Skip to main content

Advertisement

Log in

Direct and indirect nigrofugal projections to the nucleus reticularis pontis caudalis mediate in the motor execution of the acoustic startle reflex

  • Original Article
  • Published:
Brain Structure and Function Aims and scope Submit manuscript

Abstract

The acoustic startle reflex (ASR) is a short and intense defensive reaction in response to a loud and unexpected acoustic stimulus. In the rat, a primary startle pathway encompasses three serially connected central structures: the cochlear root neurons, the giant neurons of the nucleus reticularis pontis caudalis (PnC), and the spinal motoneurons. As a sensorimotor interface, the PnC has a central role in the ASR circuitry, especially the integration of different sensory stimuli and brain states into initiation of motor responses. Since the basal ganglia circuits control movement and action selection, we hypothesize that their output via the substantia nigra (SN) may interplay with the ASR primary circuit by providing inputs to PnC. Moreover, the pedunculopontine tegmental nucleus (PPTg) has been proposed as a functional and neural extension of the SN, so it is another goal of this study to describe possible anatomical connections from the PPTg to PnC. Here, we made 6-OHDA neurotoxic lesions of the SN pars compacta (SNc) and submitted the rats to a custom-built ASR measurement session to assess amplitude and latency of motor responses. We found that following lesion of the SNc, ASR amplitude decreased and latency increased compared to those values from the sham-surgery and control groups. The number of dopamine neurons remaining in the SNc after lesion was also estimated using a stereological approach, and it correlated with our behavioral results. Moreover, we employed neural tract-tracing techniques to highlight direct projections from the SN to PnC, and indirect projections through the PPTg. Finally, we also measured levels of excitatory amino acid neurotransmitters in the PnC following lesion of the SN, and found that they change following an ipsi/contralateral pattern. Taken together, our results identify nigrofugal efferents onto the primary ASR circuit that may modulate motor responses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

6-OHDA:

6-Hydroxydopamine

ABC:

Avidin-biotin-peroxidase complex

Arg:

Arginine

Asp:

Aspartate

ASR:

Acoustic startle reflex

BDA:

Biotinylated dextran amine

Cb:

Cerebellum

CE-LIFD:

Capillary electrophoresis laser-induced fluorescence detection

CRNs:

Cochlear root neurons

CP:

Cerebellar peduncle

FG:

FluoroGold

GABA:

γ-Aminobutyric acid

Glu:

Glutamate

GP:

Globus pallidus

IC:

Inferior colliculus

IHC:

Immunohistochemistry

i.m.:

Intramuscular

i.p.:

Intraperitoneal

IV:

Trochlear nucleus

LL:

Lateral lemniscus

m.w.:

Molecular weight

PAG:

Periaqueductal grey

PB:

Phosphate buffer

PnC:

Nucleus reticularis pontis caudalis

PnO:

Oral pontine reticular nucleus

PPTg:

Pedunculopontine tegmental nucleus

SC:

Superior colliculus

SN:

Substantia nigra

SNc:

Substantia nigra pars compacta

SNr:

Substantia nigra pars reticulata

SOC:

Superior olivary complex

TH-ir:

Tyrosine-hydroxylase immunoreactivity

VII:

Facial nerve

VIII:

Auditory-vestibular nerve

VTA:

Ventral tegmental area

xcp:

Cerebellar peduncle, decussation

References

  • Aaron RV, Benning SD (2016) Postauricular reflexes elicited by soft acoustic clicks and loud noise probes: reliability, prepulse facilitation, and sensitivity to picture contents. Psychophysiology 53(12):1900–1908. https://doi.org/10.1111/psyp.12757 (Epub 2016 Sep 6)

    Article  PubMed  PubMed Central  Google Scholar 

  • Aitken P, Zheng Y, Smith PF (2017) Effects of bilateral vestibular deafferentation in rat on hippocampal theta response to somatosensory stimulation, acetylcholine release, and cholinergic neurons in the pedunculopontine tegmental nucleus. Brain Struct Funct. https://doi.org/10.1007/s00429-017-1407-1 (Epub ahead of print)

    Article  PubMed  Google Scholar 

  • Albin RL, Young AB, Penney JB (1989) The functional anatomy of basal ganglia disorders. Trends Neurosci 12(10):366–375 (Review)

    Article  PubMed  CAS  Google Scholar 

  • Borst C, Belal F, Holzgrabe U (2013) Possibilities and limitations of capillary electrophoresis in pharmaceutical analysis. Pharmazie 68(7):526–530

    PubMed  CAS  Google Scholar 

  • Bosch D, Schmid S (2006) Activation of muscarinic cholinergic receptors inhibits giant neurones in the caudal pontine reticular nucleus. Eur J Neurosci 24(7):1967–1975 (Epub 2006 Oct 16)

    Article  PubMed  Google Scholar 

  • Brown J, Pan WX, Dudman JT (2014) The inhibitory microcircuit of the substantia nigra provides feedback gain control of the basal ganglia output. Elife 3:e02397. https://doi.org/10.7554/eLife.02397

    Article  PubMed  PubMed Central  Google Scholar 

  • Buonamici M, Cervini MA, Rossi AC, Sebastiani L, Raffaelli A, Bagnoli P (1990) Injections of 6-hydroxydopamine in the substantia nigra of the rat brain: morphological and biochemical effects. Behav Brain Res 38(1):83–95

    Article  PubMed  CAS  Google Scholar 

  • Carey RJ (1986) Relationship of changes in spontaneous motor activity to spontaneous circling in rats with unilateral 6-hydroxydopamine lesions of the substantia nigra. Exp Neurol 92(3):591–600

    Article  PubMed  CAS  Google Scholar 

  • Castellano O, Moscoso A, Riolobos AS, Carro J, Arji M, Molina V, López DE, Sancho C (2009) Chronic administration of risperidone to healthy rats: a behavioural and morphological study. Behav Brain Res 205(2):488–498. https://doi.org/10.1016/j.bbr.2009.08.002 (Epub 2009 Aug 7)

    Article  PubMed  CAS  Google Scholar 

  • Cui G, Jun SB, Jin X, Pham MD, Vogel SS, Lovinger DM, Costa RM (2013) Concurrent activation of striatal direct and indirect pathways during action initiation. Nature 494(7436):238–242. https://doi.org/10.1038/nature11846 (Epub 2013 Jan 23)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Czech DP, Lee J, Correia J, Loke H, Möller EK, Harley VR (2014) Transient neuroprotection by SRY upregulation in dopamine cells following injury in males. Endocrinology 155(7):2602–2612. https://doi.org/10.1210/en.2013-2158 (Epub 2014 Apr 7)

    Article  PubMed  CAS  Google Scholar 

  • Davis M (1990) Animal models of anxiety based on classical conditioning: the conditioned emotional response (CER) and the fear-potentiated startle effect. Pharmacol Ther 47(2):147–165 (Review)

    Article  PubMed  CAS  Google Scholar 

  • Davis M (1992) The role of the amygdala in fear-potentiated startle: implications for animal models of anxiety. Trends Pharmacol Sci 13(1):35–41 (Review)

    Article  PubMed  CAS  Google Scholar 

  • Di Chiara G, Morelli M, Porceddu ML, Gessa GL (1979) Role of thalamic gamma-aminobutyrate in motor functions: catalepsy and ipsiversive turning after intrathalamic muscimol. Neuroscience 4(10):1453–1465

    Article  PubMed  Google Scholar 

  • Ebert U, Koch M (1992) Glutamate receptors mediate acoustic input to the reticular brain stem. Neuroreport 3(5):429–432

    Article  PubMed  CAS  Google Scholar 

  • Fendt M, Koch M (1999) Cholinergic modulation of the acoustic startle response in the caudal pontine reticular nucleus of the rat. Eur J Pharmacol 370(2):101–107

    Article  PubMed  CAS  Google Scholar 

  • Ford B, Holmes CJ, Mainville L, Jones BE (1995) GABAergic neurons in the rat pontomesencephalic tegmentum: codistribution with cholinergic and other tegmental neurons projecting to the posterior lateral hypothalamus. J Comp Neurol 363(2):177–196

    Article  PubMed  CAS  Google Scholar 

  • Freeze BS, Kravitz AV, Hammack N, Berke JD, Kreitzer AC (2013) Control of basal ganglia output by direct and indirect pathway projection neurons. J Neurosci 33(47):18531–18539. https://doi.org/10.1523/JNEUROSCI.1278-13.2013

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fujimura H, Umbach I (1987) Role of the involvement of the reticular formation in the dementia of Parkinson’s disease. Rev Neurol (Paris) 143(2):108–114 (French)

    CAS  Google Scholar 

  • Fukushima K (1991) The interstitial nucleus of Cajal in the midbrain reticular formation and vertical eye movement. Neurosci Res 10(3):159–187 (Review)

    Article  PubMed  CAS  Google Scholar 

  • Gambardella S, Ferese R, Biagioni F, Busceti CL, Campopiano R, Griguoli AMP, Limanaqi F, Novelli G, Storto M, Fornai F (2017) The Monoamine brainstem reticular formation as a paradigm for re-defining various phenotypes of Parkinson’s disease owing genetic and anatomical specificity. Front Cell Neurosci 11:102. https://doi.org/10.3389/fncel.2017.00102 (eCollection 2017. Review)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Garcia-Rill E (1991) The pedunculopontine nucleus. Prog Neurobiol 36(5):363–389 (Review)

    Article  PubMed  CAS  Google Scholar 

  • Goetz L, Piallat B, Bhattacharjee M, Mathieu H, David O, Chabardès S (2016) On the role of the pedunculopontine nucleus and mesencephalic reticular formation in locomotion in nonhuman primates. J Neurosci 36(18):4917–4929. https://doi.org/10.1523/JNEUROSCI.2514-15.2016

    Article  PubMed  CAS  Google Scholar 

  • Gómez-Nieto R, Horta-Júnior Jde A, Castellano O, Millian-Morell L, Rubio ME, López DE (2014a) Origin and function of short-latency inputs to the neural substrates underlying the acoustic startle reflex. Front Neurosci 8:216. https://doi.org/10.3389/fnins.2014.00216 (eCollection 2014)

    Article  PubMed  PubMed Central  Google Scholar 

  • Gómez-Nieto R, Sinex DG, Horta-Júnior Jde A, Castellano O, Herrero-Turrión JM, López DE (2014b) A fast cholinergic modulation of the primary acoustic startle circuit in rats. Brain Struct Funct 219(5):1555–1573. https://doi.org/10.1007/s00429-013-0585-8 (Epub 2013 Jun 4)

    Article  PubMed  CAS  Google Scholar 

  • Granata AR, Kitai ST (1991) Inhibitory substantia nigra inputs to the pedunculopontine neurons. Exp Brain Res 86(3):459–466

    Article  PubMed  CAS  Google Scholar 

  • Gulcebi MI, Ketenci S, Linke R, Hacıoğlu H, Yanalı H, Veliskova J, Moshé SL, Onat F, Çavdar S (2012) Topographical connections of the substantia nigra pars reticulata to higher-order thalamic nuclei in the rat. Brain Res Bull 87(2–3):312–318. https://doi.org/10.1016/j.brainresbull.2011.11.005 (Epub 2011 Nov 17)

    Article  PubMed  Google Scholar 

  • Gundersen HJ (1986) Stereology of arbitrary particles. A review of unbiased number and size estimators and the presentation of some new ones, in memory of William R. Thompson. J Microsc 143(Pt 1):3–45

    Article  PubMed  CAS  Google Scholar 

  • Gurney K, Prescott TJ, Redgrave P (2001) A computational model of action selection in the basal ganglia. II. Analysis and simulation of behaviour. Biol Cybern 84(6):411–423

    Article  PubMed  CAS  Google Scholar 

  • Hackley SA, Ren X, Underwood A, Valle-Inclán F (2017) Prepulse inhibition and facilitation of the postauricular reflex, a vestigial remnant of pinna startle. Psychophysiology 54(4):566–577. https://doi.org/10.1111/psyp.12819 (Epub 2017 Feb 7)

    Article  PubMed  Google Scholar 

  • He ZG, Liu BW, Li ZX, Tian XB, Liu SG, Manyande A, Zhang DY, Xiang HB (2017) The caudal pedunculopontine tegmental nucleus may be involved in the regulation of skeletal muscle activity by melanocortinsympathetic pathway: a virally mediated trans-synaptic tracing study in spinally transected transgenic mice. Oncotarget. https://doi.org/10.18632/oncotarget.17983 (Epub ahead of print)

    Article  PubMed  PubMed Central  Google Scholar 

  • Hernández L, Escalona J, Joshi N, Guzmán N (1991) A laser-induced fluorescence and fluorescence microscopy for capillary electrophoresis zone detection. J Chromatogr A 559(1–2):183–196. https://doi.org/10.1016/0021-9673(91)80069-S

    Article  Google Scholar 

  • Hikida T, Kimura K, Wada N, Funabiki K, Nakanishi S (2010) Distinct roles of synaptic transmission in direct and indirect striatal pathways to reward and aversive behavior. Neuron 66(6):896–907. https://doi.org/10.1016/j.neuron.2010.05.011

    Article  PubMed  CAS  Google Scholar 

  • Hirsch EC, Höglinger G, Rousselet E, Breidert T, Parain K, Feger J, Ruberg M, Prigent A, Cohen-Salmon C, Launay JM (2003) Animal models of Parkinson’s disease in rodents induced by toxins: an update. J Neural Transm Suppl 65:89–100 (Review)

    Article  Google Scholar 

  • Höglinger GU, Carrard G, Michel PP, Medja F, Lombès A, Ruberg M, Friguet B, Hirsch EC (2003) Dysfunction of mitochondrial complex I and the proteasome: interactions between two biochemical deficits in a cellular model of Parkinson’s disease. J Neurochem 86(5):1297–1307

    Article  PubMed  Google Scholar 

  • Hökfelt T, Ungerstedt U (1973) Specificity of 6-hydroxydopamine induced degeneration of central monoamine neurones: an electron and fluorescence microscopic study with special reference to intracerebral injection on the nigro-striatal dopamine system. Brain Res 60(2):269–297

    Article  PubMed  Google Scholar 

  • Honda T, Semba K (1995) An ultrastructural study of cholinergic and non-cholinergic neurons in the laterodorsal and pedunculopontine tegmental nuclei in the rat. Neuroscience 68(3):837–853

    Article  PubMed  CAS  Google Scholar 

  • Hoover JE, Strick PL (1993) Multiple output channels in the basal ganglia. Science 259(5096):819–821

    Article  PubMed  CAS  Google Scholar 

  • Hormigo S, Horta Júnior Jde A, Gómez-Nieto R, López DE (2012) The selective neurotoxin DSP-4 impairs the noradrenergic projections from the locus coeruleus to the inferior colliculus in rats. Front Neural Circuits 6:41. https://doi.org/10.3389/fncir.2012.00041 (eCollection 2012)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hormigo S, Gómez-Nieto R, Castellano O, Herrero-Turrión MJ, López DE, de Anchieta de Castro E, Horta-Júnior J (2015) The noradrenergic projection from the locus coeruleus to the cochlear root neurons in rats. Brain Struct Funct 220(3):1477–1496. https://doi.org/10.1007/s00429-014-0739-3 (Epub 2014 Mar 13)

    Article  PubMed  CAS  Google Scholar 

  • Hormigo S, Vega-Flores G, Castro-Alamancos MA (2016) Basal ganglia output controls active avoidance behavior. J Neurosci 36(40):10274–10284

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hormigo S, Gómez-Nieto R, Sancho C, Herrero-Turrión J, Carro J, López DE, Horta-Júnior JA (2017) Morphological correlates of sex differences in acoustic startle response and prepulse inhibition through projections from locus coeruleus to cochlear root neurons. Brain Struct Funct. https://doi.org/10.1007/s00429-017-1415-1 (Epub ahead of print)

    Article  PubMed  Google Scholar 

  • Hossain MA, Weiner N (1995) Interactions of dopaminergic and GABAergic neurotransmission: impact of 6-hydroxydopamine lesions into the substantia nigra of rats. J Pharmacol Exp Ther 275(1):237–244

    PubMed  CAS  Google Scholar 

  • Jeon BS, Jackson-Lewis V, Burke RE (1995) 6-Hydroxydopamine lesion of the rat substantia nigra: time course and morphology of cell death. Neurodegeneration 4(2):131–137

    Article  PubMed  CAS  Google Scholar 

  • Kang Y, Kitai ST (1990) Electrophysiological properties of pedunculopontine neurons and their postsynaptic responses following stimulation of substantia nigra reticulata. Brain Res 535(1):79–95

    Article  PubMed  CAS  Google Scholar 

  • Keay KA, Redgrave P, Dean P (1988) Cardiovascular and respiratory changes elicited by stimulation of rat superior colliculus. Brain Res Bull 20(1):13–26

    Article  PubMed  CAS  Google Scholar 

  • Koch M (1999) The neurobiology of startle. Prog Neurobiol 59(2):107–128 (Review)

    Article  PubMed  CAS  Google Scholar 

  • Koch M, Ebert U (1993) Enhancement of the acoustic startle response by stimulation of an excitatory pathway from the central amygdala/basal nucleus of Meynert to the pontine reticular formation. Exp Brain Res 93(2):231–241

    Article  PubMed  CAS  Google Scholar 

  • Koch M, Schnitzler HU (1997) The acoustic startle response in rats-circuits mediating evocation, inhibition and potentiation. Behav Brain Res 89(1–2):35–49 (Review)

    Article  PubMed  CAS  Google Scholar 

  • Koch M, Kungel M, Herbert H (1993) Cholinergic neurons in the pedunculopontine tegmental nucleus are involved in the mediation of prepulse inhibition of the acoustic startle response in the rat. Exp Brain Res 97(1):71–82

    Article  PubMed  CAS  Google Scholar 

  • Krase W, Koch M, Schnitzler HU (1993) Glutamate antagonists in the reticular formation reduce the acoustic startle response. Neuroreport 4(1):13–16

    Article  PubMed  CAS  Google Scholar 

  • Kravitz AV, Kreitzer AC (2012) Striatal mechanisms underlying movement, reinforcement, and punishment. Physiology (Bethesda) 27(3):167–177. https://doi.org/10.1152/physiol.00004.2012 (Review)

    Article  Google Scholar 

  • Kravitz AV, Freeze BS, Parker PR, Kay K, Thwin MT, Deisseroth K, Kreitzer AC (2010) Regulation of parkinsonian motor behaviours by optogenetic control of basal ganglia circuitry. Nature 466(7306):622–626. https://doi.org/10.1038/nature09159 (Epub 2010 Jul 7)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kumari V, Hamid A, Brand A, Antonova E (2015) Acoustic prepulse inhibition: one ear is better than two, but why and when? Psychophysiology 52(5):714–721. https://doi.org/10.1111/psyp.12391 (Epub 2014 Dec 5)

    Article  PubMed  Google Scholar 

  • Lavoie B, Parent A (1994a) Pedunculopontine nucleus in the squirrel monkey: cholinergic and glutamatergic projections to the substantia nigra. J Comp Neurol 344(2):232–241

    Article  PubMed  CAS  Google Scholar 

  • Lavoie B, Parent A (1994b) Pedunculopontine nucleus in the squirrel monkey: distribution of cholinergic and monoaminergic neurons in the mesopontine tegmentum with evidence for the presence of glutamate in cholinergic neurons. J Comp Neurol 344(2):190–209

    Article  PubMed  CAS  Google Scholar 

  • Lee Y, López DE, Meloni EG, Davis M (1996) A primary acoustic startle pathway: obligatory role of cochlear root neurons and the nucleus reticularis pontis caudalis. J Neurosci 16(11):3775–3789

    Article  PubMed  CAS  Google Scholar 

  • Mandel S, Grünblatt E, Riederer P, Youdim MB (2003) Genes and oxidative stress in parkinsonism: cDNA microarray studies. Adv Neurol 91:123–132 (Review)

    Google Scholar 

  • Meesarapee B, Thampithak A, Jaisin Y, Sanvarinda P, Suksamrarn A, Tuchinda P, Morales NP, Sanvarinda Y (2014) Curcumin I mediates neuroprotective effect through attenuation of quinoprotein formation, p-p38 MAPK expression, and caspase-3 activation in 6-hydroxydopamine treated SH-SY5Y cells. Phytother Res 28(4):611–616. https://doi.org/10.1002/ptr.5036 (Epub 2013 Jul 16)

    Article  PubMed  CAS  Google Scholar 

  • Mendez JS, Finn BW (1975) Use of 6-hydroxydopamine to create lesions in catecholamine neurons in rats. J Neurosurg 42(2):166–173

    Article  PubMed  CAS  Google Scholar 

  • Mesulam MM, Mufson EJ, Levey AI, Wainer BH (1983) Cholinergic innervation of cortex by the basal forebrain: cytochemistry and cortical connections of the septal area, diagonal band nuclei, nucleus basalis (substantia innominata), and hypothalamus in the rhesus monkey. J Comp Neurol 214(2):170–197

    Article  PubMed  CAS  Google Scholar 

  • Mesulam MM, Geula C, Bothwell MA, Hersh LB (1989) Human reticular formation: cholinergic neurons of the pedunculopontine and laterodorsal tegmental nuclei and some cytochemical comparisons to forebrain cholinergic neurons. J Comp Neurol 283(4):611–633

    Article  PubMed  CAS  Google Scholar 

  • Mink JW (1996) The basal ganglia: focused selection and inhibition of competing motor programs. Prog Neurobiol 50(4):381–425 (Review)

    Article  PubMed  CAS  Google Scholar 

  • Nair-Roberts RG, Chatelain-Badie SD, Benson E, White-Cooper H, Bolam JP, Ungless MA (2008) Stereological estimates of dopaminergic, GABAergic and glutamatergic neurons in the ventral tegmental area, substantia nigra and retrorubral field in the rat. Neuroscience 152(4):1024–1031. https://doi.org/10.1016/j.neuroscience.2008.01.046 (Epub 2008 Feb 7)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Naoi M, Maruyama W (2001) Future of neuroprotection in Parkinson’s disease. Parkinsonism Relat Disord 8(2):139–145

    Article  PubMed  CAS  Google Scholar 

  • Noda T, Oka H (1986) Distribution and morphology of tegmental neurons receiving nigral inhibitory inputs in the cat: an intracellular HRP study. J Comp Neurol 244(2):254–266

    Article  PubMed  CAS  Google Scholar 

  • Nodal FR, López DE (2003) Direct input from cochlear root neurons to pontine reticulospinal neurons in albino rat. J Comp Neurol 460(1):80–93

    Article  PubMed  Google Scholar 

  • Pahapill PA, Lozano AM (2000) The pedunculopontine nucleus and Parkinson’s disease. Brain 123(Pt 9):1767–1783 (Review)

    Google Scholar 

  • Paxinos G, Watson C (2005) The rat brain in stereotaxic coordinates: the new coronal set—161 diagrams, 5th edn. Academic, San Diego

    Google Scholar 

  • Pilati N, Barker M, Panteleimonitis S, Donga R, Hamann M (2008) A rapid method combining Golgi and Nissl staining to study neuronal morphology and cytoarchitecture. J Histochem Cytochem 56(6):539–550. https://doi.org/10.1369/jhc.2008.950246 (Epub 2008 Feb 18)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Redgrave P, Prescott TJ, Gurney K (1999) The basal ganglia: a vertebrate solution to the selection problem? Neuroscience 89(4):1009–1023 (Review)

    Article  PubMed  CAS  Google Scholar 

  • Romanelli P, Esposito V, Schaal DW, Heit G (2005) Somatotopy in the basal ganglia: experimental and clinical evidence for segregated sensorimotor channels. Brain Res Brain Res Rev 48(1):112–128 (Review)

    Article  PubMed  Google Scholar 

  • Rye DB, Saper CB, Lee HJ, Wainer BH (1987) Pedunculopontine tegmental nucleus of the rat: cytoarchitecture, cytochemistry, and some extrapyramidal connections of the mesopontine tegmentum. J Comp Neurol 259(4):483–528

    Article  PubMed  CAS  Google Scholar 

  • Saint-Cyr JA (2003) Frontal-striatal circuit functions: context, sequence, and consequence. J Int Neuropsychol Soc 9(1):103–127 (Review Erratum in: J Int Neuropsychol Soc. 2003 Mar;9(3):502)

    Article  PubMed  Google Scholar 

  • Saitoh K, Hattori S, Song WJ, Isa T, Takakusaki K (2003) Nigral GABAergic inhibition upon cholinergic neurons in the rat pedunculopontine tegmental nucleus. Eur J Neurosci 18(4):879–886

    Article  PubMed  Google Scholar 

  • Sakai K, Gash DM (1994) Effect of bilateral 6-OHDA lesions of the substantia nigra on locomotor activity in the rat. Brain Res 633(1–2):144–150

    Article  PubMed  CAS  Google Scholar 

  • Schmid S, Wilson DA, Rankin CH (2015) Habituation mechanisms and their importance for cognitive function. Front Integr Neurosci 8:97. https://doi.org/10.3389/fnint.2014.00097 (eCollection 2014)

    Article  PubMed  PubMed Central  Google Scholar 

  • Sepúlveda J, Oliva P, Contreras E (2004) Neurochemical changes of the extracellular concentrations of glutamate and aspartate in the nucleus accumbens of rats after chronic administration of morphine. Eur J Pharmacol 483(2–3):249–258

    Article  PubMed  Google Scholar 

  • Shaikh KT, Yang A, Youshin E, Schmid S (2015) Transgenic LRRK2 (R1441G) rats—a model for Parkinson disease? PeerJ 3:e945. https://doi.org/10.7717/peerj.945 (eCollection 2015)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Silkis I (2001) The cortico-basal ganglia-thalamocortical circuit with synaptic plasticity. II. Mechanism of synergistic modulation of thalamic activity via the direct and indirect pathways through the basal ganglia. Biosystems 59(1):7–14 (Review)

    Article  PubMed  CAS  Google Scholar 

  • Smith Y, Bolam JP (1990) The output neurones and the dopaminergic neurones of the substantia nigra receive a GABA-containing input from the globus pallidus in the rat. J Comp Neurol 296(1):47–64

    Article  PubMed  CAS  Google Scholar 

  • Smith Y, Villalba R (2008) Striatal and extrastriatal dopamine in the basal ganglia: an overview of its anatomical organization in normal and Parkinsonian brains. Mov Disord 23(Suppl 3):S534–S547. https://doi.org/10.1002/mds.22027 (Review)

    Article  PubMed  Google Scholar 

  • Smith Y, Bevan MD, Shink E, Bolam JP (1998) Microcircuitry of the direct and indirect pathways of the basal ganglia. Neuroscience 86(2):353–387 (Review)

    Article  PubMed  CAS  Google Scholar 

  • Smith Y, Raju D, Nanda B, Pare JF, Galvan A, Wichmann T (2009) The thalamostriatal systems: anatomical and functional organization in normal and parkinsonian states. Brain Res Bull 78(2–3):60–68. https://doi.org/10.1016/j.brainresbull.2008.08.015 (Epub 2008 Sep 19. Review)

    Article  CAS  Google Scholar 

  • Swerdlow NR, Geyer MA (1998) Using an animal model of deficient sensorimotor gating to study the pathophysiology and new treatments of schizophrenia. Schizophr Bull 24(2):285–301 (Review)

    Article  PubMed  CAS  Google Scholar 

  • Takakusaki K, Shiroyama T, Yamamoto T, Kitai ST (1996) Cholinergic and noncholinergic tegmental pedunculopontine projection neurons in rats revealed by intracellular labeling. J Comp Neurol 371(3):345–361

    Article  PubMed  CAS  Google Scholar 

  • Takakusaki K, Obara K, Nozu T, Okumura T (2011) Modulatory effects of the GABAergic basal ganglia neurons on the PPN and the muscle tone inhibitory system in cats. Arch Ital Biol 149(4):385–405. https://doi.org/10.4449/aib.v149i4.1383 (Epub 2011 Dec 1)

    Article  PubMed  CAS  Google Scholar 

  • Tecuapetla F, Matias S, Dugue GP, Mainen ZF, Costa RM (2014) Balanced activity in basal ganglia projection pathways is critical for contraversive movements. Nat Commun 5:4315. https://doi.org/10.1038/ncomms5315

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tye KM, Deisseroth K (2012) Optogenetic investigation of neural circuits underlying brain disease in animal models. Nat Rev Neurosci 13(4):251–266. https://doi.org/10.1038/nrn3171 (Review)

    Article  PubMed  CAS  Google Scholar 

  • Ungerstedt U (1971) Striatal dopamine release after amphetamine or nerve degeneration revealed by rotational behaviour. Acta Physiol Scand Suppl 367:49–68

    Article  PubMed  CAS  Google Scholar 

  • Ungerstedt U, Ljungberg T, Steg G (1974) Behavioral, physiological, and neurochemical changes after 6-hydroxydopamine-induced degeneration of the nigro-striatal dopamine neurons. Adv Neurol 5:421–426

    PubMed  CAS  Google Scholar 

  • Valsamis B, Schmid S (2011) Habituation and prepulse inhibition of acoustic startle in rodents. J Vis Exp 55:e3446. https://doi.org/10.3791/3446

    Article  Google Scholar 

  • Wang HL, Morales M (2009) Pedunculopontine and laterodorsal tegmental nuclei contain distinct populations of cholinergic, glutamatergic and GABAergic neurons in the rat. Eur J Neurosci 29(2):340–358. https://doi.org/10.1111/j.1460-9568.2008.06576.x

    Article  PubMed  Google Scholar 

  • West MJ, Slomianka L, Gundersen HJ (1991) Unbiased stereological estimation of the total number of neurons in the subdivisions of the rat hippocampus using the optical fractionator. Anat Rec 231(4):482–497

    Article  PubMed  CAS  Google Scholar 

  • Willis GL, Kennedy GA (2004) The implementation of acute versus chronic animal models for treatment discovery in Parkinson’s disease. Rev Neurosci 15(1):75–87 (Review)

    Article  PubMed  Google Scholar 

  • Wilson VJ (1993) Vestibulospinal reflexes and the reticular formation. Prog Brain Res 97:211–217 (Review)

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi T, Wang HL, Morales M (2013) Glutamate neurons in the substantia nigra compacta and retrorubral field. Eur J Neurosci 38(11):3602–3610. https://doi.org/10.1111/ejn.12359 (Epub 2013 Sep 16)

    Article  PubMed  PubMed Central  Google Scholar 

  • Yeomans JS, Frankland PW (1995) The acoustic startle reflex: neurons and connections. Brain Res Brain Res Rev 21(3):301–314 (Review)

    Article  PubMed  CAS  Google Scholar 

  • Yeomans JS, Li L, Scott BW, Frankland PW (2002) Tactile, acoustic and vestibular systems sum to elicit the startle reflex. Neurosci Biobehav Rev 26(1):1–11 (Review)

    Article  PubMed  Google Scholar 

  • Yoo JH, Zell V, Wu J, Punta C, Ramajayam N, Shen X, Faget L, Lilascharoen V, Lim BK, Hnasko TS (2017) Activation of Pedunculopontine glutamate neurons is reinforcing. J Neurosci 37(1):38–46. https://doi.org/10.1523/JNEUROSCI.3082-16.2016

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Young HM, Furness JB, Shuttleworth CW, Bredt DS, Snyder SH (1992) Co-localization of nitric oxide synthase immunoreactivity and NADPH diaphorase staining in neurons of the guinea-pig intestine. Histochemistry 97(4):375–378

    Article  PubMed  CAS  Google Scholar 

  • Zhao Z, Davis M (2004) Fear-potentiated startle in rats is mediated by neurons in the deep layers of the superior colliculus/deep mesencephalic nucleus of the rostral midbrain through the glutamate non-NMDA receptors. J Neurosci 24(46):10326–10334

    Article  PubMed  CAS  Google Scholar 

  • Zhu Y, Liu F, Zou X, Torbey M. Comparison of unbiased estimation of neuronal number in the rat hippocampus with different staining methods. J Neurosci Methods. 2015;254:73–79. https://doi.org/10.1016/j.jneumeth.2015.07.022 (Epub 2015 Jul 31)

    Article  Google Scholar 

Download references

Acknowledgements

The authors declare no conflicts of interest, financial or otherwise. This study was supported in part by Spanish grants SAF2016-78898-C2-2R (MINECO) and by the University of Salamanca Research Support Grant for GIRs 2017. We would like to thank T. López-Albuquerque for his input in the design of this study, and Kristiina Hormigo for language editing services.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Orlando Castellano.

Ethics declarations

Conflict of interest

This study was supported in part by Spanish grants SAF2016-78898-C2-2R (MINECO) and by the University of Salamanca Research Support Grant for GIRs 2017. The funders did not take part in this study whatsoever, and the authors declare no competing conflicts of interest, financial, or otherwise.

Electronic supplementary material

Below is the link to the electronic supplementary material.

429_2018_1654_MOESM1_ESM.tif

Supplementary Figure 1. Distribution of TH staining in PPTg and PnC after 6-OHDA unilateral lesions of the SNc. A, TH-labeled fibers in the PPTg region in a sham-surgery control case. A1, inset microphotograph of the white square frame in (A) B, TH-labeled fibers in the PnC region in a sham-surgery control case. B1, inset microphotograph of the white square frame in (B) C, TH-labeled fibers in the PPTg region in a representative 6-OHDA neurotoxic lesion of SNc case. C1, inset microphotograph of the white square frame in (C) D, TH-labeled fibers in the PnC region in a representative 6-OHDA neurotoxic lesion of SNc case. D1, inset microphotograph of the white square frame in (D) Note a decrease in the TH-labeled fibers in the lesion cases (c and d) vs. the control cases (a and b) (TIF 19233 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hormigo, S., López, D.E., Cardoso, A. et al. Direct and indirect nigrofugal projections to the nucleus reticularis pontis caudalis mediate in the motor execution of the acoustic startle reflex. Brain Struct Funct 223, 2733–2751 (2018). https://doi.org/10.1007/s00429-018-1654-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-018-1654-9

Keywords

Navigation