Skip to main content

Advertisement

Log in

Exploring the role of neuropeptide S in the regulation of arousal: a functional anatomical study

  • Original Article
  • Published:
Brain Structure and Function Aims and scope Submit manuscript

Abstract

Neuropeptide S (NPS) is a regulatory peptide expressed by limited number of neurons in the brainstem. The simultaneous anxiolytic and arousal-promoting effect of NPS suggests an involvement in mood control and vigilance, making the NPS–NPS receptor system an interesting potential drug target. Here we examined, in detail, the distribution of NPS-immunoreactive (IR) fiber arborizations in brain regions of rat known to be involved in the regulation of sleep and arousal. Such nerve terminals were frequently apposed to GABAergic/galaninergic neurons in the ventro-lateral preoptic area (VLPO) and to tyrosine hydroxylase-IR neurons in all hypothalamic/thalamic dopamine cell groups. Then we applied the single platform-on-water (mainly REM) sleep deprivation method to study the functional role of NPS in the regulation of arousal. Of the three pontine NPS cell clusters, the NPS transcript levels were increased only in the peri-coerulear group in sleep-deprived animals, but not in stress controls. The density of NPS-IR fibers was significantly decreased in the median preoptic nucleus-VLPO region after the sleep deprivation, while radioimmunoassay and mass spectrometry measurements showed a parallel increase of NPS in the anterior hypothalamus. The expression of the NPS receptor was, however, not altered in the VLPO-region. The present results suggest a selective activation of one of the three NPS-expressing neuron clusters as well as release of NPS in distinct forebrain regions after sleep deprivation. Taken together, our results emphasize a role of the peri-coerulear cluster in the modulation of arousal, and the importance of preoptic area for the action of NPS on arousal and sleep.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

Arc:

Nucleus arcuatus

DMN:

Dorsomedial nucleus of the hypothalamus

DR:

Dorsal raphe

HDB:

Nucleus of the horizontal limb of the diagonal band

KF:

Kölliker-Fuse nucleus

LC:

Locus coeruleus

LDTg/PPTg:

Laterodorsal tegmental/pedunculopontine tegmental nuclei

LPB:

Lateral parabrachial nucleus

LPO:

Lateral preoptic area

LS/MSbo:

Lateral septum/medial septum border zone

LSV:

Lateral septal nucleus, ventral part

MnPO:

Median preoptic nucleus

MPOA:

Medial preoptic area

MS:

Medial septum

PC:

Peri-coerulear cell cluster (of NPS neurons)

PB-PreC:

Parabrachial-precoeruleus region

PVA:

Paraventricular thalamic nucleus, anterior part

PVN:

Paraventricular hypothalamic nucleus

PFA:

Perifornical area of the lateral hypothalamus

SCN:

Suprachiasmatic nucleus

SHy:

Septohypothalamic nucleus

SLD:

Sublaterodorsal tegmental area

VLPO:

Ventro-lateral preoptic nucleus

VLPAG:

Ventro-lateral subdivision of the periaqueductal central gray

VTA:

Ventral tegmental area

VTM:

Ventral tuberomamillary nucleus

ACTH:

Adrenocorticotrophin hormone

CRF:

Corticotrophin releasing factor

ChAT:

Choline acetyltransferase

EDS:

Excessive daytime sleepiness

EEG:

Electroencephalography

HC:

Homecage

HDC:

Histidine decarboxylase

i.c.v.:

Intracerebroventricular

IHC:

Immunohistochemistry

IR:

Immunoreactive

ISH:

In situ hybridization

LPoW:

Large pot-on-water

LPoW-R:

Large pot-on-water plus rebound sleep

MCH:

Melanin concentrating hormone

non-REMS:

Non-rapid eye movement sleep

NPS:

Neuropeptide S

NPSR1:

Neuropeptide S receptor 1

PoW:

Pot-on-water

qISH:

Quantitative in situ hybridization

REMS:

Rapid eye movement sleep

RIA:

Radioimmunoassay

RT:

Room temperature

SPoW:

Small pot-on-water

SPoW-R:

Small pot-on-water plus rebound sleep

SWS:

Slow-wave sleep

TH:

Tyrosine hydroxylase

OSAS:

Obstructive sleep apnea syndrome

VGlut2:

Vesicular glutamate transporter 2

References

  • Adams JC (1992) Biotin amplification of biotin and horseradish peroxidase signals in histochemical stains. J Histochem Cytochem 40(10):1457–1463

    Article  CAS  PubMed  Google Scholar 

  • Ahnaou A, Drinkenburg WH (2012) Neuropeptide-S evoked arousal with electroencephalogram slow-wave compensatory drive in rats. Neuropsychobiology 65(4):195–205

    Article  CAS  PubMed  Google Scholar 

  • Andersen ML, Nascimento DC, Machado RB, Roizenblatt S, Moldofsky H, Tufik S (2006) Sleep disturbance induced by substance P in mice. Behav Brain Res 167(2):212–218

    Article  CAS  PubMed  Google Scholar 

  • Bernier V, Stocco R, Bogusky MJ, Joyce JG, Parachoniak C, Grenier K, Arget M, Mathieu MC, O’Neill GP, Slipetz D, Crackower MA, Tan CM, Therien AG (2006) Structure-function relationships in the neuropeptide S receptor: molecular consequences of the asthma-associated mutation N107I. J Biol Chem 281(34):24704–24712

    Article  CAS  PubMed  Google Scholar 

  • Björklund A, Lindvall O (1984) Dopamine-containing systems in the CNS. Classical transmitters in the CNS. Part I Handbook of chemical neuroanatomy, vol 2. Elsevier, Amsterdam

    Google Scholar 

  • Cao J, de Lecea L, Ikemoto S (2011) Intraventricular administration of neuropeptide S has reward-like effects. Eur J Pharmacol 658(1):16–21. doi:10.1016/j.ejphar.2011.02.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chou TC, Bjorkum AA, Gaus SE, Lu J, Scammell TE, Saper CB (2002) Afferents to the ventrolateral preoptic nucleus. J Neurosci 22(3):977–990

    CAS  PubMed  Google Scholar 

  • Christensson-Nylander I, Herrera-Marschitz M, Staines W, Hökfelt T, Terenius L, Ungerstedt U, Cuello C, Oertel WH, Goldstein M (1986) Striato-nigral dynorphin and substance P pathways in the rat. I. Biochemical and immunohistochemical studies. Exp Brain Res 64(1):169–192

    Article  CAS  PubMed  Google Scholar 

  • Clark SD, Duangdao DM, Schulz S, Zhang L, Liu X, Xu YL, Reinscheid RK (2011) Anatomical characterization of the neuropeptide S system in the mouse brain by in situ hybridization and immunohistochemistry. J Comp Neurol 519(10):1867–1893

    Article  CAS  PubMed  Google Scholar 

  • Coenen AM, van Luijtelaar EL (1985) Stress induced by three procedures of deprivation of paradoxical sleep. Physiol Behav 35(4):501–504

    Article  CAS  PubMed  Google Scholar 

  • Craig R, Beavis RC (2004) TANDEM: matching proteins with tandem mass spectra. Bioinformatics 20(9):1466–1467

    Article  CAS  PubMed  Google Scholar 

  • Dahlström A, Fuxe K (1964) Evidence for the existence of monoamine neurons in the central nervous system. I. Demonstration of monoamines in the cell bodies of brainstem neurons. Acta Physiol Scand 62(Suppl. 232):1–55

    Google Scholar 

  • de Lecea L, Kilduff TS, Peyron C, Gao X, Foye PE, Danielson PE, Fukuhara C, Battenberg EL, Gautvik VT, Bartlett FS 2nd, Frankel WN, van den Pol AN, Bloom FE, Gautvik KM, Sutcliffe JG (1998) The hypocretins: hypothalamus-specific peptides with neuroexcitatory activity. Proc Natl Acad Sci USA 95(1):322–327

    Article  PubMed  PubMed Central  Google Scholar 

  • Domschke K, Reif A, Weber H, Richter J, Hohoff C, Ohrmann P, Pedersen A, Bauer J, Suslow T, Kugel H, Heindel W, Baumann C, Klauke B, Jacob C, Maier W, Fritze J, Bandelow B, Krakowitzky P, Rothermundt M, Erhardt A, Binder EB, Holsboer F, Gerlach AL, Kircher T, Lang T, Alpers GW, Strohle A, Fehm L, Gloster AT, Wittchen HU, Arolt V, Pauli P, Hamm A, Deckert J (2011) Neuropeptide S receptor gene—converging evidence for a role in panic disorder. Mol Psychiatry 16(9):938–948

    Article  CAS  PubMed  Google Scholar 

  • Donner J, Haapakoski R, Ezer S, Melen E, Pirkola S, Gratacos M, Zucchelli M, Anedda F, Johansson LE, Söderhall C, Orsmark-Pietras C, Suvisaari J, Martin-Santos R, Torrens M, Silander K, Terwilliger JD, Wickman M, Pershagen G, Lönnqvist J, Peltonen L, Estivill X, D’Amato M, Kere J, Alenius H, Hovatta I (2010) Assessment of the neuropeptide S system in anxiety disorders. Biol Psychiatry 68(5):474–483

    Article  CAS  PubMed  Google Scholar 

  • Ebner K, Rjabokon A, Pape HC, Singewald N (2011) Increased in vivo release of neuropeptide S in the amygdala of freely moving rats after local depolarisation and emotional stress. Amino Acids 41(4):991–996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fuller PM, Sherman D, Pedersen NP, Saper CB, Lu J (2011) Reassessment of the structural basis of the ascending arousal system. J Comp Neurol 519(5):933–956

    Article  PubMed  PubMed Central  Google Scholar 

  • Fuxe K, Borroto-Escuela DO, Romero-Fernandez W, Zhang WB, Agnati LF (2013) Volume transmission and its different forms in the central nervous system. Chin J Integr Med 19(5):323–329

    Article  CAS  PubMed  Google Scholar 

  • Gallopin T, Fort P, Eggermann E, Cauli B, Luppi PH, Rossier J, Audinat E, Muhlethaler M, Serafin M (2000) Identification of sleep-promoting neurons in vitro. Nature 404(6781):992–995

    Article  CAS  PubMed  Google Scholar 

  • Gaus SE, Strecker RE, Tate BA, Parker RA, Saper CB (2002) Ventrolateral preoptic nucleus contains sleep-active, galaninergic neurons in multiple mammalian species. Neuroscience 115(1):285–294

    Article  CAS  PubMed  Google Scholar 

  • Grahnstedt S, Ursin R (1985) Platform sleep deprivation affects deep slow wave sleep in addition to REM sleep. Behav Brain Res 18(3):233–239

    Article  CAS  PubMed  Google Scholar 

  • Harris GC, Aston-Jones G (2006) Arousal and reward: a dichotomy in orexin function. Trends Neurosci 29(10):571–577

    Article  CAS  PubMed  Google Scholar 

  • Herkenham M (1987) Mismatches between neurotransmitter and receptor localizations in brain: observations and implications. Neuroscience 23(1):1–38

    Article  CAS  PubMed  Google Scholar 

  • Hökfelt T, Martensson R, Björklund A, Kleinau S, Goldstein M (1984) Distributional maps of tyrosine hydroxylase-immunoreactive neurons in the rat brain classical transmitters in the CNS. Part I. Handbook of chemical neuroanatomy, vol 2. Elsevier, Amsterdam

    Google Scholar 

  • Huang HP, Zhu FP, Chen XW, Xu ZQ, Zhang CX, Zhou Z (2012) Physiology of quantal norepinephrine release from somatodendritic sites of neurons in locus coeruleus. Front Mol Neurosci 5:29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jego S, Glasgow SD, Herrera CG, Ekstrand M, Reed SJ, Boyce R, Friedman J, Burdakov D, Adamantidis AR (2013) Optogenetic identification of a rapid eye movement sleep modulatory circuit in the hypothalamus. Nat Neurosci 16(11):1637–1643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jungling K, Seidenbecher T, Sosulina L, Lesting J, Sangha S, Clark SD, Okamura N, Duangdao DM, Xu YL, Reinscheid RK, Pape HC (2008) Neuropeptide S-mediated control of fear expression and extinction: role of intercalated GABAergic neurons in the amygdala. Neuron 59(2):298–310

    Article  PubMed  PubMed Central  Google Scholar 

  • Jungling K, Liu X, Lesting J, Coulon P, Sosulina L, Reinscheid RK, Pape HC (2012) Activation of neuropeptide S-expressing neurons in the locus coeruleus by corticotropin-releasing factor. J Physiol 590(Pt 16):3701–3717

    Article  PubMed  PubMed Central  Google Scholar 

  • Kantor S, Jakus R, Molnar E, Gyongyosi N, Toth A, Detari L, Bagdy G (2005) Despite similar anxiolytic potential, the 5-hydroxytryptamine 2C receptor antagonist SB-242084 {6-chloro-5-methyl-1-[2-(2-methylpyrid-3-yloxy)-pyrid-5-yl carbamoyl] indoline} and chlordiazepoxide produced differential effects on electroencephalogram power spectra. J Pharmacol Exp Ther 315(2):921–930

    Article  CAS  PubMed  Google Scholar 

  • Katai Z, Adori C, Kitka T, Vas S, Kalmar L, Kostyalik D, Tothfalusi L, Palkovits M, Bagdy G (2013) Acute escitalopram treatment inhibits REM sleep rebound and activation of MCH-expressing neurons in the lateral hypothalamus after long term selective REM sleep deprivation. Psychopharmacology 228(3):439–449

    Article  CAS  PubMed  Google Scholar 

  • Kitka T, Katai Z, Pap D, Molnar E, Adori C, Bagdy G (2009) Small platform sleep deprivation selectively increases the average duration of rapid eye movement sleep episodes during sleep rebound. Behav Brain Res 205(2):482–487

    Article  PubMed  Google Scholar 

  • Kitka T, Adori C, Katai Z, Vas S, Molnar E, Papp RS, Toth ZE, Bagdy G (2011) Association between the activation of MCH and orexin immunoreactive neurons and REM sleep architecture during REM rebound after a 3 day long REM deprivation. Neurochem Int 59(5):686–694

    Article  CAS  PubMed  Google Scholar 

  • Konadhode RR, Pelluru D, Blanco-Centurion C, Zayachkivsky A, Liu M, Uhde T, Glen WB Jr, van den Pol AN, Mulholland PJ, Shiromani PJ (2013) Optogenetic stimulation of MCH neurons increases sleep. J Neurosci 33(25):10257–10263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kostyalik D, Katai Z, Vas S, Pap D, Petschner P, Molnar E, Gyertyan I, Kalmar L, Tothfalusi L, Bagdy G (2014) Chronic escitalopram treatment caused dissociative adaptation in serotonin (5-HT) 2C receptor antagonist-induced effects in REM sleep, wake and theta wave activity. Exp Brain Res 232(3):935–946

    Article  CAS  PubMed  Google Scholar 

  • Kovacs GG, Ando RD, Adori C, Kirilly E, Benedek A, Palkovits M, Bagdy G (2007) Single dose of MDMA causes extensive decrement of serotoninergic fibre density without blockage of the fast axonal transport in Dark Agouti rat brain and spinal cord. Neuropathol Appl Neurobiol 33(2):193–203

    Article  CAS  PubMed  Google Scholar 

  • Kultima K, Nilsson A, Scholz B, Rossbach UL, Falth M, Andren PE (2009) Development and evaluation of normalization methods for label-free relative quantification of endogenous peptides. Mol Cell Proteomics 8(10):2285–2295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kushikata T, Yoshida H, Kudo M, Salvadori S, Calo G, Hirota K (2011) The effects of neuropeptide S on general anesthesia in rats. Anesth Analg 112(4):845–849

    Article  CAS  PubMed  Google Scholar 

  • Leger L, Sapin E, Goutagny R, Peyron C, Salvert D, Fort P, Luppi PH (2010) Dopaminergic neurons expressing Fos during waking and paradoxical sleep in the rat. J Chem Neuroanat 39(4):262–271

    Article  CAS  PubMed  Google Scholar 

  • Li KY, Guan YZ, Krnjevic K, Ye JH (2009) Propofol facilitates glutamatergic transmission to neurons of the ventrolateral preoptic nucleus. Anesthesiology 111(6):1271–1278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu X, Zeng J, Zhou A, Theodorsson E, Fahrenkrug J, Reinscheid RK (2011) Molecular fingerprint of neuropeptide S-producing neurons in the mouse brain. J Comp Neurol 519(10):1847–1866

    Article  CAS  PubMed  Google Scholar 

  • Lu J, Bjorkum AA, Xu M, Gaus SE, Shiromani PJ, Saper CB (2002) Selective activation of the extended ventrolateral preoptic nucleus during rapid eye movement sleep. J Neurosci 22(11):4568–4576

    CAS  PubMed  Google Scholar 

  • Ludwig M, Leng G (2006) Dendritic peptide release and peptide-dependent behaviours. Nat Rev Neurosci 7(2):126–136

    Article  CAS  PubMed  Google Scholar 

  • Lukas M, Neumann ID (2012) Nasal application of neuropeptide S reduces anxiety and prolongs memory in rats: social versus non-social effects. Neuropharmacology 62(1):398–405

    Article  CAS  PubMed  Google Scholar 

  • Machado RB, Hipolide DC, Benedito-Silva AA, Tufik S (2004) Sleep deprivation induced by the modified multiple platform technique: quantification of sleep loss and recovery. Brain Res 1004(1–2):45–51

    Article  CAS  PubMed  Google Scholar 

  • Markey KA, Kondo H, Shenkman L, Goldstein M (1980) Purification and characterization of tyrosine hydroxylase from a clonal pheochromocytoma cell line. Mol Pharmacol 17(1):79–85

    CAS  PubMed  Google Scholar 

  • Matsuo S, Jang IS, Nabekura J, Akaike N (2003) alpha 2-Adrenoceptor-mediated presynaptic modulation of GABAergic transmission in mechanically dissociated rat ventrolateral preoptic neurons. J Neurophysiol 89(3):1640–1648

    Article  CAS  PubMed  Google Scholar 

  • McDermott CM, LaHoste GJ, Chen C, Musto A, Bazan NG, Magee JC (2003) Sleep deprivation causes behavioral, synaptic, and membrane excitability alterations in hippocampal neurons. J Neurosci 23(29):9687–9695

    CAS  PubMed  Google Scholar 

  • Miyazaki T, Fukaya M, Shimizu H, Watanabe M (2003) Subtype switching of vesicular glutamate transporters at parallel fibre-Purkinje cell synapses in developing mouse cerebellum. Eur J Neurosci 17(12):2563–2572

    Article  PubMed  Google Scholar 

  • Mochizuki T, Kim J, Sasaki K (2010) Microinjection of neuropeptide S into the rat ventral tegmental area induces hyperactivity and increases extracellular levels of dopamine metabolites in the nucleus accumbens shell. Peptides 31(5):926–931

    Article  CAS  PubMed  Google Scholar 

  • Monti JM, Monti D (2007) The involvement of dopamine in the modulation of sleep and waking. Sleep Med Rev 11(2):113–133. doi:10.1016/j.smrv.2006.08.003

    Article  PubMed  Google Scholar 

  • Morales MA, Holmberg K, Xu ZQ, Cozzari C, Hartman BK, Emson P, Goldstein M, Elfvin LG, Hokfelt T (1995) Localization of choline acetyltransferase in rat peripheral sympathetic neurons and its coexistence with nitric oxide synthase and neuropeptides. Proc Natl Acad Sci USA 92(25):11819–11823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ohning GV, Song M, Wong HC, Wu SV, Walsh JH (1998) Immunolocalization of gastrin-dependent histidine decarboxylase activity in rat gastric mucosa during feeding. Am J Physiol 275(4 Pt 1):G660–G667

    CAS  PubMed  Google Scholar 

  • Oishi M, Kushikata T, Niwa H, Yakoshi C, Ogasawara C, Calo G, Guerrini R, Hirota K (2014) Endogenous neuropeptide S tone influences sleep-wake rhythm in rats. Neurosci Lett 581:94–97

    Article  CAS  PubMed  Google Scholar 

  • Okamura N, Garau C, Duangdao DM, Clark SD, Jungling K, Pape HC, Reinscheid RK (2011) Neuropeptide S enhances memory during the consolidation phase and interacts with noradrenergic systems in the brain. Neuropsychopharmacology 36(4):744–752

    Article  CAS  PubMed  Google Scholar 

  • Parks GS, Wang L, Wang Z, Civelli O (2014) Identification of neuropeptide receptors expressed by melanin-concentrating hormone neurons. J Comp Neurol 522(17):3817–3833

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paxinos G, Watson C (2007) The rat brain in stereotaxic coordinates, 6th edn. Elsevier Inc., Amsterdam

    Google Scholar 

  • Peng YL, Han RW, Chang M, Zhang L, Zhang RS, Li W, Han YF, Wang R (2010) Central neuropeptide S inhibits food intake in mice through activation of neuropeptide S receptor. Peptides 31(12):2259–2263. doi:10.1016/j.peptides.2010.08.015

    Article  CAS  PubMed  Google Scholar 

  • Peterson GM, Shurlow CL (1992) Morphological evidence for a substance P projection from medial septum to hippocampus. Peptides 13(3):509–517

    Article  CAS  PubMed  Google Scholar 

  • Pietras CO, Vendelin J, Anedda F, Bruce S, Adner M, Sundman L, Pulkkinen V, Alenius H, D’Amato M, Soderhall C, Kere J (2011) The asthma candidate gene NPSR1 mediates isoform specific downstream signalling. BMC pulmonary medicine 11:39

    Article  PubMed  PubMed Central  Google Scholar 

  • Pulga A, Ruzza C, Rizzi A, Guerrini R, Calo G (2012) Anxiolytic- and panicolytic-like effects of neuropeptide S in the mouse elevated T-maze. Eur J Neurosci 36(11):3531–3537

    Article  PubMed  Google Scholar 

  • Reinscheid RK (2007) Phylogenetic appearance of neuropeptide S precursor proteins in tetrapods. Peptides 28(4):830–837

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reinscheid RK, Xu YL (2005a) Neuropeptide S and its receptor: a newly deorphanized G protein-coupled receptor system. Neuroscientist Rev J Bring Neurobiol Neurol Psychiatry 11(6):532–538

    CAS  Google Scholar 

  • Reinscheid RK, Xu YL (2005b) Neuropeptide S as a novel arousal promoting peptide transmitter. FEBS J 272(22):5689–5693

    Article  CAS  PubMed  Google Scholar 

  • Reinscheid RK, Xu YL, Okamura N, Zeng J, Chung S, Pai R, Wang Z, Civelli O (2005) Pharmacological characterization of human and murine neuropeptide s receptor variants. J Pharmacol Exp Ther 315(3):1338–1345

    Article  CAS  PubMed  Google Scholar 

  • Roth AL, Marzola E, Rizzi A, Arduin M, Trapella C, Corti C, Vergura R, Martinelli P, Salvadori S, Regoli D, Corsi M, Cavanni P, Calo G, Guerrini R (2006) Structure-activity studies on neuropeptide S: identification of the amino acid residues crucial for receptor activation. J Biol Chem 281(30):20809–20816

    Article  CAS  PubMed  Google Scholar 

  • Sakai K (2011) Sleep-waking discharge profiles of median preoptic and surrounding neurons in mice. Neuroscience 182:144–161. doi:10.1016/j.neuroscience.2011.03.010

    Article  CAS  PubMed  Google Scholar 

  • Saper CB, Fuller PM, Pedersen NP, Lu J, Scammell TE (2010) Sleep state switching. Neuron 68(6):1023–1042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singewald N, Kaehler ST, Philippu A (1999) Noradrenaline release in the locus coeruleus of conscious rats is triggered by drugs, stress and blood pressure changes. Neuroreport 10(7):1583–1587

    Article  CAS  PubMed  Google Scholar 

  • Sköld K, Svensson M, Norrman M, Sjögren B, Svenningsson P, Andren PE (2007) The significance of biochemical and molecular sample integrity in brain proteomics and peptidomics: stathmin 2–20 and peptides as sample quality indicators. Proteomics 7(24):4445–4456

    Article  PubMed  Google Scholar 

  • Slattery DA, Naik RR, Grund T, Yen YC, Sartori SB, Fuchsl A, Finger BC, Elfving B, Nordemann U, Guerrini R, Calo G, Wegener G, Mathe AA, Singewald N, Czibere L, Landgraf R, Neumann ID (2015) Selective breeding for high anxiety introduces a synonymous SNP that increases neuropeptide S receptor activity. J Neurosci 35(11):4599–4613

    Article  CAS  PubMed  Google Scholar 

  • Smith KL, Patterson M, Dhillo WS, Patel SR, Semjonous NM, Gardiner JV, Ghatei MA, Bloom SR (2006) Neuropeptide S stimulates the hypothalamo-pituitary-adrenal axis and inhibits food intake. Endocrinology 147(7):3510–3518

    Article  CAS  PubMed  Google Scholar 

  • Spada J, Sander C, Burkhardt R, Hantzsch M, Mergl R, Scholz M, Hegerl U, Hensch T (2014) Genetic association of objective sleep phenotypes with a functional polymorphism in the neuropeptide S receptor gene. PLoS One 9(6):e98789

    Article  PubMed  PubMed Central  Google Scholar 

  • Stanley BG (1993) Neuropeptide Y in multiple hypothalamic sites controls eating behaviour, endocrine, and autonomic systems for body energy balance. In: Colmers WF, Wahlestedt C (eds) The biology of neuropeptide Y and related peptides. Humana Press Inc., Totowa, pp 457–503

    Google Scholar 

  • Sturm M, Bertsch A, Gropl C, Hildebrandt A, Hussong R, Lange E, Pfeifer N, Schulz-Trieglaff O, Zerck A, Reinert K, Kohlbacher O (2008) OpenMS—an open-source software framework for mass spectrometry. BMC Bioinform 9:163

    Article  Google Scholar 

  • Su J, Sandor K, Sköld K, Hökfelt T, Svensson CI, Kultima K (2014) Identification and quantification of neuropeptides in naive mouse spinal cord using mass spectrometry reveals [des-Ser1]-cerebellin as a novel modulator of nociception. J Neurochem 130(2):199–214

    Article  CAS  PubMed  Google Scholar 

  • Suchecki D, Lobo LL, Hipolide DC, Tufik S (1998) Increased ACTH and corticosterone secretion induced by different methods of paradoxical sleep deprivation. J Sleep Res 7(4):276–281

    Article  CAS  PubMed  Google Scholar 

  • Suntsova N, Guzman-Marin R, Kumar S, Alam MN, Szymusiak R, McGinty D (2007) The median preoptic nucleus reciprocally modulates activity of arousal-related and sleep-related neurons in the perifornical lateral hypothalamus. J Neurosci 27(7):1616–1630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Szymusiak R, Gvilia I, McGinty D (2007) Hypothalamic control of sleep. Sleep Med 8(4):291–301

    Article  PubMed  Google Scholar 

  • Takahashi K, Lin JS, Sakai K (2009) Characterization and mapping of sleep-waking specific neurons in the basal forebrain and preoptic hypothalamus in mice. Neuroscience 161(1):269–292

    Article  CAS  PubMed  Google Scholar 

  • Theodorsson E, Rugarn O (2000) Radioimmunoassay for rat galanin: immunochemical and chromatographic characterization of immunoreactivity in tissue extracts. Scand J Clin Lab Invest 60(5):411–418

    Article  CAS  PubMed  Google Scholar 

  • Torrealba F, Yanagisawa M, Saper CB (2003) Colocalization of orexin a and glutamate immunoreactivity in axon terminals in the tuberomammillary nucleus in rats. Neuroscience 119(4):1033–1044

    Article  CAS  PubMed  Google Scholar 

  • Van der Werf YD, Witter MP, Groenewegen HJ (2002) The intralaminar and midline nuclei of the thalamus. Anatomical and functional evidence for participation in processes of arousal and awareness. Brain Res Brain Res Rev 39(2–3):107–140

    Article  PubMed  Google Scholar 

  • Vas S, Adori C, Konczol K, Katai Z, Pap D, Papp RS, Bagdy G, Palkovits M, Toth ZE (2013) Nesfatin-1/NUCB2 as a potential new element of sleep regulation in rats. PLoS One 8(4):e59809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Verret L, Goutagny R, Fort P, Cagnon L, Salvert D, Leger L, Boissard R, Salin P, Peyron C, Luppi PH (2003) A role of melanin-concentrating hormone producing neurons in the central regulation of paradoxical sleep. BMC Neurosci 4(19):9

    Google Scholar 

  • Vila-Porcile E, Xu ZQ, Mailly P, Nagy F, Calas A, Hökfelt T, Landry M (2009) Dendritic synthesis and release of the neuropeptide galanin: morphological evidence from studies on rat locus coeruleus neurons. J Comp Neurol 516(3):199–212

    Article  CAS  PubMed  Google Scholar 

  • von Economo C (1930) Sleep as a problem of localization. J Nerv Ment Dis 71:249–259

    Article  Google Scholar 

  • Wegener G, Finger BC, Elfving B, Keller K, Liebenberg N, Fischer CW, Singewald N, Slattery DA, Neumann ID, Mathe AA (2012) Neuropeptide S alters anxiety, but not depression-like behaviour in Flinders Sensitive Line rats: a genetic animal model of depression. Int J Neuropsychopharmacol 15(3):375–387

    Article  CAS  PubMed  Google Scholar 

  • Xu YL, Reinscheid RK, Huitron-Resendiz S, Clark SD, Wang Z, Lin SH, Brucher FA, Zeng J, Ly NK, Henriksen SJ, de Lecea L, Civelli O (2004) Neuropeptide S: a neuropeptide promoting arousal and anxiolytic-like effects. Neuron 43(4):487–497

    Article  CAS  PubMed  Google Scholar 

  • Xu YL, Gall CM, Jackson VR, Civelli O, Reinscheid RK (2007) Distribution of neuropeptide S receptor mRNA and neurochemical characteristics of neuropeptide S-expressing neurons in the rat brain. J Comp Neurol 500(1):84–102

    Article  CAS  PubMed  Google Scholar 

  • Zecharia A (2010) Histamine: from flop to flip-flop. J Physiol 588(Pt 21):4057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao P, Shao YF, Zhang M, Fan K, Kong XP, Wang R, Hou YP (2012) Neuropeptide S promotes wakefulness through activation of the posterior hypothalamic histaminergic and orexinergic neurons. Neuroscience 207:218–226

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by the Swedish Research Council, Grants from Karolinska Institutet, the Rut&Arvid Wolff foundation for insomnia research, the National Hungarian Development Agency (Grant No. KTIA-NAP-13-1-2013-0001), the Hungarian Brain Research Program (Grant No. KTIA 13 NAP-A-II/14) and the Austrian Science Fund (FWF, Grant No. P25375). We are grateful for the excellent technical assistance of Blanca Silva-Lopez, Szilvia Deak and Agnes Ruzsits. We acknowledge the generous donation of antisera/antibodies to tyrosine hydroxylase (the late Dr. Menek Goldstein, NYU, New York, NY); orexin (Dr. Luis de Lecea, The Salk Institute, La Jolla, CA); histidine decarboxylase (the late Dr. John Walsh, CURE core facility, UCLA, Las Angeles, CA); vesicular glutamate transporter 2 (Dr. Masahiko Watanabe, Hokkaido University School of Medicine, Sapporo, Japan); galanin (Dr. Elvar Theodorsson, Linköping University, Linköping, Sweden); substance P (Dr. Ingrid Nylander, Uppsala University, Uppsala, and Dr. Lars Terenius, Karolinska Institutet, Stockholm, Sweden; choline acetyltransferase (Dr. Boyd Hartman, Department of Psychiatry, University of Minnesota, Minneapolis, MN).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Csaba Adori.

Ethics declarations

Conflict of interest

The authors declare no conflict of interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adori, C., Barde, S., Vas, S. et al. Exploring the role of neuropeptide S in the regulation of arousal: a functional anatomical study. Brain Struct Funct 221, 3521–3546 (2016). https://doi.org/10.1007/s00429-015-1117-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-015-1117-5

Keywords

Navigation