Skip to main content
Log in

Morphological correlates of sex differences in acoustic startle response and prepulse inhibition through projections from locus coeruleus to cochlear root neurons

  • Original Article
  • Published:
Brain Structure and Function Aims and scope Submit manuscript

Abstract

The noradrenergic locus coeruleus (LC) plays an important role in the promotion and maintenance of arousal and alertness. Our group recently described coerulean projections to cochlear root neurons (CRNs), the first relay of the primary acoustic startle reflex (ASR) circuit. However, the role of the LC in the ASR and its modulation, prepulse inhibition (PPI), is not clear. In this study, we damaged LC neurons and fibers using a highly selective neurotoxin, DSP-4, and then assessed ASR and PPI in male and female rats. Our results showed that ASR amplitude was higher in males at 14 days after DSP-4 injection when compared to pre-administration values and those in the male control group. Such modifications in ASR amplitude did not occur in DSP-4-injected females, which exhibited ASR amplitude within the range of control values. PPI differences between males and females seen in controls were not observed in DSP-4-injected rats for any interstimulus interval tested. DSP-4 injection did not affect ASR and PPI latencies in either the male or the female groups, showing values that were consistent with the sex-related variability observed in control rats. Furthermore, we studied the noradrenergic receptor system in the cochlear nerve root using gene expression analysis. When compared to controls, DSP-4-injected males showed higher levels of expression in all adrenoceptor subtypes; however, DSP-4-injected females showed varied effects depending on the receptor type, with either up-, downregulations, or maintenance of expression levels. Lastly, we determined noradrenaline levels in CRNs and other LC-targeted areas using HPLC assays, and these results correlated with behavioral and adrenoceptor expression changes post DSP-4 injection. Our study supports the participation of LC in ASR and PPI, and contributes toward a better understanding of sex-related differences observed in somatosensory gating paradigms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ABC:

Avidin–biotin–peroxidase complex

ADRs:

Adrenergic receptors

ASR:

Acoustic startle reflex

BS:

Brainstem

Cb:

Cerebellum

CRNs:

Cochlear root neurons

DAB:

3,3′ Diaminobenzidine tetrahydrochloride

DBH:

Dopamine beta-hydroxylase

DHBA:

3,4-Dihydroxybenzylamine

DSP-4:

N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine

HPAA:

4-Hydroxyphenylacetic acid

HPLC:

High-performance liquid chromatography

IC:

Inferior colliculus

IHC:

Immunohistochemistry

ISI:

Interstimulus interval

LC:

Locus coeruleus

MHPG:

3-Methoxy-4-hydroxyphenylglycol

NA:

Noradrenaline

PFC:

Prefrontal cortex

PB:

Phosphate buffer 0.1 M, pH 7.4

PBS:

Phosphate buffered saline

PPI:

Prepulse inhibition

RT-qPCR:

Reverse transcription-quantitative polymerase chain reaction

References

  • Aasen I, Kolli L, Kumari V (2005) Sex effects in prepulse inhibition and facilitation of the acoustic startle response: implications for pharmacological and treatment studies. J Psychopharmacol 19(1):39–45

    Article  PubMed  Google Scholar 

  • Adams LM, Geyer MA (1981) Effects of 6-hydroxydopamine lesions of locus coeruleus on startle in rats. Psychopharmacology (Berl) 73(4):394–398

    Article  CAS  Google Scholar 

  • Alsene KM, Bakshi VP (2011) Pharmacological stimulation of locus coeruleus reveals a new antipsychotic-responsive pathway for deficient sensorimotor gating. Neuropsychopharmacology 36(8):1656–1667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Asakura M, Nagashima H, Fujii S, Sasuga Y, Misonoh A, Hasegawa H, Osada K (2000) Influences of chronic stress on central nervous systems. Nihon Shinkei Seishin Yakurigaku Zasshi 20(3):97–105

    CAS  PubMed  Google Scholar 

  • Aston-Jones G, Bloom FE (1981) Activity of norepinephrine-containing locus coeruleus neurons in behaving rats anticipates fluctuations in sleep-waking cycle. J Neurosci 1(8):876–886

    CAS  PubMed  Google Scholar 

  • Aston-Jones G, George P (2004) Chap. 11: Locus Coeruleus, A5 and A7 Noradrenergic Cell Groups. In: The rat nervous system Third(Edn), Academic Press, Burlington, pp 259–294

    Chapter  Google Scholar 

  • Aston-Jones G, Akaoka H, Charléty P, Chouvet G (1991) Serotonin selectively attenuates glutamate-evoked activation of noradrenergic locus coeruleus neurons. J Neurosci 11(3):760–769

    CAS  PubMed  Google Scholar 

  • Aston-Jones G, Rajkowski J, Cohen J (1999) Role of locus coeruleus in attention and behavioral flexibility. Biol Psychiatry 46(9):1309–1320 (Review)

    Article  CAS  PubMed  Google Scholar 

  • Bakker MJ, van Dijk JG, van den Maagdenberg AM, Tijssen MA (2006) Startle syndromes. Lancet Neurol 5(6):513–524 (Review)

    Article  PubMed  Google Scholar 

  • Bangasser DA, Valentino RJ (2012) Sex differences in molecular and cellular substrates of stress. Cell Mol Neurobiol 32(5):709–723. doi:10.1007/s10571-012-9824-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bangasser DA, Zhang X, Garachh V, Hanhauser E, Valentino RJ (2011) Sexual dimorphism in locus coeruleus dendritic morphology: a structural basis for sex differences in emotional arousal. Physiol Behav 103(3–4):342–351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bangasser DA, Wiersielis KR, Khantsis S. (2016) Sex differences in the locus coeruleus-norepinephrine system and its regulation by stress. Brain Res 1641(Pt B):177–188. doi:10.1016/j.brainres.2015.11.021

    Article  CAS  PubMed  Google Scholar 

  • Baudrie V, Tulen JH, Blanc J, Elghozi JL (1997) Autonomic components of the cardiovascular responses to an acoustic startle stimulus in rats. J Auton Pharmacol 17(5):303–309

    Article  CAS  PubMed  Google Scholar 

  • Bell RL, Rodd ZA, Hsu CC, Lumeng L, Murphy JM, McBride WJ (2003) Amphetamine-modified acoustic startle responding and prepulse inhibition in adult and adolescent alcohol-preferring and -nonpreferring rats. Pharmacol Biochem Behav 75(1):163–171

    Article  CAS  PubMed  Google Scholar 

  • Berridge CW, Abercrombie ED (1999) Relationship between locus coeruleus discharge rates and rates of norepinephrine release within neocortex as assessed by in vivo microdialysis. Neuroscience 93(4):1263–1270

    Article  CAS  PubMed  Google Scholar 

  • Booze RM, Hall JA, Cress NM, Miller GD, Davis JN (1988) DSP-4 treatment produces abnormal tyrosine hydroxylase immunoreactive fibers in rat hippocampus. Exp Neurol 101(1):75–86

    Article  CAS  PubMed  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Braff DL, Geyer MA (1990) Sensorimotor gating and schizophrenia. Human and animal model studies. Arch Gen Psychiatry 47(2):181–188

    Article  CAS  PubMed  Google Scholar 

  • Braff D, Stone C, Callaway E, Geyer M, Glick I, Bali L (1978) Prestimulus effects on human startle reflex in normals and schizophrenics. Psychophysiology 15(4):339–343

    Article  CAS  PubMed  Google Scholar 

  • Braff DL, Geyer MA, Swerdlow NR (2001) Human studies of prepulse inhibition of startle: normal subjects, patient groups, and pharmacological studies. Psychopharmacology (Berl) 156(2–3):234–258

    Article  CAS  Google Scholar 

  • Burns MJ, Nixon GJ, Foy CA, Harris N (2005) Standardisation of data from real-time quantitative PCR methods—evaluation of outliers and comparison of calibration curves. BMC Biotechnol 7(5):31. doi:10.1186/1472-6750-5-31

    Article  Google Scholar 

  • Bylund DB (1992) Subtypes of alpha 1- and alpha 2-adrenergic receptors. FASEB J 6(3):832–839 (Review)

    CAS  PubMed  Google Scholar 

  • Carasso BS, Bakshi VP, Geyer MA (1998) Disruption in prepulse inhibition after alpha-1 adrenoceptor stimulation in rats. Neuropharmacology 37(3):401–404

    Article  CAS  PubMed  Google Scholar 

  • Castellano O, Moscoso A, Riolobos AS, Carro J, Arji M, Molina V, López DE, Sancho C (2009) Chronic administration of risperidone to healthy rats: a behavioural and morphological study. Behav Brain Res 205(2):488–498. doi:10.1016/j.bbr.2009.08.002

    Article  CAS  PubMed  Google Scholar 

  • Cooper JR, Bloom FE, Roth RH (2003) The biochemical basis of neuropharmacology, 6th edn. Oxford U., Oxford

    Google Scholar 

  • Couto LlB, Moroni CRr, Ferreira ClMdR, Elias-Filho DH, Parada CAl, Pelao IR, Coimbra NC (2006) Descriptive and functional neuroanatomy of locus coeruleus-noradrenaline-containing neurons involvement in bradykinin-induced antinociception on principal sensory trigeminal nucleus. J Chem Neuroanat 32(1):28–45

    Article  Google Scholar 

  • Da Silva AV (2015) Origem de aferências monoaminérgicas e cart-érgicas ao circuito elementar do reflexo auditivo de sobressalto. (PhD thesis). Insituto de Biociências de Botucatu, Departamento de Anatomia, UNESP, Botucatu, p 133. http://athena.biblioteca.unesp.br/F?func=direct&local_base=UEP01&doc_number=000865781

  • Davis M, Commissaris RL, Yang S, Wagner KR, Kehne JH, Cassella JV, Boulis NM (1989) Spinal vs. supraspinal sites of action of the alpha-2-adrenergic agonists clonidine and ST-91 on the acoustic startle reflex. Pharmacol Biochem Behav 33(1):233–240

    Article  CAS  PubMed  Google Scholar 

  • Dong L-W, Yang J, Tong L-J, Tang C, Liu M-S (1999) Transcriptional regulation of alpha-1-adrenoceptor gene in the rat liver during different phases of sepsis. Biochim Biophys Acta Mol Basis Dis 1453(2):207–215.

    Article  CAS  Google Scholar 

  • Fendt M, Li L, Yeomans JS (2001) Brain stem circuits mediating prepulse inhibition of the startle reflex. Psychopharmacology (Berl) 156(2–3):216–224

    Article  CAS  Google Scholar 

  • Foote SL, Aston-Jones G, Bloom FE (1980) Impulse activity of locus coeruleus neurons in awake rats and monkeys is a function of sensory stimulation and arousal. Proc Natl Acad Sci USA 77(5):3033–3037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fritschy JM, Grzanna R (1989) Immunohistochemical analysis of the neurotoxic effects of DSP-4 identifies two populations of noradrenergic axon terminals. Neuroscience 30(1):181–197

    Article  CAS  PubMed  Google Scholar 

  • Fritschy JM, Grzanna R, Pompeiano CDBaO (1991) Chapter 20 Selective effects of DSP-4 on locus coeruleus axons: are there pharmacologically different types of noradrenergic axons in the central nervous system? In: Progress in brain research, Elsevier, Amsterdam, pp 257–268

    Google Scholar 

  • Funk GD, Parkis MA, Selvaratnam SR, Robinson DM, Miles GB, Peebles KC (2000) Synaptic control of motoneuron excitability inrodents:from monthstomilliseconds. Clin Exp Pharmacol Physiol 27:120–125

    Article  CAS  PubMed  Google Scholar 

  • Gómez-Nieto R, Rubio ME, López DE (2008a) Cholinergic input from the ventral nucleus of the trapezoid body to cochlear root neurons in rats. J Comp Neurol 506(3):452–468

    Article  PubMed  Google Scholar 

  • Gómez-Nieto R, Horta-Junior JAC, Castellano O, Herrero-Turrión MJ, Rubio ME, López DE (2008b) Neurochemistry of the afferents to the rat cochlear root nucleus: Possible synaptic modulation of the acoustic startle. Neuroscience 154(1):51–64

    Article  PubMed  PubMed Central  Google Scholar 

  • Gómez-Nieto R, Horta-Junior JAC, Castellano O, Sinex DG, López DE (2010) Auditory prepulse inhibition of neuronal activity in the rat cochlear root nucleus. In: López-Poveda EA, Palmer AR, Meddis R (eds.) The neurophysiological bases of auditory perception, pp 79–90

  • Gómez-Nieto R, Horta-Júnior JAC, Castellano O, Millian-Morell L, Rubio ME, López DE (2014a) Origin and function of short-latency inputs to the neural substrates underlying the acoustic startle reflex. Front Neurosci 8:216. doi:10.3389/fnins.2014.00216

    PubMed  PubMed Central  Google Scholar 

  • Gómez-Nieto R, Sinex DG, C Horta-Junior JD, Castellano O, Herrero-Turrion JM, López DE (2014b) A fast cholinergic modulation of the primary acoustic startle circuit in rats. Brain Struct Funct 219(5):1555–1573. doi:10.1007/s00429-013-0585-8.

    PubMed  Google Scholar 

  • Grant SJ, Aston-Jones G, Redmond DE Jr (1988) Responses of primate locus coeruleus neurons to simple and complex sensory stimuli. Brain Res Bull 21(3):401–410

    Article  CAS  PubMed  Google Scholar 

  • Grzanna R, Berger U, Fritschy JM, Geffard M (1989) Acute action of DSP-4 on central norepinephrine axons: biochemical and immunohistochemical evidence for differential effects. J Histochem Cytochem 37(9):1435–1442

    Article  CAS  PubMed  Google Scholar 

  • Guimaraes S, Moura D (2001) Vascular adrenoceptors: an update. Pharmacol Rev 53(2):319–356

    CAS  PubMed  Google Scholar 

  • Heal DJ, Butler SA, Prow MR, Buckett WR (1993) Quantification of presynaptic alpha-2-adrenoceptors in rat brain after short-term DSP-4 lesioning. Eur J Pharmacol 249(1):37–41

    Article  CAS  PubMed  Google Scholar 

  • Heckman CJ, Mottram C, Quinlan K, Theiss R, Schuster J (2009) Motoneuron excitability: the importance of neuromodulatory inputs. Clin Neurophysiol 120:2040–2054

    Article  CAS  PubMed  Google Scholar 

  • Hoffman HS, Ison JR (1980) Reflex modification in the domain of startle: I. Some empirical findings and their implications for how the nervous system processes sensory input. Psychol Rev 87(2):175–189

    Article  CAS  PubMed  Google Scholar 

  • Hormigo S, E Horta, Junior JdAdC, Gómez-Nieto R, López Garcia DE (2012) The selective neurotoxin DSP-4 impairs the noradrenergic projections from the locus coeruleus to the inferior colliculus in rats. Front Neural Circuits 6:41. doi:10.3389/fncir.2012.00041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hormigo S, Gómez-Nieto R, Castellano O, Herrero-Turrion MJ, López DE, E Horta, Junior JdAdC (2015) The noradrenergic projection from the locus coeruleus to the cochlear root neurons in rats. Brain Struct Funct, 220(3):1477–1496. doi:10.1007/s00429-014-0739-3

    Article  CAS  PubMed  Google Scholar 

  • Huang H-P, Zhu F-P, Chen X-W, Xu Z-QD, Zhang CX, Zhou Z (2012) Physiology of quantal norepinephrine release from somatodendritic sites of neurones in locus coeruleus. Front Mol Neurosci 5:1–5. doi:10.3389/fnmol.2012.00029

    Article  Google Scholar 

  • Jones BE (1991) Noradrenergic locus coeruleus neurons: their distant connections and their relationship to neighboring (including cholinergic and GABAergic) neurons of the central gray and reticular formation. Prog Brain Res 88:15–30

    Article  CAS  PubMed  Google Scholar 

  • Jonsson G, Hallman H, Ponzio F, Ross S (1981) DSP4 (N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine—a useful denervation tool for central and peripheral noradrenaline neurons. Eur J Pharmacol 72(2–3):173–188

    Article  CAS  PubMed  Google Scholar 

  • Justus AN, Finn PR (2007) Startle modulation in non-incarcerated men and women with psychopathic traits. Pers Individ Dif 43(8):2057–2071.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kable JW, Murrin LC, Bylund DB (2000) In vivo gene modification elucidates subtype-specific functions of alpha(2)-adrenergic receptors. J Pharmacol Exp Ther 293(1):1–7

    CAS  PubMed  Google Scholar 

  • Keay KA, Redgrave P, Dean P (1988) Cardiovascular and respiratory changes elicited by stimulation of rat superior colliculus. Brain Res Bull 20(1):13–26

    Article  CAS  PubMed  Google Scholar 

  • Klepper A, Herbert H (1991) Distribution and origin of noradrenergic and serotonergic fibers in the cochlear nucleus and inferior colliculus of the rat. Brain Res 557(1–2):190–201

    Article  CAS  PubMed  Google Scholar 

  • Landis C, Hunt WA (1939) The startle pattern. Ferrar & Rinehart, New York

    Google Scholar 

  • Lee Y, López DE, Meloni EG, Davis M (1996) A primary acoustic startle pathway: obligatory role of cochlear root neurons and the nucleus reticularis pontis caudalis. J Neurosci 16(11):3775–3789

    CAS  PubMed  Google Scholar 

  • Lehmann J, Pryce CR, Feldon J (1999) Sex differences in the acoustic startle response and prepulse inhibition in Wistar rats. Behav Brain Res 104(1–2):113–117

    Article  CAS  PubMed  Google Scholar 

  • Li F, De Godoy Mr, Rattan S (2004) Role of adenylate and guanylate cyclases in beta1-, beta2-, and beta3-adrenoceptor-mediated relaxation of internal anal sphincter smooth muscle. J Pharmacol Exp Ther 308(3):1111–1120

    Article  CAS  PubMed  Google Scholar 

  • Li L, Du Y, Li N, Wu X, Wu Y (2009) Top-down modulation of prepulse inhibition of the startle reflex in humans and rats. Neurosci Biobehav 33(8):1157–1167.

    Article  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2alpha-CT method. Methods 25(4):402–408

    Article  CAS  PubMed  Google Scholar 

  • Logue MP, Growdon JH, Coviella ILG, Wurtman RJ (1985) Differential effects of DSP-4 administration on regional brain norepinephrine turnover in rats. Life Sci 37(5):403–409

    Article  CAS  PubMed  Google Scholar 

  • López DE, Saldana E, Nodal FR, Merchán MA, Warr WB (1999) Projections of cochlear root neurons, sentinels of the auditory pathway in the rat. J Comp Neurol 415(2):160–174

    Article  PubMed  Google Scholar 

  • Ma S, Mifflin SW, Cunningham JT, Morilak DA (2008) Chronic intermittent hypoxia sensitizes acute hypothalamic-pituitary adrenal stress reactivity and Fos induction in the rat locus coeruleus in response to subsequent immobilization stress. Neuroscience 154(4):1639–1647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martire M, Pistritto G, Mores N, Agnati LF, Fuxe K (1995) Presynaptic A2-adrenoceptors and neuropeptide Y Y2 receptors inhibit [3H]noradrenaline release from rat hypothalamic synaptosomes via different mechanisms. Neurosci Lett 188(1):9–12

    Article  CAS  PubMed  Google Scholar 

  • Miao-Kun S (1995) Central neural organization and control of sympathetic nervous system in mammals. Prog Neurobiol 47(3):157–233

    Article  Google Scholar 

  • Molina V, Montes C, Tamayo P, Villa R, Isabel Osuna M, Perez J, Sancho C, López-Albuquerque T, Cardoso A, Castellano O, López DE (2009) Correlation between prepulse inhibition and cortical perfusion during an attentional test in schizophrenia. A pilot study. Prog Neuropsychopharmacol Biol Psychiatry 33(1):53–61

    Article  CAS  PubMed  Google Scholar 

  • Mulders WH, Robertson D (2001) Origin of the noradrenergic innervation of the superior olivary complex in the rat. J Chem Neuroanat 21(4):313–322

    Article  CAS  PubMed  Google Scholar 

  • Neigh GN, Ritschel LA, Kilpela LS, Harrell CS, Bourke CH (2013) Translational reciprocity: bridging the gap between preclinical studies and clinical treatment of stress effects on the adolescent brain. Neuroscience 249:139–153. doi:10.1016/j.neuroscience.2012.09.075

    Article  CAS  PubMed  Google Scholar 

  • Noga BR, Johnson DM, Riesgo MI, Pinzon A (2011) Locomotor-activated neuronsof the cat. II. Noradrenergic innervation and colocalization with NEα1a and NEα2b receptors in the thoraco-lumbar spinal cord. J Neurophysiol 105(4):1835–1849

    Article  PubMed  PubMed Central  Google Scholar 

  • Page ME, Akaoka H, Aston-Jones G, Valentino RJ (1992) Bladder distention activates noradrenergic locus coeruleus neurons by an excitatory amino acid mechanism. Neuroscience 51(3):555–563

    Article  CAS  PubMed  Google Scholar 

  • Paxinos G, Watson C (2005) The rat brain in stereotaxic coordinates: the new coronal set—161 diagrams, 5th edn. Academic Press, San Diego

    Google Scholar 

  • Pinos H, Collado P, Rodriguez-Zafra M, Rodriguez C, Segovia S, Guillamon A (2001) The development of sex differences in the locus coeruleus of the rat. Brain Res Bull 56(1):73–78

    Article  CAS  PubMed  Google Scholar 

  • Rosario LA, Abercrombie ED (1999) Individual differences in behavioral reactivity: correlation with stress-induced norepinephrine efflux in the hippocampus of Sprague-Dawley rats. Brain Res Bull 48(6):595–602

    Article  CAS  PubMed  Google Scholar 

  • Ross SB (1985) DSP4 and behavioural experiments. Trends Pharmacol Sci 6:237–237

    Article  CAS  Google Scholar 

  • Ross SB, Stenfors C (2015) DSP4, a selective neurotoxin for the locus coeruleus noradrenergic system. A review of its mode of action. Neurotox Res 27(1):15–30. doi:10.1007/s12640-014-9482-z (Review)

    Article  CAS  PubMed  Google Scholar 

  • Ross SB, Johansson JG, Lindborg B, Dahlbom R (1973) Cyclizing compounds. I. Tertiary N-(2-bromobenzyl)-N-haloalkylamines with adrenergic blocking action. Acta Pharm Suec 10(1):29–42

    CAS  PubMed  Google Scholar 

  • Sallinen J, Haapalinna A, Viitamaa T, Kobilka BK, Scheinin M (1998) d-amphetamine and l-5-hydroxytryptophan-induced behaviours in mice with genetically-altered expression of the alpha-2C-adrenergic receptor subtype. Neuroscience 86(3):959–965

    Article  CAS  PubMed  Google Scholar 

  • Sara SJ, Segal M (1991) Plasticity of sensory responses of locus coeruleus neurons in the behaving rat: implications for cognition. Prog Brain Res 88:571–585

    Article  CAS  PubMed  Google Scholar 

  • Schmittgen TD, Livak KJ (2008) Analyzing real-time PCR data by the comparative C(T) method. Nat Protoc 3(6):1101–1108

    Article  CAS  PubMed  Google Scholar 

  • Singewald N, Zhou G-Y, Schneider C (1995) Release of excitatory and inhibitory amino acids from the locus coeruleus of conscious rats by cardiovascular stimuli and various forms of acute stress. Brain Res 704(1):42–50

    Article  CAS  PubMed  Google Scholar 

  • Stevens DR, McCarley RW, Greene RW (1994) The mechanism of noradrenergic alpha 1 excitatory modulation of pontine reticular formation neurons. J Neurosci 14(11 Pt 1):6481–6487

    CAS  PubMed  Google Scholar 

  • Sullivan RM, Wilson DA, Lemon C, Gerhardt GA (1994) Bilateral 6-OHDA lesions of the locus coeruleus impair associative olfactory learning in newborn rats. Brain Res 643(1–2):306–309

    Article  CAS  PubMed  Google Scholar 

  • Swaminath G, Lee TW, Kobilka B (2003) Identification of an allosteric binding site for Zn2+ on the beta-2 adrenergic receptor. J Biol Chem 278(1):352–356

    Article  CAS  PubMed  Google Scholar 

  • Swerdlow NR, Geyer MA (1998) Using an animal model of deficient sensorimotor gating to study the pathophysiology and new treatments of schizophrenia. Schizophr Bull 24(2):285–301

    Article  CAS  PubMed  Google Scholar 

  • Swerdlow NR, Braff DL, Geyer MA (2000) Animal models of deficient sensorimotor gating: what we know, what we think we know, and what we hope to know soon. Behav Pharmacol 11(3–4):185–204

    Article  CAS  PubMed  Google Scholar 

  • Swerdlow NR, Hanlon FM, Henning L, Kim YK, Gaudet I, Halim ND (2001) Regulation of sensorimotor gating in rats by hippocampal NMDA: anatomical localization. Brain Res 898(2):195–203 (PubMed PMID: 11306005)

    Article  CAS  PubMed  Google Scholar 

  • Szabadi E (2012) Modulation of physiological reflexes by pain: role of the locus coeruleus. Front Integr Neurosci 6:94 doi:10.3389/fnint.2012.00094.

    Article  PubMed  PubMed Central  Google Scholar 

  • Szabadi E (2013) Functional neuroanatomy of the central noradrenergic system. J Psychopharmacol 27(8):659–693

    Article  PubMed  Google Scholar 

  • Szot P, Miguelez C, White SS, Franklin A, Sikkema C, Wilkinson CW, Ugedo L, Raskind MA (2010) A comprehensive analysis of the effect of DSP4 on the locus coeruleus noradrenergic system in the rat. Neuroscience 166(1):279–291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Timmermans W, Xiong H, Hoogenraad CC, Krugers HJ (2013) Stress and excitatory synapses: from health to disease. Neuroscience 248:626–636. doi:10.1016/j.neuroscience.2013.05.043

    Article  CAS  PubMed  Google Scholar 

  • Tsuruoka M, Tamaki J, Maeda M, Hayashi B, Inoue T (2011) The nucleus locus coeruleus/subcoeruleus contributes to antinociception during freezing behavior following the air-puff startle in rats. Brain Res 1393:52–61. doi:10.1016/j.brainres.2011.04.008

    Article  CAS  PubMed  Google Scholar 

  • Valentino RJ, Van Bockstaele E (2008) Convergent regulation of locus coeruleus activity as an adaptive response to stress. Eur J Pharmacol 583(2–3):194–203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Valentino RJ, Foote SL, Aston-Jones G (1983) Corticotropin-releasing factor activates noradrenergic neurons of the locus coeruleus. Brain Res 270(2):363–367

    Article  CAS  PubMed  Google Scholar 

  • Valls-Sole J (2012) Assessment of excitability in brainstem circuits mediating the blink reflex and the startle reaction. Clin Neurophysiol 123(1):13–20

    Article  PubMed  Google Scholar 

  • Valls-Solé J (1998) Acustic and somatosensory prepulse modulation of the blink reflex and the startle reaction. In: Brainstem reflexes and functions. Litofinter, S.A, Madrid, pp 119–131

    Google Scholar 

  • Vicentic A, Robeva A, Rogge G, Uberti M, Minneman KP (2002) Biochemistry and pharmacology of epitope-tagged alpha-1-adrenergic receptor subtypes. J Pharmacol Exp Ther 302(1):58–65

    Article  CAS  PubMed  Google Scholar 

  • Wamsley JK, Alburges ME, Hunt MAE, Bylund DB (1992) Differential localization of alpha-2-adrenergic receptor subtypes in brain. Pharmacol Biochem Behav 41(2):267–273

    Article  CAS  PubMed  Google Scholar 

  • Yeomans JS, Frankland PW (1995) The acoustic startle reflex: neurons and connections. Brain Res Brain Res Rev 21(3):301–314

    Article  CAS  PubMed  Google Scholar 

  • Yeomans JS, Lee J, Yeomans MH, Steidl S, Li L (2006) Midbrain pathways for prepulse inhibition and startle activation in rat. Neuroscience 142(4):921–929

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors declare no conflicts of interest, financial or otherwise. The study was supported in part by the Spanish Grants BFU2010-17754 (MICINN) and SAF2016-78898-C2-2R (MINECO), and by the São Paulo State Research Foundation FAPESP proc. 2008/02771-6. The authors also thank Sonia Hernández for technical support in the experiments; and Brian Swoyer and Kristiina Hormigo for language editing services.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sebastian Hormigo or José de Anchieta de Castro e Horta-Júnior.

Ethics declarations

Conflict of interest

This study was supported in part by the Spanish Grants BFU2010-17754 (MICINN) and SAF2016-78898-C2-2R (MINECO) to DEL, and by the São Paulo State Research Foundation FAPESP proc. 2008/02771-6 to JACHJ. The funders did not take part of this study whatsoever, and the authors declare no conflicts of interest, financial or otherwise.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hormigo, S., Gómez-Nieto, R., Sancho, C. et al. Morphological correlates of sex differences in acoustic startle response and prepulse inhibition through projections from locus coeruleus to cochlear root neurons. Brain Struct Funct 222, 3491–3508 (2017). https://doi.org/10.1007/s00429-017-1415-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-017-1415-1

Keywords

Navigation