Sanchez-Calderon H, Milo M, Leon Y, Varela-Nieto I (2007) A network of growth and transcription factors controls neuronal differentation and survival in the developing ear. Int J Dev Biol 51:557–570

    Article  PubMed  CAS  Google Scholar 

  • Sánchez-Calderón H, Francisco-Morcillo J, Martín-Partido G, Hidalgo-Sánchez M (2007) Fgf19 expression patterns in the developing chick inner ear. Gene Expr Patterns 7:30–38

    Article  PubMed  CAS  Google Scholar 

  • Sánchez-Guardado LO, Ferran JL, Mijares J, Puelles L, Rodríguez-Gallardo L, Hidalgo-Sánchez M (2009) Raldh3 gene expression pattern in the developing chicken inner ear. J Comp Neurol 514:49–65

    Article  PubMed  CAS  Google Scholar 

  • Sánchez-Guardado LÓ, Puelles L, Hidalgo-Sánchez M (2013) Fgf10 expression patterns in the developing chick inner ear. J Comp Neurol 521:1136–1164

    Article  PubMed  CAS  Google Scholar 

  • Sánchez-Guardado LÓ, Puelles L, Hidalgo-Sánchez M (2014) Fate map of the chicken otic placode. Development 141:2302–2312

    Article  PubMed  CAS  Google Scholar 

  • Sapède D, Dyballa S, Pujades C (2012) Cell lineage analysis reveals three different progenitor pools for neurosensory elements in the otic vesicle. J Neurosci 32:16424–16434

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Satoh T, Fekete DM (2005) Clonal analysis of the relationships between mechanosensory cells and the neurons that innervate them in the chicken ear. Development 132:1687–1697

    Article  PubMed  CAS  Google Scholar 

  • Schneider-Maunoury S, Pujades C (2007) Hindbrain signals in otic regionalization: walk on the wild side. Int J Dev Biol 51:495–506

    Article  PubMed  Google Scholar 

  • Simmons D, Duncan J, de Caprona DC, Fritzsch B (2011) Development of the inner ear efferent system. In: Ryugo DK, Fay RR (eds) Auditory and vestibular efferents. Springer, New York, pp 187–216

    Chapter  Google Scholar 

  • Stevens CB, Davies AL, Battista S, Lewis JH, Fekete DM (2003) Forced activation of Wnt signaling alters morphogenesis and sensory organ identity in the chicken inner ear. Dev Biol 261:149–164

    Article  PubMed  CAS  Google Scholar 

  • Stone JS, Shang J-L, Tomarev S (2003) Expression of Prox1 defines regions of the avian otocyst that give rise to sensory or neural cells. J Comp Neurol 460:487–502

    Article  PubMed  CAS  Google Scholar 

  • Straka H, Baker R (2013) Vestibular blueprint in early vertebrates. Front Neural Circuits 7:182

    Article  PubMed  PubMed Central  Google Scholar 

  • Tanaka H, Kinutani M, Agata A, Takashima Y, Obata K (1990) Pathfinding during spinal tract formation in the chick-quail chimera analysed by species-specific monoclonal antibodies. Development 110:565–571

    Article  PubMed  CAS  Google Scholar 

  • Vaage S (1969) The segmentation of the primitive neural tube in chick embryos (Gallus domesticus). A morphological, histochemical and autoradiographical investigation. Ergeb Anat Entwicklungsgesch 41:3–87

    PubMed  CAS  Google Scholar 

  • Vázquez-Echeverría C, Dominguez-Frutos E, Charnay P, Schimmang T, Pujades C (2008) Analysis of mouse kreisler mutants reveals new roles of hindbrain-derived signals in the establishment of the otic neurogenic domain. Dev Biol 322:167–178

    Article  PubMed  CAS  Google Scholar 

  • Whitfield TT, Hammond KL (2007) Axial patterning in the developing vertebrate inner ear. Int J Dev Biol 51:507–520

    Article  PubMed  CAS  Google Scholar 

  • Wu DK, Kelley MW (2012) Molecular mechanisms of inner ear development. Cold Spring Harb Perspect Biol 4:a008409

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Xiang M, Maklad A, Pirvola U, Fritzsch B (2003) Brn3c null mutant mice show long-term, incomplete retention of some afferent inner ear innervation. BMC Neurosci 4:2

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang T, Kersigo J, Jahan I, Pan N, Fritzsch B (2011) The molecular basis of making spiral ganglion neurons and connecting them to hair cells of the organ of Corti. Hear Res 278:21–33

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang KD, Coate TM (2017) Recent advances in the development and function of type II spiral ganglion neurons in the mammalian inner ear. Semin Cell Dev Biol 65:80–87

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We express our gratitude to Dr Tanaka for providing us with QN antibodies.

Funding

This work was supported by the following Grant sponsors: Spanish Ministry of Science, BFU2010-1946; Junta de Extremadura, GR10152, GR15158 and IB18046 (to M.H.-S.); Spanish MICINN Grant BFU2014-57516P; SENECA Foundation contract 19904/GERM/15 (to L.P.); Junta de Extremadura pre-doctoral studentshipvaage; Grant number PRE/08031 (to L.-O.S.-G.).

Author information

Authors and Affiliations

Authors

Contributions

MH-S, L-OS-G and LP designed experiments. L-OS-G and MH-S performed experiments. MH-S, L-OS-G and LP analysed data and wrote the manuscript.

Corresponding author

Correspondence to Matías Hidalgo-Sánchez.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving animals were in accordance with the ethical standards of the institution or practice where the studies were conducted.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

S1 Figure. Related to Figure 4. Grafted area of Type 1 graft.

(a) Schematic representation of the Type 1 experiment at the 10-somite stage, involving the macula utriculi area. (b-g) Horizontal sections through a representative Type 1 chimaeric embryo at 10 days of incubation (E10). The QCPN-positive grafted area contained exclusively the macula utriculi (between arrowheads in b, d) and a contiguous small area in the utricle wall (arrows in b, d). The rest of the sensory and non-sensory elements were completely devoid of QCPN-positive grafted quail cells (ac, pc, and mn in c, c’; lc and mu in d, d’; bp in e-g; ml in g). Differentiated neurons from the grafted area were also observed (arrows in e, f). (h, i) Three-dimensional diagrams of a chimaeric inner ear summarising the Type 1 grafted-cell distribution. The horizontal sections are indicated in h and i. Abbreviations: C, caudal; D, dorsal; M, medial; R, rostral. (TIFF 14975 kb)

S2 Figure. Related to Figure 5. Grafted area of Type 2 graft.

(a) Schematic representation of the Type 2 experiment at the 10-somite stage, involving the macula sacculi area. (b-e) Horizontal sections through a representative Type 2 chimaeric embryo at 10 days of incubation (E10). The QCPN-positive grafted area contained exclusively the macula sacculi (between arrowheads in b, d) and a contiguous small area in the saccule wall (arrows in b, d). The rest of the sensory and non-sensory elements were completely devoid of QCPN-positive grafted quail cells (ac, pc, and mn in c, c’; lc and mu in d; bp in e; ml, not shown). (f, g) Three-dimensional diagrams of a chimaeric inner ear summarising the Type 2 grafted-cell distribution. The horizontal sections are indicated in f and g. Abbreviations: C, caudal; D, dorsal; M, medial; R, rostral. (TIFF 15385 kb)

S3 Figure. Related to Figure 6. Grafted area of Type 3 graft.

(a) Schematic representation of the Type 3 experiment at the 10-somite stage, involving the entire basilar papilla area. (b-e) Horizontal sections through a representative Type 3 chimaeric embryo at 10 days of incubation (E10). The QCPN-positive grafted area contained exclusively the basilar papilla (between arrowheads in b, e) and a contiguous small area in the cochlear duct wall (arrows in b, e). The rest of the sensory and non-sensory elements were completely devoid of QCPN-positive grafted quail cells (ac, pc, and mn in c, c’; lc, mu, and ms in d; ml in f). (f, g) Three-dimensional diagrams of a chimaeric inner ear summarising the Type 3 grafted-cell distribution. The horizontal sections are indicated in f and g. Abbreviations: C, caudal; D, dorsal; M, medial; R, rostral (TIFF 16438 kb)

S4 Figure. Related to Figure 7. Grafted area of Type 4 graft.

(a) Schematic representation of the Type 4 experiment at the 10-somite stage, involving the macula lagena and macula neglecta areas. (b-f) Horizontal sections through a representative Type 4 chimaeric embryo at 10 days of incubation (E10). The QCPN-positive grafted area contained exclusively the macula lagena and macula neglecta areas (between arrowheads in b, c) and their contiguous non-sensory areas (arrows in b, c, d). The rest of the sensory and non-sensory elements were completely devoid of QCPN-positive grafted quail cells (ac and pc in d; lc, mu, and ms in e; bp in f). Differentiated neurons from the grafted area were also observed (arrow in f). The graft formed a dorsoventrally arranged band in the cochlear duct (arrowheads in e, f). (g, h) Three-dimensional diagrams of a chimaeric inner ear summarising the Type 4 grafted-cell distribution. The horizontal sections are indicated in g and h. Abbreviations: C, caudal; D, dorsal; M, medial; R, rostral. (TIFF 16723 kb)

S5 Figure. Related to Figure 8. Grafted area of Type 5 graft.

(a) Schematic representation of the Type 5 experiment at the 10-somite stage, involving the anterior and lateral cristae area. (b-e) Horizontal sections through a representative Type 5 chimaeric embryo at 10 days of incubation (E10). The QCPN-positive grafted area contained exclusively the anterior and lateral cristae area (between arrowheads in b, c, d) and their contiguous non-sensory areas (arrows in b, c, d). The rest of the sensory and non-sensory elements were completely devoid of QCPN-positive grafted quail cells (pc in d’; lc, mu, and ms in d; bp in e, f; ml in f). Some QCPN-stained cells from the grafted mesenchyme were also observed (short arrows in f). Differentiated neurons from the grafted area were also observed (large arrows in f, e). (g, h) Three-dimensional diagrams of a chimaeric inner ear summarising the Type 5 grafted-cell distribution. The horizontal sections are indicated in g and h. Abbreviations: C, caudal; D, dorsal; M, medial; R, rostral. (TIFF 17270 kb)

S6 Figure. Related to Figure 9. Grafted area of Type 6 graft.

(a) Schematic representation of the Type 6 experiment at the 10-somite stage, involving the posterior crista area. (b-e) Horizontal sections through a representative Type 6 chimaeric embryo at 10 days of incubation (E10). The QCPN-positive grafted area contained exclusively the posterior crista area (between arrowheads in b, c) and its contiguous non-sensory areas (arrows in b, c). The rest of the sensory and non-sensory elements were completely devoid of QCPN-positive grafted quail cells (ac and mn in c; lc, mu, and ms in d; bp and ml in e). (f, g) Three-dimensional diagrams of a chimaeric inner ear summarising the Type 6 grafted-cell distribution. The horizontal sections are indicated in f and g. Abbreviations: C, caudal; D, dorsal; M, medial; R, rostral. (TIFF 13497 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sánchez-Guardado, L.Ó., Puelles, L. & Hidalgo-Sánchez, M. Origin of acoustic–vestibular ganglionic neuroblasts in chick embryos and their sensory connections. Brain Struct Funct 224, 2757–2774 (2019). https://doi.org/10.1007/s00429-019-01934-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-019-01934-5

Keywords

Navigation