Skip to main content

Dopaminergic Transmission and Wake-Promoting Effects of Central Nervous System Stimulants

  • Chapter
  • First Online:
Dopamine and Sleep
  • 1012 Accesses

Abstract

Pharmacological agents which increase dopaminergic neurotransmission by blocking dopamine re-uptake by the dopamine transporter (DAT), such as cocaine, amphetamines and modafinil, are potent wake-promoting substances in mammals and even in invertebrates such as Drosophila Melanogaster. In mammals, the cell bodies of dopamine neurons controlling the sleep-wake cycle are located in the midbrain and brainstem. Midbrain dopamine neurons express high levels of DAT and play a key role in emotional arousal in response to rewarding and aversive stimuli. They are strongly excited by wake-promoting neurotransmitters such as acetylcholine and orexins/hypocretins. However, their mean firing rate does not change across the sleep-wake cycle. In contrast, wake-active brainstem dopamine neurons in the dorsal raphe/periaqueductal gray have low DAT levels and play a tonic role in controlling wakefulness. Dopamine neurons increase arousal by inhibiting the nucleus accumbens, by exciting wake-promoting basal forebrain cholinergic and brainstem serotonin neurons and by inhibiting sleep-promoting neurons in the preoptic hypothalamus. Dopamine acts on D1 type (D1, D5) and D2-type (D2, D3, D4) receptors. Both types are involved in promoting arousal but D2 receptors in the shell of the nucleus accumbens appear to be particularly important. Dopamine D4 receptors modulate the amplitude of cortical gamma band (30–80 Hz) oscillations important for attention and inhibit GABAergic inputs from the globus pallidus to the thalamic reticular nucleus. Dopaminergic agents are widely used in clinical practice to modulate alertness in sleep and other disorders involving disrupted cortical activation. Thus, further work on their mechanism of action is warranted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alberto CO, Trask RB, Hirasawa M (2011) Dopamine acts as a partial agonist for alpha2A adrenoceptor in melanin-concentrating hormone neurons. J Neurosci 31(29):10671–10676

    Article  CAS  PubMed  Google Scholar 

  • Andersson R, Johnston A, Fisahn A (2012) Dopamine D4 receptor activation increases hippocampal gamma oscillations by enhancing synchronization of fast-spiking interneurons. PLoS One 7(7):e40906

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Andretic R, van Swinderen B, Greenspan RJ (2005) Dopaminergic modulation of arousal in Drosophila. Current Biol CB 15(13):1165–1175

    Article  CAS  Google Scholar 

  • Arrigoni E, Saper CB (2003) Dopamine induces excitation of the basal forebrain cholinergic neurons. Soc Neurosci Abs 930:16

    Google Scholar 

  • Axelrod J (1971) Noradrenaline: fate and control of its biosynthesis. Science 173(997):598–606

    Article  CAS  PubMed  Google Scholar 

  • Barik S, de Beaurepaire R (2005) Dopamine D3 modulation of locomotor activity and sleep in the nucleus accumbens and in lobules 9 and 10 of the cerebellum in the rat. Prog Neuropsychopharmacol Biol Psychiatry 29(5):718–726

    Google Scholar 

  • Berridge CW, O’Neil J, Wifler K (1999) Amphetamine acts within the medial basal forebrain to initiate and maintain alert waking. Neuroscience 93(3):885–896

    Article  CAS  PubMed  Google Scholar 

  • Blanco-Centurion C, Gerashchenko D, Shiromani PJ (2007) Effects of saporin-induced lesions of three arousal populations on daily levels of sleep and wake. J Neurosci 27(51):14041–14048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boeve BF, Silber MH, Ferman TJ, Lucas JA, Parisi JE (2001) Association of REM sleep behavior disorder and neurodegenerative disease may reflect an underlying synucleinopathy. Mov Disord 16(4):622–630

    Article  CAS  PubMed  Google Scholar 

  • Boutrel B, Koob GF (2004) What keeps us awake: the neuropharmacology of stimulants and wakefulness-promoting medications. Sleep 27(6):1181–1194

    PubMed  Google Scholar 

  • Boutrel B, Kenny PJ, Specio SE, Martin-Fardon R, Markou A, Koob GF et al (2005) Role for hypocretin in mediating stress-induced reinstatement of cocaine-seeking behavior. Proc Natl Acad Sci (USA) 102(52):19168–19173

    Article  CAS  Google Scholar 

  • Brown EN, Lydic R, Schiff ND (2010) General anesthesia, sleep, and coma. N Engl J Med 363(27):2638–2650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brown RE, Basheer R, McKenna JT, Strecker RE, McCarley RW (2012) Control of sleep and wakefulness. Physiol Rev 92(3):1087–1187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burgess CR, Tse G, Gillis L, Peever JH (2010) Dopaminergic regulation of sleep and cataplexy in a murine model of narcolepsy. Sleep 33(10):1295–1304

    PubMed  PubMed Central  Google Scholar 

  • Bushey D, Tononi G, Cirelli C (2011) Sleep and synaptic homeostasis: structural evidence in Drosophila. Science 332(6037):1576–1581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carlsson A, Falck B, Hillarp NA (1962) Cellular localization of brain monoamines. Acta Physiol Scand Suppl 56(196):1–28

    CAS  PubMed  Google Scholar 

  • Cerruti C, Walther DM, Kuhar MJ, Uhl GR (1993) Dopamine transporter mRNA expression is intense in rat midbrain neurons and modest outside midbrain. Brain Res Mol Brain Res 18(1–2):181–186

    Article  CAS  PubMed  Google Scholar 

  • Chemali JJ, Van Dort CJ, Brown EN, Solt K (2012) Active emergence from propofol general anesthesia is induced by methylphenidate. Anesthesiology 116(5):998–1005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ciliax BJ, Heilman C, Demchyshyn LL, Pristupa ZB, Ince E, Hersch SM et al (1995) The dopamine transporter: immunochemical characterization and localization in brain. J Neurosci 15(3 Pt 1):1714–17123

    CAS  PubMed  Google Scholar 

  • Ciliax BJ, Drash GW, Staley JK, Haber S, Mobley CJ, Miller GW et al (1999) Immunocytochemical localization of the dopamine transporter in human brain. J Comp Neurol 409(1):38–56

    Article  CAS  PubMed  Google Scholar 

  • Dahan L, Astier B, Vautrelle N, Urbain N, Kocsis B, Chouvet G (2007) Prominent burst firing of dopaminergic neurons in the ventral tegmental area during paradoxical sleep. Neuropsychopharmacology 32(6):1232–1241

    Article  CAS  PubMed  Google Scholar 

  • Demiralp T, Herrmann CS, Erdal ME, Ergenoglu T, Keskin YH, Ergen M et al (2007) DRD4 and DAT1 polymorphisms modulate human gamma band responses. Cereb Cortex 17(5):1007–1019

    Article  PubMed  Google Scholar 

  • Donlea JM, Thimgan MS, Suzuki Y, Gottschalk L, Shaw PJ (2011) Inducing sleep by remote control facilitates memory consolidation in Drosophila. Science 332(6037):1571–1576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dougalis AG, Matthews GA, Bishop MW, Brischoux F, Kobayashi K, Ungless MA (2012) Functional properties of dopamine neurons and co-expression of vasoactive intestinal polypeptide in the dorsal raphe nucleus and ventro-lateral periaqueductal grey. Eur J Neurosci 36(10):3322–3332

    Article  PubMed  PubMed Central  Google Scholar 

  • Dzirasa K, Ribeiro S, Costa R, Santos LM, Lin SC, Grosmark A et al (2006) Dopaminergic control of sleep-wake states. J Neurosci 26(41):10577–10589

    Article  CAS  PubMed  Google Scholar 

  • Eban-Rothschild A, Rothschild G, Giardino WJ, Jones JR, De Lecea L (2016) VTA dopaminergic neurons regulate ethologically relevant sleep-wake behaviors. Nat Neurosci. Advance online publication Sept 5th; doi:10.1038/nn.4377

    Google Scholar 

  • Fridman EA, Calvar J, Bonetto M, Gamzu E, Krimchansky BZ, Meli F et al (2009) Fast awakening from minimally conscious state with apomorphine. Brain Inj 23(2):172–177

    Article  PubMed  Google Scholar 

  • Gallopin T, Luppi PH, Rambert FA, Frydman A, Fort P (2004) Effect of the wake-promoting agent modafinil on sleep-promoting neurons from the ventrolateral preoptic nucleus: an in vitro pharmacologic study. Sleep 27(1):19–25

    PubMed  Google Scholar 

  • Ganguly-Fitzgerald I, Donlea J, Shaw PJ (2006) Waking experience affects sleep need in Drosophila. Science 313(5794):1775–1781

    Article  CAS  PubMed  Google Scholar 

  • Gasca-Martinez D, Hernandez A, Sierra A, Valdiosera R, Anaya-Martinez V, Floran B et al (2010) Dopamine inhibits GABA transmission from the globus pallidus to the thalamic reticular nucleus via presynaptic D4 receptors. Neuroscience 169(4):1672–1681

    Article  CAS  PubMed  Google Scholar 

  • Gerashchenko D, Blanco-Centurion C, Greco MA, Shiromani PJ (2003) Effects of lateral hypothalamic lesion with the neurotoxin hypocretin-2-saporin on sleep in Long-Evans rats. Neuroscience 116(1):223–235

    Article  CAS  PubMed  Google Scholar 

  • Giacino JT, Whyte J, Bagiella E, Kalmar K, Childs N, Khademi A et al (2012) Placebo-controlled trial of amantadine for severe traumatic brain injury. N Engl J Med 366(9):819–826

    Article  CAS  PubMed  Google Scholar 

  • Giros B, Jaber M, Jones SR, Wightman RM, Caron MG (1996) Hyperlocomotion and indifference to cocaine and amphetamine in mice lacking the dopamine transporter. Nature 379(6566):6606–6612

    Article  Google Scholar 

  • Govindaiah G, Wang T, Gillette MU, Crandall SR, Cox CL (2010) Regulation of inhibitory synapses by presynaptic D(4) dopamine receptors in thalamus. J Neurophysiol 104(5):2757–2765

    Article  PubMed  PubMed Central  Google Scholar 

  • Greenspan RJ, Tononi G, Cirelli C, Shaw PJ (2001) Sleep and the fruit fly. Trends Neurosci 24(3):142–145

    Article  CAS  PubMed  Google Scholar 

  • Haj-Dahmane S (2001) D2-like dopamine receptor activation excites rat dorsal raphe 5-HT neurons in vitro. Eur J Neurosci 14(1):125–134

    Article  CAS  PubMed  Google Scholar 

  • Hendricks JC, Finn SM, Panckeri KA, Chavkin J, Williams JA, Sehgal A et al (2000) Rest in Drosophila is a sleep-like state. Neuron 25(1):129–138

    Article  CAS  PubMed  Google Scholar 

  • Herning RI, Jones RT, Hooker WD, Mendelson J, Blackwell L (1985) Cocaine increases EEG beta: a replication and extension of Hans Berger’s historic experiments. Electroencephalogr Clin Neurophysiol 60(6):470–477

    Article  CAS  PubMed  Google Scholar 

  • Holst SC, Bersagliere A, Bachmann V, Berger W, Achermann P, Landolt HP (2014) Dopaminergic role in regulating neurophysiological markers of sleep homeostasis in humans. J Neurosci 34(2):566–573

    Article  CAS  PubMed  Google Scholar 

  • Jones BE, Bobillier P, Pin C, Jouvet M (1973) The effect of lesions of catecholamine-containing neurons upon monoamine content of the brain and EEG and behavioral waking in the cat. Brain Res 58(1):157–177

    Article  CAS  PubMed  Google Scholar 

  • Jones BE, Harper ST, Halaris AE (1977) Effects of locus coeruleus lesions upon cerebral monoamine content, sleep-wakefulness states and the response to amphetamine in the cat. Brain Res 124(3):473–496

    Article  CAS  PubMed  Google Scholar 

  • Kocsis B, Lee P, Deth R (2014) Enhancement of gamma activity after selective activation of dopamine D4 receptors in freely moving rats and in a neurodevelopmental model of schizophrenia. Brain Struct Funct 219:2173–2180

    Google Scholar 

  • Korotkova TM, Eriksson KS, Haas HL, Brown RE (2002) Selective excitation of GABAergic neurons in the substantia nigra of the rat by orexin/hypocretin in vitro. Regul Pept 104(1–3):83–89

    Article  CAS  PubMed  Google Scholar 

  • Korotkova TM, Sergeeva OA, Eriksson KS, Haas HL, Brown RE (2003) Excitation of ventral tegmental area dopaminergic and nondopaminergic neurons by orexins/hypocretins. J Neurosci 23(1):7–11

    CAS  PubMed  Google Scholar 

  • Korotkova TM, Brown RE, Sergeeva OA, Ponomarenko AA, Haas HL (2006) Effects of arousal- and feeding-related neuropeptides on dopaminergic and GABAergic neurons in the ventral tegmental area of the rat. Eur J Neurosci 23(10):2677–2685

    Article  CAS  PubMed  Google Scholar 

  • Kume K, Kume S, Park SK, Hirsh J, Jackson FR (2005) Dopamine is a regulator of arousal in the fruit fly. J Neurosci 25(32):7377–7384

    Article  CAS  PubMed  Google Scholar 

  • Lazarus M, Shen HY, Cherasse Y, Qu WM, Huang ZL, Bass CE et al (2011) Arousal effect of caffeine depends on adenosine A2A receptors in the shell of the nucleus accumbens. J Neurosci 31(27):10067–10075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lebestky T, Chang JS, Dankert H, Zelnik L, Kim YC, Han KA et al (2009) Two different forms of arousal in Drosophila are oppositely regulated by the dopamine D1 receptor ortholog DopR via distinct neural circuits. Neuron 64(4):522–536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee G, Kikuno K, Bahn JH, Kim KM, Park JH (2013) Dopamine D2 receptor as a cellular component controlling nocturnal hyperactivities in Drosophila melanogaster. Chronobiol Int 30(4):443–459

    Article  CAS  PubMed  Google Scholar 

  • Leger L, Sapin E, Goutagny R, Peyron C, Salvert D, Fort P et al (2010) Dopaminergic neurons expressing Fos during waking and paradoxical sleep in the rat. J Chem Neuroanat 39(4):262–671

    Article  CAS  PubMed  Google Scholar 

  • Lena I, Parrot S, Deschaux O, Muffat-Joly S, Sauvinet V, Renaud B et al (2005) Variations in extracellular levels of dopamine, noradrenaline, glutamate, and aspartate across the sleep–wake cycle in the medial prefrontal cortex and nucleus accumbens of freely moving rats. J Neurosci Res 81(6):891–899

    Article  CAS  PubMed  Google Scholar 

  • Li Y, van den Pol AN (2005) Direct and indirect inhibition by catecholamines of hypocretin/orexin neurons. J Neurosci 25(1):173–183

    Article  CAS  PubMed  Google Scholar 

  • Lin JS, Hou Y, Jouvet M (1996) Potential brain neuronal targets for amphetamine-, methylphenidate-, and modafinil-induced wakefulness, evidenced by c-fos immunocytochemistry in the cat. Proc Natl Acad Sci (USA) 93(24):14128–14133

    Article  CAS  Google Scholar 

  • Liu Q, Liu S, Kodama L, Driscoll MR, Wu MN (2012) Two dopaminergic neurons signal to the dorsal fan-shaped body to promote wakefulness in Drosophila. Curr Biol 22(22):2114–2123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu J, Jhou TC, Saper CB (2006) Identification of wake-active dopaminergic neurons in the ventral periaqueductal gray matter. J Neurosci 26(1):193–202

    Article  CAS  PubMed  Google Scholar 

  • Matsuda W, Komatsu Y, Yanaka K, Matsumura A (2005) Levodopa treatment for patients in persistent vegetative or minimally conscious states. Neuropsychological Rehabil 15(3–4):414–427

    Article  Google Scholar 

  • McCoy JG, Strecker RE (2011) The cognitive cost of sleep lost. Neurobiol Learn Mem 96(4):564–582

    Article  PubMed  PubMed Central  Google Scholar 

  • Meyers N, Fromm S, Luckenbaugh DA, Drevets WC, Hasler G (2011) Neural correlates of sleepiness induced by catecholamine depletion. Psychiatry Res 194(1):73–78

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miller JD, Farber J, Gatz P, Roffwarg H, German DC (1983) Activity of mesencephalic dopamine and non-dopamine neurons across stages of sleep and walking in the rat. Brain Res 273(1):133–141

    Article  CAS  PubMed  Google Scholar 

  • Monti JM, Jantos H (2008) The roles of dopamine and serotonin, and of their receptors, in regulating sleep and waking. Prog Brain Res 172:625–646

    Article  CAS  PubMed  Google Scholar 

  • Monti JM, Monti D (2007) The involvement of dopamine in the modulation of sleep and waking. Sleep Med Rev 11(2):113–133

    Article  PubMed  Google Scholar 

  • Mrzljak L, Bergson C, Pappy M, Huff R, Levenson R, Goldman-Rakic PS (1996) Localization of dopamine D4 receptors in GABAergic neurons of the primate brain. Nature 381(6579):245–248

    Article  CAS  PubMed  Google Scholar 

  • Nishino S, Mignot E (1997) Pharmacological aspects of human and canine narcolepsy. Prog Neurobiol 52(1):27–78

    Article  CAS  PubMed  Google Scholar 

  • Nishino S, Mao J, Sampathkumaran R, Shelton J (1998a) Increased dopaminergic transmission mediates the wake-promoting effects of CNS stimulants. Sleep Res Online 1(1):49–61

    CAS  PubMed  Google Scholar 

  • Nishino S, Mao J, Sampathkumaran R, Shelton J, Mignot E (1998b) Increased dopaminergic transmission mediates the wake-promoting effects of CNS stimulants. Sleep Res Online 1(1):49–61

    CAS  PubMed  Google Scholar 

  • Parmentier R, Anaclet C, Guhennec C, Brousseau E, Bricout D, Giboulot T et al (2007) The brain H3-receptor as a novel therapeutic target for vigilance and sleep-wake disorders. Biochem Pharmacol 73(8):1157–1171

    Article  CAS  PubMed  Google Scholar 

  • Passler MA, Riggs RV (2001) Positive outcomes in traumatic brain injury-vegetative state: patients treated with bromocriptine. Arch Phys Med Rehabil 82(3):311–315

    Article  CAS  PubMed  Google Scholar 

  • Peyron C, Tighe DK, van den Pol AN, de Lecea L, Heller HC, Sutcliffe JG et al (1998) Neurons containing hypocretin (orexin) project to multiple neuronal systems. J Neurosci 18(23):9996–10015

    CAS  PubMed  Google Scholar 

  • Pidoplichko VI, DeBiasi M, Williams JT, Dani JA (1997) Nicotine activates and desensitizes midbrain dopamine neurons. Nature 390(6658):401–404

    Article  CAS  PubMed  Google Scholar 

  • Pigeau R, Naitoh P, Buguet A, McCann C, Baranski J, Taylor M et al (1995) Modafinil, d-amphetamine and placebo during 64 hours of sustained mental work. I. Effects on mood, fatigue, cognitive performance and body temperature. J Sleep Res 4(4):212–228

    Article  PubMed  Google Scholar 

  • Pimentel D, Donlea JM, Talbot CB, Song SM, Thurston AJF, Miesenbock G (2016) Operation of a homeostatic sleep switch. Nat 536:333–337

    Google Scholar 

  •  Qiu MH, Vetrivelan R, Fuller PM, Lu J (2010) Basal ganglia control of sleep-wake behavior and cortical activation. Eur J Neurosci 31(3):499–507

    Article  PubMed  PubMed Central  Google Scholar 

  • Qiu MH, Liu W, Qu WM, Urade Y, Lu J, Huang ZL (2012) The role of nucleus accumbens core/shell in sleep-wake regulation and their involvement in modafinil-induced arousal. PLoS ONE 7(9):e45471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qu WM, Huang ZL, Xu XH, Matsumoto N, Urade Y (2008) Dopaminergic D1 and D2 receptors are essential for the arousal effect of modafinil. J Neurosci 28(34):8462–8469

    Article  CAS  PubMed  Google Scholar 

  • Qu WM, Xu XH, Yan MM, Wang YQ, Urade Y, Huang ZL (2010) Essential role of dopamine D2 receptor in the maintenance of wakefulness, but not in homeostatic regulation of sleep, in mice. J Neurosci 30(12):4382–4389

    Article  CAS  PubMed  Google Scholar 

  • Riemensperger T, Isabel G, Coulom H, Neuser K, Seugnet L, Kume K et al (2011) Behavioral consequences of dopamine deficiency in the Drosophila central nervous system. Proc. Natl Acad. Sci. (USA) 108(2):834–839

    Article  CAS  Google Scholar 

  • Ritz MC, Lamb RJ, Goldberg SR, Kuhar MJ (1987) Cocaine receptors on dopamine transporters are related to self-administration of cocaine. Science 237(4819):1219–1223

    Article  CAS  PubMed  Google Scholar 

  • Rushby K (1999) Eating the flowers of paradise: one man’s journey through Ethiopia and Yemen. St Martin’s Press, New York

    Google Scholar 

  • Rye DB (2004a) Parkinson’s disease and RLS: the dopaminergic bridge. Sleep Med 5(3):317–328

    Article  PubMed  Google Scholar 

  • Rye DB (2004b) The two faces of Eve: dopamine’s modulation of wakefulness and sleep. Neurology 63(8 Suppl 3):S2–S7

    Article  PubMed  Google Scholar 

  • Salmi P, Chergui K, Fredholm BB (2005) Adenosine-dopamine interactions revealed in knockout mice. J Mol Neurosci 26(2–3):239–244

    Article  CAS  PubMed  Google Scholar 

  • Sanchez-Gonzalez MA, Garcia-Cabezas MA, Rico B, Cavada C (2005) The primate thalamus is a key target for brain dopamine. J Neurosci 25(26):6076–6083

    Article  CAS  PubMed  Google Scholar 

  • Scammell TE, Estabrooke IV, McCarthy MT, Chemelli RM, Yanagisawa M, Miller MS et al (2000) Hypothalamic arousal regions are activated during modafinil-induced wakefulness. J Neurosci 20(22):8620–8628

    CAS  PubMed  Google Scholar 

  • Schultz W (1998) Predictive reward signal of dopamine neurons. J Neurophysiol 80(1):1–27

    CAS  PubMed  Google Scholar 

  • Seugnet L, Suzuki Y, Vine L, Gottschalk L, Shaw PJ (2008) D1 receptor activation in the mushroom bodies rescues sleep-loss-induced learning impairments in Drosophila. Curr Biol 18(15):1110–1117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shaw PJ, Cirelli C, Greenspan RJ, Tononi G (2000) Correlates of sleep and waking in Drosophila melanogaster. Science 287(5459):1834–1837

    Article  CAS  PubMed  Google Scholar 

  • Sohal VS, Zhang F, Yizhar O, Deisseroth K (2009) Parvalbumin neurons and gamma rhythms enhance cortical circuit performance. Nature 459(7247):698–702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Solt K, Cotten JF, Cimenser A, Wong KF, Chemali JJ, Brown EN (2011) Methylphenidate actively induces emergence from general anesthesia. Anesthesiology 115(4):791–803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Solt K, Van Dort CJ, Chemali JJ, Taylor NE, Kenny JD, Brown EN (2014) Electrical stimulation of the ventral tegmental area induces reanimation from general anesthesia. Anesthesiology 121:311–319

    Google Scholar 

  • Steinfels GF, Heym J, Strecker RE, Jacobs BL (1983) Behavioral correlates of dopaminergic unit activity in freely moving cats. Brain Res 258(2):217–228

    Article  CAS  PubMed  Google Scholar 

  • Streatfeild D (2001) Cocaine: an unauthorized biography. Picador, New York

    Google Scholar 

  • Taheri S, Zeitzer JM, Mignot E (2002) The role of hypocretins (orexins) in sleep regulation and narcolepsy. Annu Rev Neurosci 25:283–313

    Article  CAS  PubMed  Google Scholar 

  • Taylor NE, Chemali JJ, Brown EN, Solt K (2013) Activation of D1 dopamine receptors induces emergence from isoflurane general anesthesia. Anesthesiology 118(1):30–39

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tononi G, Cirelli C (2003) Sleep and synaptic homeostasis: a hypothesis. Brain ResBull 62(2):143–150

    Google Scholar 

  • Ueno T, Tomita J, Tanimoto H, Endo K, Ito K, Kume S et al (2012) Identification of a dopamine pathway that regulates sleep and arousal in Drosophila. Nature Neurosci. 15(11):1516–1523

    Article  CAS  PubMed  Google Scholar 

  • Uhlhaas PJ, Singer W (2010) Abnormal neural oscillations and synchrony in schizophrenia. Nat Rev Neurosci 11(2):100–113

    Article  CAS  PubMed  Google Scholar 

  • Van Tol HH, Bunzow JR, Guan HC, Sunahara RK, Seeman P, Niznik HB et al (1991) Cloning of the gene for a human dopamine D4 receptor with high affinity for the antipsychotic clozapine. Nature 350(6319):610–614

    Article  PubMed  Google Scholar 

  • Wisor J (2013) Modafinil as a catecholaminergic agent: empirical evidence and unanswered questions. Frontiers in Neurology. 4:139

    Article  PubMed  PubMed Central  Google Scholar 

  • Wisor JP, Nishino S, Sora I, Uhl GH, Mignot E, Edgar DM (2001) Dopaminergic role in stimulant-induced wakefulness. J Neurosci 21(5):1787–1794

    CAS  PubMed  Google Scholar 

  • Woo TU, Spencer K, McCarley RW (2010) Gamma oscillation deficits and the onset and early progression of schizophrenia. Harv. Rev. Psychiatry. 18(3):173–189

    Article  PubMed  PubMed Central  Google Scholar 

  • Yamanaka A, Muraki Y, Ichiki K, Tsujino N, Kilduff TS, Goto K et al (2006) Orexin neurons are directly and indirectly regulated by catecholamines in a complex manner. J Neurophysiol 96(1):284–298

    Article  CAS  PubMed  Google Scholar 

  • Yang N, Zhang KY, Wang FF, Hu ZA, Zhang J (2014) Dopamine inhibits neurons from the rat dorsal subcoeruleus nucleus through the activation of alpha2-adrenergic receptors. Neurosci Lett 559:61–66

    Article  CAS  PubMed  Google Scholar 

  • Yeomans J, Baptista M (1997) Both nicotinic and muscarinic receptors in ventral tegmental area contribute to brain-stimulation reward. Pharmacol Biochem Behav 57(4):915–921

    Article  CAS  PubMed  Google Scholar 

  • Yeomans J, Forster G, Blaha C (2001) M5 muscarinic receptors are needed for slow activation of dopamine neurons and for rewarding brain stimulation. Life Sci 68(22–23):2449–2456

    Article  CAS  PubMed  Google Scholar 

  • Zafonte RD, Watanabe T, Mann NR (1998) Amantadine: a potential treatment for the minimally conscious state. Brain Inj 12(7):617–621

    Article  CAS  PubMed  Google Scholar 

  • Zant JC, Leenaars CH, Kostin A, Van Someren EJ, Porkka-Heiskanen T (2011) Increases in extracellular serotonin and dopamine metabolite levels in the basal forebrain during sleep deprivation. Brain Res 1399:40–48

    Article  CAS  PubMed  Google Scholar 

  • Zhang JP, Xu Q, Yuan XS, Cherasse Y, Schiffmann SN, de Kerchove d’Exaerde A et al (2013) Projections of nucleus accumbens adenosine A2A receptor neurons in the mouse brain and their implications in mediating sleep-wake regulation. Front Neuroanat 7:43

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by the US Veterans Administration (Merit Award I01BX001356) and by the US National Institutes of Health: NIMH R01 MH039683, R21 MH094803, NHLBI HL095491 and NINDS R21 NS093000. The contents of this review do not represent the views of the U.S. Department of Veterans Affairs or the United States Government.

Conflicts of Interest

The author declares no competing financial interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ritchie E. Brown .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Brown, R.E. (2016). Dopaminergic Transmission and Wake-Promoting Effects of Central Nervous System Stimulants. In: Monti, J., Pandi-Perumal, S., Chokroverty, S. (eds) Dopamine and Sleep. Springer, Cham. https://doi.org/10.1007/978-3-319-46437-4_2

Download citation

Publish with us

Policies and ethics