Skip to main content

Embryonic Neurogenesis in the Mammalian Brain

  • Chapter
  • First Online:
Neurogenetics

Part of the book series: Learning Materials in Biosciences ((LMB))

  • 797 Accesses

Abstract

The mammalian brain is probably the most fascinating and complex organ that has evolved over millions of years. In this chapter, we learn about some key genetic factors that control mammalian brain development with a focus on the cerebral cortex. Selected topics highlight oscillatory expression of neurogenic and proneural factors, the relationship between cell cycle control and cell fate and the spatiotemporal generation of neurons in the layered cortex. In a second part, we introduce the neural stem and progenitor cell types in the mammalian neocortex that potentially are the key recent inventions to distinguish higher evolved gyrencephalic from more primitive lissencephalic brains. We discuss the concepts and cellular mechanisms that might have led to neocortex expansion during evolution toward the primate brain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chenn A, McConnell SK. Cleavage orientation and the asymmetric inheritance of Notch1 immunoreactivity in mammalian neurogenesis. Cell. 1995;82(4):631–41.

    Article  CAS  Google Scholar 

  2. McConnell SK. Constructing the cerebral cortex: neurogenesis and fate determination. Neuron. 1995;15(4):761–8.

    Article  CAS  Google Scholar 

  3. Miyata T, Kawaguchi D, Kawaguchi A, Gotoh Y. Mechanisms that regulate the number of neurons during mouse neocortical development. Curr Opin Neurobiol. 2010;20(1):22–8.

    Article  CAS  Google Scholar 

  4. McConnell SK. The determination of neuronal identity in the mammalian cerebral cortex. In: Shankland M, Macagno ER, editors. Determinants of neuronal identity. London: Academic; 1992.

    Google Scholar 

  5. Noctor SC, Flint AC, Weissman TA, Wong WS, Clinton BK, Kriegstein AR. Dividing precursor cells of the embryonic cortical ventricular zone have morphological and molecular characteristics of radial glia. J Neurosci. 2002;22(8):3161–73.

    Article  CAS  Google Scholar 

  6. Malatesta P, Hack MA, Hartfuss E, Kettenmann H, Klinkert W, Kirchhoff F, et al. Neuronal or glial progeny: regional differences in radial glia fate. Neuron. 2003;37(5):751–64.

    Article  CAS  Google Scholar 

  7. Hartfuss E, Galli R, Heins N, Götz M. Characterization of CNS precursor subtypes and radial glia. Dev Biol. 2001;229(1):15–30.

    Article  CAS  Google Scholar 

  8. Lancaster MA, Knoblich JA. Spindle orientation in mammalian cerebral cortical development. Curr Opin Neurobiol. 2012;22(5):737–46.

    Article  CAS  Google Scholar 

  9. Paridaen JT, Huttner WB. Neurogenesis during development of the vertebrate central nervous system. EMBO Rep. 2014;15(4):351–64.

    Article  CAS  Google Scholar 

  10. Konno D, Shioi G, Shitamukai A, Mori A, Kiyonari H, Miyata T, et al. Neuroepithelial progenitors undergo LGN-dependent planar divisions to maintain self-renewability during mammalian neurogenesis. Nat Cell Biol. 2008;10(1):93–101.

    Article  CAS  Google Scholar 

  11. Postiglione MP, Juschke C, Xie Y, Haas GA, Charalambous C, Knoblich JA. Mouse inscuteable induces apical-basal spindle orientation to facilitate intermediate progenitor generation in the developing neocortex. Neuron. 2011;72(2):269–84.

    Article  CAS  Google Scholar 

  12. Marthiens V, Basto R. Centrosomes: the good and the bad for brain development. Biol Cell. 2020;112(6):153–72.

    Article  Google Scholar 

  13. Thornton GK, Woods CG. Primary microcephaly: do all roads lead to Rome? Trends Genet. 2009;25(11):501–10.

    Article  CAS  Google Scholar 

  14. Lee JE. Basic helix-loop-helix genes in neural development. Curr Opin Neurobiol. 1997;7(1):13–20.

    Article  Google Scholar 

  15. Bertrand N, Castro DS, Guillemot F. Proneural genes and the specification of neural cell types. Nat Rev Neurosci. 2002;3(7):517–30.

    Article  CAS  Google Scholar 

  16. Casarosa S, Fode C, Guillemot F. Mash1 regulates neurogenesis in the ventral telencephalon. Development. 1999;126(3):525–34.

    Article  CAS  Google Scholar 

  17. Ma Q, Fode C, Guillemot F, Anderson DJ. Neurogenin1 and Neurogenin2 control two distinct waves of neurogenesis in developing dorsal root ganglia. Genes Dev. 1999;13(13):1717–28.

    Article  CAS  Google Scholar 

  18. Fode C, Ma Q, Casarosa S, Ang SL, Anderson DJ, Guillemot F. A role for neural determination genes in specifying the dorsoventral identity of telencephalic neurons. Genes Dev. 2000;14(1):67–80.

    Article  CAS  Google Scholar 

  19. Ma Q, Kintner C, Anderson DJ. Identification of neurogenin, a vertebrate neuronal determination gene. Cell. 1996;87(1):43–52.

    Article  CAS  Google Scholar 

  20. Beatus P, Lendahl U. Notch and neurogenesis. J Neurosci Res. 1998;54(2):125–36.

    Article  CAS  Google Scholar 

  21. Chitnis A, Henrique D, Lewis J, Ish-Horowicz D, Kintner C. Primary neurogenesis in Xenopus embryos regulated by a homologue of the Drosophila neurogenic gene Delta. Nature. 1995;375(6534):761–6.

    Article  CAS  Google Scholar 

  22. Coffman CR, Skoglund P, Harris WA, Kintner CR. Expression of an extracellular deletion of Xotch diverts cell fate in Xenopus embryos. Cell. 1993;73(4):659–71.

    Article  CAS  Google Scholar 

  23. Wettstein DA, Turner DL, Kintner C. The Xenopus homolog of Drosophila Suppressor of Hairless mediates Notch signaling during primary neurogenesis. Development. 1997;124(3):693–702.

    Article  CAS  Google Scholar 

  24. de la Pompa JL, Wakeham A, Correia KM, Samper E, Brown S, Aguilera RJ, et al. Conservation of the Notch signalling pathway in mammalian neurogenesis. Development. 1997;124(6):1139–48.

    Article  Google Scholar 

  25. Pierfelice TJ, Schreck KC, Eberhart CG, Gaiano N. Notch, neural stem cells, and brain tumors. Cold Spring Harb Symp Quant Biol. 2008;73:367–75.

    Article  CAS  Google Scholar 

  26. Kageyama R, Ohtsuka T, Shimojo H, Imayoshi I. Dynamic Notch signaling in neural progenitor cells and a revised view of lateral inhibition. Nat Neurosci. 2008;11(11):1247–51.

    Article  CAS  Google Scholar 

  27. Imayoshi I, Isomura A, Harima Y, Kawaguchi K, Kori H, Miyachi H, et al. Oscillatory control of factors determining multipotency and fate in mouse neural progenitors. Science. 2013;342(6163):1203–8.

    Article  CAS  Google Scholar 

  28. Shimojo H, Ohtsuka T, Kageyama R. Oscillations in notch signaling regulate maintenance of neural progenitors. Neuron. 2008;58(1):52–64.

    Article  CAS  Google Scholar 

  29. Calegari F, Huttner WB. An inhibition of cyclin-dependent kinases that lengthens, but does not arrest, neuroepithelial cell cycle induces premature neurogenesis. J Cell Sci. 2003;116(Pt 24):4947–55.

    Article  CAS  Google Scholar 

  30. Lange C, Huttner WB, Calegari F. Cdk4/cyclinD1 overexpression in neural stem cells shortens G1, delays neurogenesis, and promotes the generation and expansion of basal progenitors. Cell Stem Cell. 2009;5(3):320–31.

    Article  CAS  Google Scholar 

  31. Gotz M, Huttner WB. The cell biology of neurogenesis. Nat Rev Mol Cell Biol. 2005;6(10):777–88.

    Article  Google Scholar 

  32. Bonnefont J, Vanderhaeghen P. Neuronal fate acquisition and specification: time for a change. Curr Opin Neurobiol. 2021;66:195–204.

    Article  CAS  Google Scholar 

  33. Gao P, Postiglione MP, Krieger TG, Hernandez L, Wang C, Han Z, et al. Deterministic progenitor behavior and unitary production of neurons in the neocortex. Cell. 2014;159(4):775–88.

    Article  CAS  Google Scholar 

  34. Desai AR, McConnell SK. Progressive restriction in fate potential by neural progenitors during cerebral cortical development. Development. 2000;127(13):2863–72.

    Article  CAS  Google Scholar 

  35. He J, Zhang G, Almeida AD, Cayouette M, Simons BD, Harris WA. How variable clones build an invariant retina. Neuron. 2012;75(5):786–98.

    Article  CAS  Google Scholar 

  36. Rakic P. Evolution of the neocortex: a perspective from developmental biology. Nat Rev Neurosci. 2009;10(10):724–35.

    Article  CAS  Google Scholar 

  37. Lui JH, Hansen DV, Kriegstein AR. Development and evolution of the human neocortex. Cell. 2011;146(1):18–36.

    Article  CAS  Google Scholar 

  38. Breunig JJ, Haydar TF, Rakic P. Neural stem cells: historical perspective and future prospects. Neuron. 2011;70(4):614–25.

    Article  CAS  Google Scholar 

  39. Florio M, Huttner WB. Neural progenitors, neurogenesis and the evolution of the neocortex. Development. 2014;141(11):2182–94.

    Article  CAS  Google Scholar 

  40. Rakic P. A small step for the cell, a giant leap for mankind: a hypothesis of neocortical expansion during evolution. Trends Neurosci. 1995;18(9):383–8.

    Article  CAS  Google Scholar 

  41. Malatesta P, Hartfuss E, Götz M. Isolation of radial glial cells by fluorescent-activated cell sorting reveals a neuronal lineage. Development. 2000;127(24):5253–63.

    Article  CAS  Google Scholar 

  42. Hansen DV, Lui JH, Parker PR, Kriegstein AR. Neurogenic radial glia in the outer subventricular zone of human neocortex. Nature. 2010;464(7288):554–61.

    Article  CAS  Google Scholar 

  43. Fietz SA, Kelava I, Vogt J, Wilsch-Brauninger M, Stenzel D, Fish JL, et al. OSVZ progenitors of human and ferret neocortex are epithelial-like and expand by integrin signaling. Nat Neurosci. 2010;13(6):690–9.

    Article  CAS  Google Scholar 

  44. Taverna E, Gotz M, Huttner WB. The cell biology of neurogenesis: toward an understanding of the development and evolution of the neocortex. Annu Rev Cell Dev Biol. 2014;30:465–502.

    Article  CAS  Google Scholar 

Download references

Acknowledgment

We are grateful to Dr Rita Sousa-Nunes for comments and suggestions for this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boris Egger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Adeyinka, D.A., Egger, B. (2023). Embryonic Neurogenesis in the Mammalian Brain. In: Egger, B. (eds) Neurogenetics . Learning Materials in Biosciences. Springer, Cham. https://doi.org/10.1007/978-3-031-07793-7_9

Download citation

Publish with us

Policies and ethics