Skip to main content
Log in

Local and remote cellular responses following a surgical lesion in the Cebus apella cerebral cortex

  • Original Article
  • Published:
Brain Structure and Function Aims and scope Submit manuscript

Abstract

Distribution of bromodeoxyuridine immunoreactive (BrdU-IR) cell nuclei was analyzed at proximal and remote cortical sites in adult Cebus apella monkeys after a programmed surgical lesion placed either in the prefrontal or in the striate cerebral cortex. Increased GFAP-IR and vimentin-IR astrocytes, as well as IsolectinB4 labeled microglial cells, were observed both at lesional and perilesional areas. After injury at either location, the BrdU nuclear incorporation spread to supragranular layers in remote cortical areas functionally related to the injured cortex, probably due to involvement of degenerated cortico-cortical association fibers. Double labeling with Ki-67 suggested that remote BrdU-IR nuclei belong to proliferating cells, but the cell type remains to be determined, since these nuclei did not correspond to NeuN, MAP2, GFAP, Vimentin and isolectinB4 labeled cells. This remote effect should be incorporated to current clinical and experimental appraisal of cortical lesions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

IR:

Immunoreactivity/immunoreactive

BrdU:

Bromodeoxyuridine

Ki-67:

Nuclear antigen Ki67

lf:

Lateral fissure

ios:

Inferior occipital sulcus

iar:

Inferior arcuate sulcus

spcs:

Superior precentral sulcus

pos:

Parietooccipital sulcus

ips:

Intraparietal sulcus

cs:

Central sulcus

ps:

Principal sulcus

sts:

Superior temporal sulcus

mt:

Middle temporal sulcus

ifps:

Infraprincipal sulcus

cgs:

Cingulate sulcus

ros:

Rostral sulcus

ifg:

Inferior frontal gyrus

pcg:

Precentral gyrus

apg:

Anterior parietal gyrus

ag:

Angular gyrus

mfg:

Middle frontal gyrus

stg:

Superior temporal gyrus

mtg:

Middle temporal gyrus (adapted after Manocha et al. 1968)

References

  • Amat J, Ishiguro H, Nakamura K, Norton W (1996) Phenotypic diversity and kinetic of proliferating microglia and astrocytes following cortical stab wounds. Glia 16:368–382

    Article  PubMed  CAS  Google Scholar 

  • Bähr M, Bonhoeffer F (1994) Perspectives on axonal regeneration in the mammalian CNS. TINS 17:473–479

    PubMed  Google Scholar 

  • Balajee A, May A, Bohr V (1998) Fine structural analysis of DNA repair in mammalian cells. Mutat Res 404:3–11

    Article  PubMed  CAS  Google Scholar 

  • Balasingam V, Tejada-Berges T, Wright E, Bouckova R, Yong V (1994) Reactive astrogliosis in the neonatal mouse brain and its modulation by cytokines. J Neurosci 14:846–856

    PubMed  CAS  Google Scholar 

  • Bauer S, Patterson P (2005) The cell cycle—apoptosis connection revisited in the adult brain. J Cell Biol 171:641–650

    Article  PubMed  CAS  Google Scholar 

  • Bignami A, Dahl D (1976) The astroglial response to stabbing. Immunofluorescence studies with antibodies to astrocyte-specific protein (GFA) in mammalian and submammalian vertebrates. Neuropathol Appl Neurobiol 2:99–110

    Article  Google Scholar 

  • Bignami A, Raju T, Dahl D (1982) Localization of vimentin, the non-specific intermediate filament protein, in embryonal glia and in early differentiating neurons. In vivo and in vitro immunofluorescence study of the rat embryo with vimentin and neurofilament antisera. Dev Biol 91:286–295

    Article  PubMed  CAS  Google Scholar 

  • Bressler S (1996) Interareal synchronization in the visual cortex. Behav Brain Res 76:37–49

    Article  PubMed  CAS  Google Scholar 

  • Brodmann K (1909) Vergleichende Localisationslehre der Grosshirnrinde in thren Prinzipien Dargestellt auf Grund des Zellenbaues. Barth, Leipzig

    Google Scholar 

  • Campana D, Coustan-Smith E, Janossy G (1988) Double and triple staining methods for studying the proliferative activity of human B and T lymphoid cells. J Immunol Methods 107:79–88

    Article  PubMed  CAS  Google Scholar 

  • Coe C, Savage A, Bromley L (1992) Phylogenetic influences on hormone levels across the primate order. Am J Primatol 28:81–100

    Article  Google Scholar 

  • Colombo J (2001) A columnar—supporting mode of astroglial architecture in the cerebral cortex of adult primates? Neurobiology 9:1–16

    Article  PubMed  CAS  Google Scholar 

  • Colombo J, Reisin H (2004) Interlaminar astroglia of the cerebral cortex: a marker of the primate brain. Brain Res 1006:126–131

    Article  PubMed  CAS  Google Scholar 

  • Colombo J, Yáñez A, Puissant V, Lipina S (1995) Long, interlaminar astroglial cell processes in the cortex of adult monkeys. J Neurosci Res 40:551–556

    Article  PubMed  CAS  Google Scholar 

  • Colombo J, Lipina S, Yáñez A, Puissant V (1997a) Postnatal development of interlaminar astroglial processes in the cerebral cortex of primates. Int J Dev Neurosci 15:823–833

    Article  PubMed  CAS  Google Scholar 

  • Colombo J, Yáñez A, Lipina S (1997b) Interlaminar astroglial processes in the cerebral cortex of non-human primates: response to injury. Brain Res 38:503–512

    CAS  Google Scholar 

  • Colombo J, Reisin H, Jones M, Bentham C (2005) Development of human interlaminar astroglial processes in the cerebral cortex of control and Down’s Syndrome cases. Exp Neurol 193:207–217

    Article  PubMed  Google Scholar 

  • Cuzick J (1985) A method for analysing case-control studies with ordinal exposure variables. Biometrics 41:609–621

    Article  PubMed  CAS  Google Scholar 

  • Dahl D, Rueger D, Bignami A, Weber K, Osborn M (1981) Vimentin, the 57, 000 molecular weight protein of fibroblast filaments, is the major cytoskeletal component in immature glia. Eur J Cell Biol 24:191–196

    PubMed  CAS  Google Scholar 

  • Eng L, Ghirnikar R (1994) GFAP and astrogliosis. Brain Pathol 4:229–237

    Article  PubMed  CAS  Google Scholar 

  • Eng L, Vanderhaeghen J, Bignami A, Gersh B (1971) An acidic protein isolated from fibrous astrocytes. Brain Res 28:351–354

    Article  PubMed  CAS  Google Scholar 

  • Fiorani M Jr, Gattass R, Rosa M, Sousa A (1989) Visual area MT in the Cebus monkey: location, visuotopic organization, and variability. J Comp Neurol 287:98–118

    Article  PubMed  Google Scholar 

  • Franke H, Krügel U, Illes P (1999) P2 receptor-mediated proliferative effects on astrocytes in vivo. Glia 28:190–200

    Article  PubMed  CAS  Google Scholar 

  • Gould E, Gross C (2002) Neurogenesis in adult mammals: some progress and problems. J Neurosci 22:619–623

    PubMed  CAS  Google Scholar 

  • Gould E, Tanapat P, McEwen B, Flügge G, Fuchs E (1998) Proliferation of granule cell precursors in the dentate gyrus of adult monkeys is diminished by stress. Proc Natl Acad Sci USA 95:3168–3171

    Article  PubMed  CAS  Google Scholar 

  • Gould E, Reeves A, Graziano M, Gross C (1999) Neurogenesis in the neocortex of adult primates. Science 286:548–552

    Article  PubMed  CAS  Google Scholar 

  • Gould E, Vail N, Wagers M, Gross C (2001) Adult-generated hippocampal and neocortical neurons in macaques have a transient existence. Proc Natl Acad Sci USA 98:10910–10917

    Article  PubMed  CAS  Google Scholar 

  • Hampton D, Rhodes K, Zhao C, Franklin R, Fawcett J (2004) The responses of oligodendrocyte precursor cells, astrocytes and microglia to a cortical stab injury, in the brain. Neuroscience 127:813–820

    Article  PubMed  CAS  Google Scholar 

  • Jones L, Yamaguchi Y, Stallcup W, Tuszynski M (2002) NG2 is a major chondroitin sulfate proteoglycan produced after spinal cord injury and is expressed by macrophages and oligodendrocyte progenitors. J Neurosci 22:2792–2803

    PubMed  CAS  Google Scholar 

  • Kalle W, Hazekamp-van Dokkum A, Lohman P, Natarajan A, van Zeeland A, Mullenders L (1993) The use of streptavidin-coated magnetic beads and biotinylated antibodies to investigate induction and repair of DNA damage: analysis of repair patches in specific sequences of uv-irradiated human fibroblasts. Anal Biochem 208:228–236

    Article  PubMed  CAS  Google Scholar 

  • Kao G, McKenna W, Yen T (2001) Detection of repair activity during the DNA damage-induced G2 delay in human cancer cells. Oncogene 20:3486–3496

    Article  PubMed  CAS  Google Scholar 

  • Kee N, Sivalingam S, Boostra R, Wojtowicz J (2002) The utility of Ki-67 and BrdU as proliferative markers of adult neurogenesis. J Neurosci Methods 115:97–105

    Article  PubMed  CAS  Google Scholar 

  • Koketsu D, Mikami A, Miyamoto Y, Hisatsune T (2003) Nonrenewal of neurons in the cerebral neocortex of adult macaque monkeys. J Neurosci 23:937–942

    PubMed  CAS  Google Scholar 

  • Kornack D, Rakic P (1999) Continuation of neurogenesis in the hippocampus of adult macaque monkey. Proc Natl Acad Sci USA 96:5768–5773

    Article  PubMed  CAS  Google Scholar 

  • Környei Z, Czirók A, Vicsek T, Madarász E (2000) Proliferative and migratory responses of astrocytes to in vitro injury. J Neurosci Res 61:421–429

    Article  PubMed  Google Scholar 

  • Lahoz M, Nagle C, Porta M, Farinati Z, Manssur T (2006) Cortisol response and ovarian hormones in juvenile and cycling female Cebus monkeys: effect of stress and dexamethasone. Am J Primatol 69:551–561

    Article  Google Scholar 

  • Landis D (1994) The early reactions of non-neuronal cells to brain injury. Annu Rev Neurosci 17:133–151

    Article  PubMed  CAS  Google Scholar 

  • Lanosa X, Reisin H, Santacroce I, Colombo J (2008) Astroglial dye-coupling: an in vitro analysis of regional and interspecies differences in rodents and primates. Brain Res 1240:82–86

    Article  PubMed  CAS  Google Scholar 

  • Levine J (1994) Increased expression of the NG2 chondroitin-sulfate proteoglycan after brain injury. J Neurosci 14:4716–4730

    PubMed  CAS  Google Scholar 

  • Limsirichaikul S, Niimi A, Fawcett F, Lehmann A, Yamashita S, Ogi T (2009) A rapid non-radioactive technique for measurement of repair synthesis in primary human fibroblasts by incorporation of ethynyl deoxyuridine (EdU). Nucleic Acids Res 37:e31

    Article  PubMed  Google Scholar 

  • Lin J, Weigel H, Cotrina M, Liu Sh, Bueno E, Hansen A, Hansen T, Goldman S, Nedergaard M (1998) Gap-junction-mediated propagation and amplification of cell injury. Nature 1:494–501

    CAS  Google Scholar 

  • Manocha S, Shantha T, Bourne G (1968) A stereotaxic atlas of the brain of Cebus monkey (Cebus apella). Oxford University Press, London

  • Miyake T, Hattori T, Fukuda M, Kitamura T, Fijita S (1988) Quantitative studies on proliferative changes of reactive astrocytes in mouse cerebral cortex. Brain Res 451:133–138

    Article  PubMed  CAS  Google Scholar 

  • Moore N, Okocha F, Cui J, Liu P (2002) Homogeneous repair of nuclear genes after experimental stroke. J Neurochem 80:111–118

    Article  PubMed  CAS  Google Scholar 

  • Nathaniel E, Nathaniel D (1981) The reactive astrocyte. In: Advances in cellular neurobiology, vol 2. Academic Press, New York, pp 249–301

  • NIH (1985) Guide for the care and use of laboratory animals. National Academies Press, 500 Fifth Street, NW, Lockbox 285, Washington, DC, p 20055

    Google Scholar 

  • Norton W, Aquino D, Hozumi I, Chiu F, Brosnan C (1992) Quantitative aspects of reactive gliosis: a review. Neurochem Res 17:877–885

    Article  PubMed  CAS  Google Scholar 

  • Nowakowski R, Hayes N (2000) New neurons: extraordinary evidence or extraordinary conclusion? Science 288:771a

    Article  Google Scholar 

  • Oberheim N, Wang X, Goldman S, Nedergaard M (2006) Astrocytic complexity distinguishes the human brain. Trends Neurosci 29:547–553

    Article  PubMed  CAS  Google Scholar 

  • Pons T, Garraghty P, Ommaya A, Kaas J, Taub E, Mishkin M (1991) Massive cortical reorganization after sensory deafferentation in adult macaques. Science 252:1857–1860

    Article  PubMed  CAS  Google Scholar 

  • Rakic P (2002) Adult neurogenesis in mammals: an identity crisis. J Neurosci 22:614–618

    PubMed  Google Scholar 

  • Reisin H, Colombo J (2004) Glial changes in primate cerebral cortex following long-term sensory deprivation. Brain Res 1000:179–182

    Article  PubMed  CAS  Google Scholar 

  • Rockland K, Pandya D (1979) Laminar origins and terminations o cortical connections of the occipital lobe in the Rhesus monkey. Brain Res 179:3–20

    Article  PubMed  CAS  Google Scholar 

  • Roitbak T, Syková E (1999) Diffusion barriers evoked in rat cortex by reactive astrogliosis. Glia 28:40–48

    Article  PubMed  CAS  Google Scholar 

  • Salin P, Bullier J (1995) Cortico-cortical connections in the visual system: structure and function. Physiol Rev 75:107–154

    PubMed  CAS  Google Scholar 

  • Sanal N, Tramontin A, Quiñones-Hinojosa A, Barbaro N, Gupta N, Kunwar S, Lawton M, McDermott M, Parsa A, Manuel-García Verdugo J, Berger M, Alvarez-Buylla A (2004) Unique astrocyte ribbon in adult human contains neural stem cell but lack chain migration. Nature 427:740–744

    Article  Google Scholar 

  • Schwartz M, Goldman-Rakic P (1982) Single cortical neurons have axon collaterals to ipsilateral and contralateral cortex in fetal and adult primates. Nature 299:154–155

    Article  PubMed  CAS  Google Scholar 

  • Selden J, Dolbeare F, Clair J, Nichols W, Miller J, Kleemeyer K, Hyland R, DeLuca J (1993) Statistical confirmation that immunofluorescent detection of DNA repair in human fibroblasts by measurement of bromodeoxyuridine incorporation is stoichiometric and sensitive. Cytometry 14:154–167

    Article  PubMed  CAS  Google Scholar 

  • Solomon D, Cardoso M, Knudsen E (2004) Dynamic targeting of the replication machinery to sites of DNA damage. J Cell biol 166:455–463

    Article  PubMed  CAS  Google Scholar 

  • Spalding K, Bhardwaj R, Buchholz B, Druid H, Frisén J (2005) Retrospective birth dating of cells in humans. Cell 122:133–143

    Article  PubMed  CAS  Google Scholar 

  • Stallcup W (2002) The NG2 proteoglycan: past insights and future prospects. J Neurocytol 31:423–435

    Article  PubMed  CAS  Google Scholar 

  • Takano T, Oberheim N, Cotrina M, Nedergaard M (2009) Astrocytes and ischemic injury. Stroke 40:S8–S12

    Article  PubMed  Google Scholar 

  • Tan A, Zhang W, Levine J (2005) NG2: a component of the glial scar that inhibits axon growth. J Anat 207:717–725

    Article  PubMed  Google Scholar 

  • Watanabe M, Toyama Y, Nishiyama A (2002) Differentiation of proliferated NG2-positive glial progenitor cells in a remyelinating lesion. J Neurosci Res 69:826–836

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are especially thankful to Dr. Rodolfo Tarelli and Dr. Fernando Pitossi for lending us the IsolectinB4, and to Prof. William Stallcup for the two NG2 antibody clones. Technical assistance by Dr. Carlos Nagle (Centro de Investigaciones en Reproducción Humana y Experimental, CIRHE) and Ms. Cristina Juárez (CONICET) is acknowledged, as well as administrative work by Mrs. Beatriz Stuto (CONICET). We also acknowledge the collaboration of Dr. Fernando Poletta (Centro Médico de Investigaciones Clínicas, CEMIC) in the statistical analysis of data. We are grateful to Prof. G. Paxinos for confirming the correct use of the actualized terminology for Cebus apella brain sulci and gyri. This work was supported in part by FONCYT (PICT# 01-03465; PICT# 14109); Fundación Conectar; CONICET (PIP# 740/98; PIP 5106/05); San Jorge Emprendimientos S.A.; Fundación Bunge y Born; Fundación René Baron and Corpomédica Argentina S.A.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge A. Colombo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lanosa, X.A., Yáñez, A., Alzugaray, S. et al. Local and remote cellular responses following a surgical lesion in the Cebus apella cerebral cortex. Brain Struct Funct 217, 485–501 (2012). https://doi.org/10.1007/s00429-011-0356-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-011-0356-3

Keywords

Navigation