Skip to main content
Log in

Comparative analysis of extra-ventricular mitoses at early stages of cortical development in rat and human

  • Original Article
  • Published:
Brain Structure and Function Aims and scope Submit manuscript

Abstract

Embryonic germinal zones of the dorsal and ventral telencephalon generate cortical neurons during the final week of gestation in rodent and during several months in human. Whereas the vast majority of cortical interneurons originate from the ventral telencephalon, excitatory neurons are locally generated within the germinal zone of the dorsal telencephalon, the future cerebral cortex, itself. However, a number of studies have described proliferating cells external to the ventricular and subventricular germinal zones in the developing dorsal telencephalon. In this study, we performed a comprehensive cell density analysis of such ‘extra-ventricular proliferating cells’ (EVPCs) during corticogenesis in rat and human using a mitotic marker anti-phospho-histone H3. Subsequently, we performed double-labelling studies with other mitotic and cell type specific markers to undertake phenotypic characterisation of EVPCs. Our findings show: (1) the densities of extra-ventricular H3-positive (H3+) cells were surprisingly similar in preplate stage rat and human; (2) extra-ventricular proliferation continues during mid-and late corticogenesis in rat and in early fetal human cortex; and (3) extra-ventricular cells appear to be mitotic precursors as they are not immunoreactive for a panel of early post-mitotic and cell type-specific markers, although (4) a subset of EVPCs are proliferating microglia. These data suggest that some aspects of early corticogenesis are conserved between rodent and human despite marked differences in the duration of neurogenesis and the anatomical organisation of the developing cerebral cortex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Altman J, Bayer SA (2002) Regional differences in the stratified transitional field and the honeycomb matrix of the developing human cerebral cortex. J Neurocytol 31:613–632

    Article  PubMed  Google Scholar 

  • Anderson SA, Marin O, Horn C, Jennings K, Rubenstein JL (2001) Distinct cortical migrations from the medial and lateral ganglionic eminences. Development 128:353–363

    PubMed  CAS  Google Scholar 

  • Andjelkovic AV, Nikolic B, Pachter JS, Zecevic N (1998) Macrophages/microglial cells in human central nervous system during development: an immunohistochemical study. Brain Res 814:13–25

    Article  PubMed  CAS  Google Scholar 

  • Angevine J, Sidman RL (1961) Autoradiographic study of cell migration during histogenesis of cerebral cortex in the mouse. Nature 192:766–768

    Article  PubMed  Google Scholar 

  • Bayer SA, Altman J (1991) Neocortical development

  • Berry M, Rogers AW (1965) The migration of neuroblasts in the developing cerebral cortex. J Anat 99:691–709

    PubMed  CAS  Google Scholar 

  • Bielle F, Griveau A, Narboux-Neme N, Vigneau S, Sigrist M, Arber S, Wassef M, Pierani A (2005) Multiple origins of Cajal-Retzius cells at the borders of the developing pallium. Nat Neurosci 8:1002–1012

    Article  PubMed  CAS  Google Scholar 

  • Boulder Committee (1970) Embryonic vertebrate central nervous system: revised terminology. Anat Rec 166:257–262

    Article  Google Scholar 

  • Bulfone A, Smiga SM, Shimamura K, Peterson A, Puelles L, Rubenstein JL (1995) T-brain-1: a homolog of Brachyury whose expression defines molecularly distinct domains within the cerebral cortex. Neuron 15:63–78

    Article  PubMed  CAS  Google Scholar 

  • Bystron IP, Smirnov EB, Otellin VA, Wierzba-Bobrowicz T, Dymecki J. (2002) Suspensional reaggregates of human foetal neocortex and tegmentum as objects of neurotransplantation. Folia Neuropathol 40(2):75–85

    PubMed  Google Scholar 

  • Bystron I, Molnár Z, Otellin V, Blakemore C (2005a) Tangential networks of precocious neurons and early axonal outgrowth in the embryonic human forebrain. J Neurosci 25:2781–2792

    Article  PubMed  CAS  Google Scholar 

  • Bystron I, Hevner RF, Blakemore C (2005b) The columnar organization of the neuroepithelium in human cortical primordium. Soc Neurosci Abstr P.144.3

  • Bystron I, Rakic P, Molnar Z, Blakemore C (2006) The first neurons of the human cerebral cortex. Nat Neurosci 9:880–886

    Article  PubMed  CAS  Google Scholar 

  • Carney RSE, Alfonso B, Cohen D, Dai H, Nery S, Stoica B, Slotkin J, Bregman BS, Fishell G, Corbin JG (2006) Cell migration along the lateral cortical stream to developing basal telencephalic limbic structures. J Neurosci 26:11562–11574

    Article  PubMed  CAS  Google Scholar 

  • Corbin JG, Nery S, Fishell G (2001) Telencephalic cells take a tangent: non-radial migration in the mammalian forebrain. Nat Neurosci 4(Suppl):1177–1182

    Article  PubMed  CAS  Google Scholar 

  • Dalmau I, Vela JM, Gonzalez B, Finsen B, Castellano B (2003) Dynamics of microglia in the developing rat brain. J Comp Neurol 458:144–157

    Article  PubMed  Google Scholar 

  • DeFelipe J (1993) Neocortical neuronal diversity: chemical heterogeneity revealed by colocalisation studies of classic neurotransmitters, neuropeptides, calcium-binding proteins, and cell surface molecules. Cereb Cortex 3:273–289

    Article  PubMed  CAS  Google Scholar 

  • Englund C, Fink A, Lau C, Pham D, Daza RA, Bulfone A, Kowalczyk T, Hevner RF (2005) Pax6, Tbr2, and Tbr1 are expressed sequentially by radial glia, intermediate progenitor cells, and postmitotic neurons in developing neocortex. J Neurosci 25:247–251

    Article  PubMed  CAS  Google Scholar 

  • Estivill-Torrus G, Pearson H, van Heyningen V, Price DJ, Rashbass P (2002) Pax6 is required to regulate the cell cycle and the rate of progression from symmetrical to asymmetrical division in mammalian cortical progenitors. Development 129:455–466

    PubMed  CAS  Google Scholar 

  • Gal JS, Morozov YM, Ayoub AE, Chatterjee M, Rakic P, Haydar TF (2006) Molecular and morphological heterogeneity of neural precursors in the mouse neocortical proliferative zones. J Neurosci. 26(3):1045–1056

    Article  PubMed  CAS  Google Scholar 

  • Götz M, Hartfuss E, Malatesta P (2002) Radial glial cells as neuronal precursors: a new perspective on the correlation of morphology and lineage restriction in the developing cerebral cortex of mice. Brain Res Bull 57:777–788

    Article  PubMed  Google Scholar 

  • Haubensak W, Attardo A, Denk W, Huttner WB (2004) Neurons arise in the basal neuroepithelium of the early mammalian telencephalon: a major site of neurogenesis. Proc Natl Acad Sci USA 101:3196–3201

    Article  PubMed  CAS  Google Scholar 

  • Hevner RF, Neogi T, Englund C, Daza RA, Fink A (2003) Cajal-Retzius cells in the mouse: transcription factors, neurotransmitters, and birthdays suggest a pallial origin. Brain Res Dev Brain Res 141:39–53

    Article  PubMed  CAS  Google Scholar 

  • Hevner RF, Shi L, Justice N, Hsueh Y, Sheng M, Smiga S, Bulfone A, Goffinet AM, Campagnoni AT, Rubenstein JL (2001) Tbr1 regulates differentiation of the preplate and layer 6. Neuron 29:353–366

    Article  PubMed  CAS  Google Scholar 

  • Hevner RF, Hodge RD, Daza RA, Englund C. (2006) Transcription factors in glutamatergic neurogenesis: conserved programs in neocortex, cerebellum, and adult hippocampus. Neurosci Res 55(3):223–233

    Article  PubMed  CAS  Google Scholar 

  • Hinds JW, Ruffett TL (1971) Cell proliferation in the neural tube: an electron microscopic and golgi analysis in the mouse cerebral vesicle. Z Zellforsch Mikrosk Anat 115:226–264

    Article  PubMed  CAS  Google Scholar 

  • Howard B, Chen Y, Zecevic N (2006) Cortical progenitor cells in the developing human telencephalon. Glia 53:57–66

    Article  PubMed  Google Scholar 

  • Iacopetti P, Michelini M, Stuckmann I, Oback B, Aaku-Saraste E, Huttner WB (1999) Expression of the antiproliferative gene TIS21 at the onset of neurogenesis identifies single neuroepithelial cells that switch from proliferative to neuron-generating division. Proc Natl Acad Sci USA 96:4639–4644

    Article  PubMed  CAS  Google Scholar 

  • Jones L, López-Bendito G, Gruss P, Stoykova A, Molnár Z (2002) Pax6 is required for the normal development of the forebrain axonal connections. Development 129:5041–5052

    PubMed  CAS  Google Scholar 

  • López-Bendito G, Sturgess K, Erdelyi F, Szabo G, Molnár Z, Paulsen O (2004) Preferential origin and layer destination of GAD65-GFP cortical interneurons. Cerebral Cortex 14(10): 1122–1133

    Article  PubMed  Google Scholar 

  • Kamei Y, Inagaki N, Nishizawa M, Tsutsumi O, Taketani Y, Inagaki M (1998) Visualization of mitotic radial glial lineage cells in the developing rat brain by Cdc2 kinase-phosphorylated vimentin. Glia 23:191–199

    Article  PubMed  CAS  Google Scholar 

  • Kendler A, Golden JA (1996) Progenitor cell proliferation outside the ventricular and subventricular zones during human brain development. J Neuropathol Exp Neurol 55:1253–1258

    PubMed  CAS  Google Scholar 

  • Kessaris N., Fogarty M., Iannarelli P., Grist W., Wegner M, Richardson W.D. (2006) Competing waves of oligodendrocytes in the forebrain and postnatal elimination of an embryonic lineage. Nat Neurosci 9:173–179

    Article  PubMed  CAS  Google Scholar 

  • Kohtz JD, Lee HY, Gaiano N, Segal J, Ng E, Larson T, Baker DP, Garber EA, Williams KP, Fishell G (2001) N-terminal fatty-acylation of sonic hedgehog enhances the induction of rodent ventral forebrain neurons. Development 128:2351–2363

    PubMed  CAS  Google Scholar 

  • Kornack DR, Rakic P (1998) Changes in cell-cycle kinetics during the development and evolution of primate neocortex. Proc Natl Acad Sci USA 95:1242–1246

    Article  PubMed  CAS  Google Scholar 

  • Kostovic I, Rakic P (1990) Developmental history of the transient subplate zone in the visual and somatosensory cortex of the macaque monkey and human brain. J Comp Neurol 297:441–470

    Article  PubMed  CAS  Google Scholar 

  • Lee MK, Rebhun LI, Frankfurter A (1990) Posttranslational modification of class III beta-tubulin. Proc Natl Acad Sci USA 87:7195–7199

    Article  PubMed  CAS  Google Scholar 

  • Letinic K, Zoncu R, Rakic P (2002) Origin of GABAergic neurons in the human neocortex. Nature 417:645–649

    Article  PubMed  CAS  Google Scholar 

  • Levers TE, Edgar JM, Price DJ (2001) The fates of cells generated at the end of neurogenesis in developing mouse cortex. J Neurobiol 48:265–277

    Article  PubMed  CAS  Google Scholar 

  • Lukaszewicz A, Savatier P, Cortay V, Giroud P, Huissoud C, Berland M, Kennedy H, Dehay C (2005b) G1 phase regulation, area-specific cell cycle control, and cytoarchitectonics in the primate cortex. Neuron 47:353–364

    Article  PubMed  CAS  Google Scholar 

  • Luskin MB, Shatz CJ (1985) Studies of the earliest generated cells of the cat’s visual cortex: cogeneration of subplate and marginal zones. J Neurosci 5:1062–1075

    PubMed  CAS  Google Scholar 

  • Malatesta P, Hartfuss E, Gotz M (2000) Isolation of radial glial cells by fluorescent-activated cell sorting reveals a neuronal lineage. Development 127:5253–5263

    PubMed  CAS  Google Scholar 

  • Marin-Padilla M (1971) Early prenatal ontogenesis of the cerebral cortex (neocortex) of the cat (Felis domestica). A Golgi study. I. The primordial neocortical organization. Z Anat Entwicklungsgesch 134:117–145

    Article  PubMed  CAS  Google Scholar 

  • Marin-Padilla M (1972) Prenatal ontogenetic history of the principal neurons of the neocortex of the cat (Felis domestica). A Golgi study. II. Developmental differences and their significances. Z Anat Entwicklungsgesch 136:125–142

    Article  PubMed  CAS  Google Scholar 

  • Marin O, Rubenstein JL (2001) A long, remarkable journey: tangential migration in the telencephalon. Nat Rev Neurosci 2:780–790

    Article  PubMed  CAS  Google Scholar 

  • Martinez-Cerdeno V, Noctor SC, Kriegstein AR (2006) The role of intermediate progenitor cells in the evolutionary expansion of the cerebral cortex. Cereb Cortex 16(Suppl 1):i152–161

    Article  PubMed  Google Scholar 

  • Maslinska D, Laure-Kamionowska M, Kaliszek A (1998) Morphological forms and localization of microglial cells in the developing human cerebellum. Folia Neuropathol 36:145–151

    PubMed  CAS  Google Scholar 

  • Masood F, Wadhwa S, Bijlani V (1990) Early development of visual cortex in human fetuses. Arch Ital Anat Embriol 95:1–10

    PubMed  CAS  Google Scholar 

  • McConnell SK (1988) Development and decision-making in the mammalian cerebral cortex. Brain Res 472:1–23

    PubMed  CAS  Google Scholar 

  • Menezes JR, Luskin MB (1994) Expression of neuron-specific tubulin defines a novel population in the proliferative layers of the developing telencephalon. J Neurosci 14:5399–5416

    PubMed  CAS  Google Scholar 

  • Meyer G, Wahle P (1999) The paleocortical ventricle is the origin of reelin-expressing neurons in the marginal zone of the foetal human neocortex. Eur J Neurosci 11:3937–3944

    Article  PubMed  CAS  Google Scholar 

  • Meyer G, Schaaps JP, Moreau L, Goffinet AM (2000) Embryonic and early fetal development of the human neocortex. J Neurosci 20:1858–1868

    PubMed  CAS  Google Scholar 

  • Meyer G, Soria JM, Martinez-Galan JR, Martin-Clemente B, Fairen A (1998a) Different origins and developmental histories of transient neurons in the marginal zone of the fetal and neonatal rat cortex. J Comp Neurol 397:493–518

    Article  PubMed  CAS  Google Scholar 

  • Miyata T, Kawaguchi A, Okano H, Ogawa M (2001) Asymmetric inheritance of radial glial fibers by cortical neurons. Neuron 31:727–741

    Article  PubMed  CAS  Google Scholar 

  • Miyata T, Kawaguchi A, Saito K, Kawano M, Muto T, Ogawa M (2004) Asymmetric production of surface-diving and non surface-dividing cortical progenitor cells. Development 131(13): 3133–3145

    Article  PubMed  CAS  Google Scholar 

  • Mollgard K, Schumacher U (1993) Immunohistochemical assessment of cellular proliferation in the developing human CNS using formalin-fixed paraffin-embedded material. J Neurosci Methods 46:191–196

    Article  PubMed  CAS  Google Scholar 

  • Monier A., Evrard P., Gressens P., Verney C. (2006) Distribution and differentiation of microglia in the human encephalon during the first two trimesters of gestation. J. Comp Neurol 499:565–582

    Article  PubMed  CAS  Google Scholar 

  • Nery S, Wichterle H, Fishell G (2001) Sonic hedgehog contributes to oligodendrocyte specification in the mammalian forebrain. Development 128:527–540

    PubMed  CAS  Google Scholar 

  • Nery S, Corbin JG, Fishell G (2003) Dlx2 progenitor migration in wild type and Nkx2.1 mutant telencephalon. Cereb Cortex 13:895–903

    Article  PubMed  Google Scholar 

  • Noctor SC, Martinez-Cerdeno V, Ivic L, Kriegstein AR (2004) Cortical neurons arise in symmetric and asymmetric division zones and migrate through specific phases. Nat Neurosci 7:136–144

    Article  PubMed  CAS  Google Scholar 

  • Noctor SC, Flint AC, Weissman TA, Dammerman RS, Kriegstein AR (2001) Neurons derived from radial glial cells establish radial units in neocortex. Nature 409:714–720

    Article  PubMed  CAS  Google Scholar 

  • Noctor SC, Flint AC, Weissman TA, Wong WS, Clinton BK, Kriegstein AR (2002) Dividing precursor cells of the embryonic cortical ventricular zone have morphological and molecular characteristics of radial glia. J Neurosci 22:3161–3173

    PubMed  CAS  Google Scholar 

  • Nowakowski RS, Lewin SB, Miller MW (1989) Bromodeoxyuridine immunohistochemical determination of the lengths of the cell cycle and the DNA-synthetic phase for an anatomically defined population. J Neurocytol 18:311–318

    Article  PubMed  CAS  Google Scholar 

  • O’Rahilly RMF (1999) The embryonic human brain: an atlas of developmental stages. Wiley-Liss, New York

    Google Scholar 

  • Parnavelas JG (2000) The origin and migration of cortical neurones: new vistas. Trends Neurosci 23:126–131

    Article  PubMed  CAS  Google Scholar 

  • Perez Villegas EM, Olivier C, Spassky N, Poncet C, Cochard P, Zalc B, Thomas JL, Martinez S (1999) Early specification of oligodendrocytes in the chick embryonic brain. Dev Biol 216:98–113

    Article  PubMed  CAS  Google Scholar 

  • Polkinghorne report; Committee to Review the Guidance on the Research Use of Fetuses and Fetal Material. Review of the guidance on the research use of fetuses and fetal material (Her Majesty’s Stationery Office, London, 1989)

  • Privat A (1975) Postnatal gliogenesis in the mammalian brain. Int Rev Cytol 40:281–323

    Article  PubMed  CAS  Google Scholar 

  • Qian X, Shen Q, Goderie SK, He W, Capela A, Davis AA, Temple S (2000) Timing of CNS cell generation: a programmed sequence of neuron and glial cell production from isolated murine cortical stem cells. Neuron 28:69–80

    Article  PubMed  CAS  Google Scholar 

  • Quinn, J.C., Molinek, M., Martynoga, B.S., Zaki, P.A., Faedo, A., Bulfone, A., Hevner RF, West JD, Price DJ (2006) Pax6 controls cerebral cortical cell number by regulating exit from the cell cycle and specifies cortical cell identity by a cell autonomous mechanism. Develop Biol. doi:10.1016.i.vdbio 2006.08.035

  • Raedler E, Raedler A (1978) Autoradiographic study of early neurogenesis in rat neocortex. Anat Embryol (Berl) 154:267–284

    Article  CAS  Google Scholar 

  • Rakic P (1972) Mode of cell migration to the superficial layers of fetal monkey neocortex. J Comp Neurol 145:61–83

    Article  PubMed  CAS  Google Scholar 

  • Rakic P (1974) Neurons in rhesus monkey visual cortex: systematic relation between time of origin and eventual disposition. Science 183:425–427

    Article  PubMed  CAS  Google Scholar 

  • Rakic S, Zecevic N (2003) Emerging complexity of layer I in human cerebral cortex. Cereb Cortex 13:1072–1083

    Article  PubMed  Google Scholar 

  • Rezaie P, Dean A, Male D, Ulfig N (2005) Microglia in the cerebral wall of the human telencephalon at second trimester. Cereb Cortex 15:938–949

    Article  PubMed  Google Scholar 

  • Rickmann M, Chronwall BM, Wolff JR (1977) On the development of non-pyramidal neurons and axons outside the cortical plate: the early marginal zone as a pallial anlage. Anat Embryol (Berl) 151:285–307

    Article  CAS  Google Scholar 

  • Sauer FC (1935a) The cellular structure of the neural tube. J Comp Neurol 63:13–23

    Article  Google Scholar 

  • Sauer FC (1935b) Mitosis in the neural tube. J Comp Neurol 62:377–405

    Article  Google Scholar 

  • Sauer FC, Walker BE (1959) Radiographic study of interkinetic nuclear migration in the neural tube. Proc Soc Exp Biol Med 101:557–560

    PubMed  CAS  Google Scholar 

  • Simonati A, Tosati C, Rosso T, Piazzola E, Rizzuto N (1999) Cell proliferation and death: morphological evidence during corticogenesis in the developing human brain. Microsc Res Tech 45:341–352

    Article  PubMed  CAS  Google Scholar 

  • Smart IH (1973) Proliferative characteristics of the ependymal layer during the early development of the mouse neocortex: a pilot study based on recording the number, location and plane of cleavage of mitotic figures. J Anat 116:67–91

    PubMed  CAS  Google Scholar 

  • Smart IH (1985) A localised growth zone in the wall of the developing mouse telencephalon. J Anat 140(Pt 3):397–402

    PubMed  Google Scholar 

  • Smart IH, Smart M (1977) The location of nuclei of different labelling intensities in autoradiographs of the anterior forebrain of postnatal mice injected with [3H]thymidine on the eleventh and twelfth days post-conception. J Anat 123:515–525

    PubMed  CAS  Google Scholar 

  • Smart IH, McSherry GM (1982) Growth patterns in the lateral wall of the mouse telencephalon. II. Histological changes during and subsequent to the period of isocortical neuron production. J Anat 134(Pt 3):415–442

    PubMed  CAS  Google Scholar 

  • Smart IH, Dehay C, Giroud P, Berland M, Kennedy H (2002) Unique morphological features of the proliferative zones and postmitotic compartments of the neural epithelium giving rise to striate and extrastriate cortex in the monkey. Cereb Cortex 12:37–53

    Article  PubMed  Google Scholar 

  • Stewart GR, Pearlman AL (1987) Fibronectin-like immunoreactivity in the developing cerebral cortex. J Neurosci 7:3325–3333

    PubMed  CAS  Google Scholar 

  • Sturrock RR, Smart IH (1980) A morphological study of the mouse subependymal layer from embryonic life to old age. J Anat 130:391–415

    PubMed  CAS  Google Scholar 

  • Suzuki H, Franz H, Yamamoto T, Iwasaki Y, Konno H (1988) Identification of the normal microglial population in human and rodent nervous tissue using lectin immunohistochemistry. Neuropathol Appl Neurobiol 14(3):221–227

    PubMed  CAS  Google Scholar 

  • Takahashi T, Nowakowski RS, Caviness VS Jr (1993) Cell cycle parameters and patterns of nuclear movement in the neocortical proliferative zone of the fetal mouse. J Neurosci 13:820–833

    PubMed  CAS  Google Scholar 

  • Takahashi T, Nowakowski RS, Caviness VS Jr (1995) Early ontogeny of the secondary proliferative population of the embryonic murine cerebral wall. J Neurosci 15:6058–6068

    PubMed  CAS  Google Scholar 

  • Tamamaki N, Nakamura K, Okamoto K, Kaneko T (2001) Radial glia is a progenitor of neocortical neurons in the developing cerebral cortex. Neurosci Res 41:51–60

    Article  PubMed  CAS  Google Scholar 

  • Tiu SC (2001) Development of the human cortex. A neuroanatomical and histochemical study. MD thesis, Chinese University, Hong Kong

  • Valverde F, De Carlos JA, Lopez-Mascaraque L (1995) Time of origin and early fate of preplate cells in the cerebral cortex of the rat. Cereb Cortex 5:483–493

    Article  PubMed  CAS  Google Scholar 

  • Weissman T, Noctor SC, Clinton BK, Honig LS, Kriegstein AR (2003) Neurogenic radial glial cells in reptile, rodent and human: from mitosis to migration. Cereb Cortex 13:550–559

    Article  PubMed  Google Scholar 

  • Wu CH, Wen CY, Shieh JY, Ling EA (1993) A quantitative study of the differentiation of microglial cells in the developing cerebral cortex in rats. J Anat 182(Pt 3):403–413

    PubMed  Google Scholar 

  • Wu SX, Nakamura K, Nakamura K, Kometani K, Minato N, Miyazaki S, Goebbels S, Nave KA, Kaneko T, Tamamaki N (2003) Pyramidal neuron production in the extraventricular zone of the mouse neocortex. In: 33rd Annual Society for Neuroscience. New Orleans, USA

  • Zecevic N (1993) Cellular composition of the telencephalic wall in human embryos. Early Hum Dev 32:131–149

    Article  PubMed  CAS  Google Scholar 

  • Zecevic N (2004) Specific characteristic of radial glia in the human fetal telencephalon. Glia 48:27–35

    Article  PubMed  Google Scholar 

  • Zecevic N, Milosevic A (1997) Initial development of gamma-aminobutyric acid immunoreactivity in the human cerebral cortex. J Comp Neurol 380:495–506

    Article  PubMed  CAS  Google Scholar 

  • Zecevic N, Andjelkovic A, Matthieu JM, Tosic M (1998) Myelin basic protein immunoreactivity in the human embryonic CNS. Brain Res Dev Brain Res 105:97–108

    Article  CAS  Google Scholar 

  • Zecevic N, Chen Y, Filipovic R (2005) Contributions of cortical subventricular zone to the development of the human cerebral cortex. J Comp Neurol 491:109–122

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Grants from The European Community (QLRT-1999-30158), The Wellcome Trust (063974/B/01/Z), Human Frontier Science Program (RGP0107/2001), Medical Research Council and RGBI 01-04-48819. RSEC was supported by a MRC studentship and Mary Goodger Scholarship (Oxford Medical Science Division). We are grateful to Dr. Henry Kennedy, Dr. Colette Dehay, Dr. Wieland Huttner, Dr. Alessio Attardo and Dr. Joshua Corbin for their thoughtful comments on a previous version of this manuscript and Prof. Colin Blakemore for valuable discussions regarding this study. The authors would also like to thank Drs. Huttner and Attardo for providing the Tis21-GFP brains used in this study. Dr. Ole Paulsen kindly provided advice on quantitative analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zoltán Molnár.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carney, R.S.E., Bystron, I., López-Bendito, G. et al. Comparative analysis of extra-ventricular mitoses at early stages of cortical development in rat and human. Brain Struct Funct 212, 37–54 (2007). https://doi.org/10.1007/s00429-007-0142-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-007-0142-4

Keywords

Navigation