Skip to main content
Log in

The postnatal development of the optic nerve of a reptile (Vipera aspis): a quantitative ultrastructural study

  • Original Article
  • Published:
Anatomy and Embryology Aims and scope Submit manuscript

Abstract

The number of axons in the optic nerve of the ovoviviparous reptile Vipera aspis was estimated from electron micrographs taken during the first 5 weeks of postnatal life. One to two days after birth, the optic nerve contains about 170,000 fibres, of which about 9% are myelinated. At the end of the fifth postnatal week, the number of optic fibres has fallen to about 100,000, of which about 42% are myelinated. This fibre loss continues after the fifth postnatal week, since in the adult viper the nerve contains about 60,000 fibres, of which 85% are myelinated; overall, about 65% of the optic nerve fibres present at birth disappear before the number of axons stabilises at the adult level. This study shows, for the first time, that the mode of development of the visual axons of reptiles is not that of anamniote vertebrates but similar to that of birds and mammals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Beazley LD, Sheard PW, Tennant M, Starac D, Dunlop SA (1997) Optic nerve regenerates but does not restore topographic projections in the lizard Ctenophorus ornatus. J Comp Neurol 377:105–120

    Article  PubMed  CAS  Google Scholar 

  • Bennis M, El Hassni M, Rio JP, LeCren D, Repérant J, Ward R (2001) A quantitative ultrastructural study of the optic nerve of the chameleon. Brain Behav Evol 58:49–60

    Article  PubMed  CAS  Google Scholar 

  • Binggeli RL, Paule WJ (1969) The pigeon retina: quantitative aspects of the optic nerve and ganglion cell layer. J Comp Neurol 137:1–18

    Article  PubMed  CAS  Google Scholar 

  • Black JA, Waxman SJ, Ranson BR, Feliciano MD (1986) A quantitative study of developing axons and glia following altered gliogenesis in rat optic nerve. Brain Res 380:122–135

    Article  PubMed  CAS  Google Scholar 

  • Bonnet X, Naulleau G, Lourdais O, Vacher M (1998) Growth in the asp viper (Vipera aspis L.): insights from long term field study. In: Miaud C, Guyetant R (eds) Current studies in herpetology. Proceedings of the 9th ordinary general meeting of the Societas Europaea Herpetologica, Le Bourget du Lac, France, pp 63–69

  • Braekevelt CR, Beazley LD, Dunlop SA, Derby JE (1986) Numbers of axons in the optic nerve and of retinal ganglion cells during development in the marsupial Setonix brachyurus. Brain Res 390:117–125

    PubMed  CAS  Google Scholar 

  • Bruesch SR, Arey LB (1942) The number of myelinated and unmyelinated fibers in the optic nerve of vertebrates. J Comp Neurol 77:631–665

    Article  Google Scholar 

  • Cankovic JG (1968) Contribution to the study of regenerative-degenerative qualities of the fasciculi optici of mammals under experimental conditions. Acta Anat 70:117–123

    Article  PubMed  CAS  Google Scholar 

  • Castanet J (1985) La squelletochronologie chez les Reptiles. I. Résultats experimentaux sur la signification des marques de croissance squelettiques chez les lézards et les tortues. Ann Sci Nat Zool Paris 13e Ser 7:23–40

    Google Scholar 

  • Castanet J, Naulleau G (1974) Données expérimentales sur le valeur des marques squelettiques comme indicateur de l’âge chez Vipera aspis (L.) (Ophidia, Viperidae) Zool Soc Ser 3:201–208

    Article  Google Scholar 

  • Cima C, Grant P (1982a) Development of the optic nerve in Xenopus laevis. I. Early development and organization. J Embryol Exp Morphol 72:225–249

    CAS  Google Scholar 

  • Cima C, Grant P (1982b) Development of the optic nerve in Xenopus laevis. II. Gliogenesis, myelination and metamorphic remodelling. J Embryol Exp Morphol 72:251–267

    CAS  Google Scholar 

  • Coleman LA, Dunlop SA, Beazley LD (1984) Patterns of cell division during visual streak formation in the frog Limnodynastes dorsalis. J Embryol Exp Morphol 83:119–135

    PubMed  CAS  Google Scholar 

  • Cook RD (1974) Observations on glial cells within myelin sheaths in degenerating optic nerves. J Neurocytol 3:737–751

    Article  PubMed  CAS  Google Scholar 

  • Cook RD, Wiśniewski HM (1973) The role of oligodendroglia and astroglia in Wallerian degeneration of the optic nerve. Brain Res 61:191–206

    Article  PubMed  CAS  Google Scholar 

  • Cook RD, Ghetti BD, Wiśniewski HM (1973) The pattern of Wallerian degeneration in the optic nerve of the newborn kitten. An ultrastructural study. Brain Res 75:261–275

    Article  Google Scholar 

  • Cook JE, Rankin ECC, Stevens HP (1983) A pattern of optic axons in the normal goldfish tectum consistent with the caudal migration of optic terminals during development. Exp Brain Res 52:147–151

    Article  PubMed  CAS  Google Scholar 

  • Crespo D, O’Leary DDM, Cowan WM (1985) Changes in the number of optic nerve fibers during late prenatal and postnatal development in the albino rat. Dev Brain Res 19:129–134

    Article  Google Scholar 

  • Cullen MI, Webster H (1979) Remodelling of optic nerve myelin sheaths and axons during metamorphosis in Xenopus laevis. J Comp Neurol 184:353–362

    Article  PubMed  CAS  Google Scholar 

  • Dangatta YY, Findlater GC, Kaufman MH (1996) Postnatal development of the optic nerve in (C57BL × CBA)F1 hybrid mice: general changes in morphometric parameters. J Anat (London) 189:117–125

    Google Scholar 

  • Davydova TV, Smirnov GD (1973) Retinotectal connections in the tortoise. An electron microscope study of degeneration in optic nerve and midbrain tectum. J Hirnforsch 14:473–492

    PubMed  CAS  Google Scholar 

  • Davydova TV, Gonchareva NV, Boyko VP (1976) Retinotectal system of the tortoise Testudo Horsefieldi Gray. (Morpho-functional study in the norm and after enucleation). J Hirnforsch 17:463–488

    PubMed  CAS  Google Scholar 

  • Davydova TV, Gonchareva NV, Boyko VP (1982) Correlation between the morpho-functional organization of some portions of the visual analyser of chelonia and their ecology. I. Normal morpho-functional characteristics of the optic nerve and the tectum opticum. J Hirnforsch 23:271–286

    PubMed  CAS  Google Scholar 

  • Dreher B, Potts RA, Bennett MR (1983) Evidence that the early postnatal reduction in the number of rat retinal ganglion cells is due to a wave of ganglion cell death. Neurosci Lett 36:255–260

    Article  PubMed  CAS  Google Scholar 

  • Drenhaus U, Thomas K, Rager G (2000) The course of later generated axons in the developing optic nerve of the chick embryo. A morphometric electron microscopic study. Dev Brain Res 121:35–53

    Article  CAS  Google Scholar 

  • Dunlop SA, Beazley LD (1984) A morphometric study of the retinal ganglion cell layer and optic nerve from metamorphosis in Xenopus laevis. Vision Res 24:417–427

    Article  PubMed  CAS  Google Scholar 

  • Dunlop SA, Tran N, Tee LB, Papadimitriou J, Beazley LD (2000) Retinal projection throughout optic nerve regeneration in the ornate dragon lizard Ctenophorus ornatus. J Comp Neurol 416:188–200

    Article  PubMed  CAS  Google Scholar 

  • Easter SS Jr, Stuermer CAO (1984) An evaluation of the hypothesis of shifting terminals in goldfish optic tectum. J Neurosci 4:1052–1063

    PubMed  Google Scholar 

  • Easter SS Jr, Rusoff AC, Kish PE (1981) The growth and organization,of the optic nerve and tract in juvenile and adult goldfish. J Neurosci 1:793–811

    PubMed  Google Scholar 

  • Easter SS Jr, Bratton B, Scherer SS (1984) Growth-related order of the retinal fiber layer in goldfish. J Neurosci 4:2173–2190

    PubMed  Google Scholar 

  • Gaze RM, Peters A (1961) The development, structure and composition of the optic nerve of Xenopus laevis (Daudin). Q J Exp Physiol 46:299–309

    CAS  Google Scholar 

  • Geri GA, Kimsey RA, Dvorak CA (1982) Quantitative electron microscopic analysis of the optic nerve of the turtle Pseudemys. J Comp Neurol 207:99–103

    Article  PubMed  CAS  Google Scholar 

  • Grafstein B, Ingoglia NA (1982) Intracranial transection of the optic nerve in adult mice: preliminary observations. Exp Neurol 76:318–330

    Article  PubMed  CAS  Google Scholar 

  • Grant P, Rubin E (1980) Ontogeny of the retina and optic nerve in Xenopus laevis. II. Ontogeny of the optic fiber pattern in the retina. J Comp Neurol 189:671–698

    Article  PubMed  CAS  Google Scholar 

  • Herbin M, Rio JP, Repérant J, Cooper HM, Nevo E, Lemire M (1995) Ultrastructural study of the optic nerve in blind mole rats (Spalacidae, Spalax). Visual Neurosci 12:253–261

    Article  CAS  Google Scholar 

  • Herndon RM (1964) The fine structure of the rat cerebellum. II. The stellate neurons, granule cells and glia. J Cell Biol 23:277–293

    Article  PubMed  CAS  Google Scholar 

  • Hildebrand C, Waxman SG (1984) Postnatal differentiation of rat optic nerve fibers: electron microscopic observations on the development of nodes of Ranvier and axonal relations. J Comp Neurol 224:25–37

    Article  PubMed  CAS  Google Scholar 

  • Hirano A, Dembitzer HM (1969) The transverse bands as a means of access to the periaxonal space of the central myelinated nerve fiber. J Ultrastruct Res 28:141–149

    Article  PubMed  CAS  Google Scholar 

  • Hirose G, Bass NH (1973) Maturation of oligodendroglia and myelinogenesis in rat optic nerve: a quantitative histochemical study. J Comp Neurol 152:201–210

    Article  PubMed  CAS  Google Scholar 

  • Horsburgh GM, Sefton AJ (1986) The early development of the optic nerve and chiasm in embryonic rat. J Comp Neurol 243:547–560

    Article  PubMed  CAS  Google Scholar 

  • Hughes WF, McLoon SC (1979) Ganglion cell death during normal retinal development in the chick: comparison with cell death induced by early target field destruction. Exp Neurol 66:587–601

    Article  PubMed  CAS  Google Scholar 

  • Hunter A, Bedi KS (1986) A quantitative morphological study of interstrain variation in the developing rat optic nerve. J Comp Neurol 245:160–166

    Article  PubMed  CAS  Google Scholar 

  • Johns PR (1977) Growth of the adult goldfish eye. III. Source of the new retinal cells. J Comp Neurol 176:343–354

    Article  PubMed  CAS  Google Scholar 

  • Johns PR, Easter SS Jr (1977) Growth of the adult goldfish eye. II. Increase in retinal cell number. J Comp Neurol 176:331–342

    Article  PubMed  CAS  Google Scholar 

  • Kirby MA, Wilson PD, Fischer TM (1988) Development of the optic nerve of the opossum (Didelphys virginiana). Dev Brain Res 44:37–48

    Article  CAS  Google Scholar 

  • Kruger L, Maxwell DS (1969) Wallerian degeneration in the optic nerve of a reptile: an elctron microscopic study. Am J Anat 125:247–269

    Article  PubMed  CAS  Google Scholar 

  • Lam K, Sefton AJ, Bennet MR (1982) Loss of axons from the optic nerve of the rat during early postnatal development. Dev Brain Res 3:487–491

    Article  Google Scholar 

  • Lampert PW (1967) A comparative electronmicroscopic study of reactive, degenerating, regenerating and dystrophic axons. J Neuropathol Exp Neurol 26:345–368

    Article  PubMed  CAS  Google Scholar 

  • Land DM, del Mar Romero-Aleman M, Arbelo-Galvan JF, Stuermer CA, Monzon-Mayor M (2002) Regeneration of retinal axons in the lizard Gallotia galloti. J Neurobiol 52:322–335

    Article  Google Scholar 

  • Lanners NN, Grafstein B (1980) Early stages of axonal regeneration in the goldfish optic nerve: an electron microscopic study. J Neurocytol 9:733–751

    Article  PubMed  CAS  Google Scholar 

  • Lia B, Williams RW, Chalupa LM (1986) Does axonal branching contribute to the overproduction of optic nerve fibers during early development of the cat’s visual system? Brain Res 390:296–301

    Article  PubMed  CAS  Google Scholar 

  • Linke R, Roth G (1990) Optic nerves in plethodontid salamanders (Amphibia, Urodela): neuroglia, fiber spectrum and myelination. Anat Embryol (Berlin) 181:37–48

    CAS  Google Scholar 

  • Maturana HR (1960) The fine anatomy of the optic nerve of anurans: an electron microscopic study. J Bioph Biochem Cytol 7:107–120

    Article  CAS  Google Scholar 

  • Meyer RL (1978) Evidence from thymidine labelling for continuing growth of retina and tectum in juvenile goldfish. Exp Neurol 59:99–111

    Article  PubMed  CAS  Google Scholar 

  • Misantone LJ, Gershenbaum M, Murray M (1984) Viability of retinal ganglion cells after nerve crush in adult rats. J Neurocytol 13:449–465

    Article  PubMed  CAS  Google Scholar 

  • Moujahid A, Navascues J, Marin-Teva JL, Cuadros MA (1996) Macrophages during avian optic nerve development: relationship to cell death and differentiation into microglia. Anat Embryol (Berlin) 193:131–144

    CAS  Google Scholar 

  • Muchnick N, Hibbard E (1980) Avian retinal ganglion cells resistant to degeneration after optic nerve lesion. Exp Neurol 68:205–216

    Article  PubMed  CAS  Google Scholar 

  • Murray M (1976) Regeneration of retinal axons in the goldfish optic tectum. J Comp Neurol 168:175–196

    Article  PubMed  CAS  Google Scholar 

  • Murray M (1982) A quantitative study of regeneration sprouting by optic axons in goldfish. J Comp Neurol 209:352–373

    Article  PubMed  CAS  Google Scholar 

  • Murray M, Edwards MA (1982) A quantitative study of the regeneration of the goldfish optic tectum following optic nerve crush. J Comp Neurol 209:363–373

    Article  PubMed  CAS  Google Scholar 

  • Naulleau G (1973) Rearing the asp viper Vipera aspis in captivity. Int Zool Yearb 13:108–111

    Article  Google Scholar 

  • Ng AYK, Stone J (1982) The optic nerve of the cat: appearance and loss of axons during development. Dev Brain Res 5:263–271

    Article  Google Scholar 

  • O’Flaherty JJ (1971) The optic nerve of the mallard duck: fiber diameter frequency distribution and physiological properties. J Comp Neurol 143:17–24

    Article  PubMed  CAS  Google Scholar 

  • Öhmann P (1977) Fine structure of the optic nerve of Lampetra fluviatilis (Cyclostomi). Vision Res 17:719–722

    Google Scholar 

  • Perry VH, Henderson Z, Linden R (1983) Postnatal changes in retinal ganglion cell and optic axon populations in the pigmented rat. J Comp Neurol 219:356–368

    Article  PubMed  CAS  Google Scholar 

  • Peters A, Vaughn JE (1970) Morphology and development of the myelin sheath. In: Davison AN, Peters A (eds) Myelination. Charles C Thomas, Springfield pp 3–79

    Google Scholar 

  • Peters A, Palay SL, Webster H de F (1976) The fine structure of the nervous system: the neurons and supporting cells. W.B. Saunders, Philadelphia

    Google Scholar 

  • Peyrichoux J, Pierre J, Repérant J, Rio JP, Ward R (1988) Evolution spatio-temporelle de la régénération du tractus optique chez Rutilus rutilus. C R Acad Sci Paris 306:551–558

    PubMed  CAS  Google Scholar 

  • Playford DE, Dunlop SA (1993) A biphasic sequence of myelinisation in the developing optic nerve of the frog. J Comp Neurol 333:83–93

    Article  PubMed  CAS  Google Scholar 

  • Potts RA, Dreher B, Bennett MR (1982) The loss of ganglion cells in the developing retina of the rat. Dev Brain Res 3:481–486

    Article  Google Scholar 

  • Provis JM, van Diel D, Billson FA, Russell P (1985) Human fetal optic nerve: overproduction and elimination of retinal axons during development. J Comp Neurol 238:92–101

    Article  PubMed  CAS  Google Scholar 

  • Rager G (1976) Morphogenesis and physiogenesis of the retino-tectal connection in the chicken. I. The retinal ganglion cells and their axons. Proc Roy Soc B 192:331–352

    Article  CAS  Google Scholar 

  • Rager G (1978) System-matching by degeneration. II. Interpretation of the generation and degeneration of retinal ganglion cells by a mathematical model. Exp Brain Res 33:79–90

    Article  PubMed  CAS  Google Scholar 

  • Rager G (1980) Development of the retinotectal system in the chicken. Adv Anat Embryol Cell Biol 63:1–62

    Google Scholar 

  • Rager G (1983) Structural analysis of fiber organization during development. Progr Brain Res 58:313–319

    Article  CAS  Google Scholar 

  • Rager G, Rager U (1976) Generation and degeneration of retinal ganglion cells in the chicken. Exp Brain Res 25:551–553

    Article  PubMed  CAS  Google Scholar 

  • Rager G, Rager U (1978) System matching by degeneration. I. A quantitative electron microscopic study of the generation and degeneration of retinal ganglion cells in the chicken. Exp Brain Res 33:65–78

    Article  PubMed  CAS  Google Scholar 

  • Rakic P, Riley KP (1983) Overproduction and elimination of retinal axons in the fetal rhesus monkey. Science 219:1441–1444

    Article  PubMed  CAS  Google Scholar 

  • Reier PJ, Webster H de F (1974) Regeneration and remyelinisation of Xenopus tadpole optic nerve fibres following transaction or crush. J Neurocytol 3:591–618

    Article  PubMed  CAS  Google Scholar 

  • Repérant J (1978) Organisation Anatomique du Système Visuel des Vertebrés. Approche Evolutive. Thèse de Doctorat d’Etat, Université de Paris VI. 358 p, 154 pl

  • Repérant J, Saban R (1986) Anatomie comparée du système visuel primaire chez les Mammifères. In: Hamard H, Chevaleraud J, Rondot P (eds) Neuropathies optiques. Soc Franc Ophtalmol. Masson, Paris, pp 41–94

    Google Scholar 

  • Repérant J, Rio JP, Miceli D, Vesselkin N (1987) Anatomical evidence of optic regeneration in the viper (Vipera aspis) 7th European Winter Conference on Brain Research, Val Thorens, France, Abst. p 33

  • Repérant J, Rio JP, Ward R, Miceli D, Vesselkin NP, Hergueta S, Lemire M (1991) Sequential events of degeneration and synaptic remodelling in the viper optic tectum following retinal ablation. A degeneration, radioautographic and immunocytochemical study. J Chem Neuroanat 4:397–419

    Article  PubMed  Google Scholar 

  • Richardson PM, Issa VM, Shemie S (1982) Regeneration and retrograde degeneration in the rat optic nerve. J Neurocytol 11:949–966

    Article  PubMed  CAS  Google Scholar 

  • Rio JP, Repérant J, Ward R, Peyrichoux J, Vesselkin N (1989) A preliminary description of the regeneration of optic nerve fibers in a reptile, Vipera aspis. Brain Res 479:151–156

    Article  PubMed  CAS  Google Scholar 

  • Robinson SR, Horsburgh GM, Dreher B, McCall MJ (1987) Changes in the numbers of retinal ganglion cells and optic nerve axons in the developing albino rabbit. Brain Res 432:161–174

    PubMed  CAS  Google Scholar 

  • Rosenbluth J (1966) Redundant myelin sheaths and other ultrastructural features of the toad cerebellum. J Cell Biol 28:73–93

    Article  PubMed  CAS  Google Scholar 

  • Sefton AJ, Lam K (1984) Quantitative and morphological studies on developing optic axons in normal and enucleated albino rats. Exp Brain Res 57:107–117

    Article  PubMed  CAS  Google Scholar 

  • Sefton AJ, Horsburgh GM, Lam K (1985) The development of the optic nerve in rodents. Aust N Z J Ophthalmol 13:135–145

    Article  PubMed  CAS  Google Scholar 

  • Sengelaub DR, Finlay BL (1982) Cell death in the mammalian visual system during normal development. I. Retinal ganglion cells. J Comp Neurol 204:311–317

    Article  PubMed  CAS  Google Scholar 

  • Skoff RP, Price DL, Stocks A (1976) Electron microscopic autoradiographic studies of gliogenesis in rat optic nerve. I. Cell proliferation. J Comp Neurol 169:291–312

    Article  PubMed  CAS  Google Scholar 

  • Skoff RP, Toland D, Nast E (1980) Patterns of myelinisation and distribution of neuroglial cells along the developing optic system of the rat and rabbit. J Comp Neurol 191:237–253

    Article  PubMed  CAS  Google Scholar 

  • Stirling RV, Dunlop SA, Beazley LD (1999) Electrophysiological evidence for transient topographic organization of retinotectal projections during optic nerve regeneration in the lizard Ctenophorus ornatus. Vis Neurosci 16:681–693

    Article  PubMed  CAS  Google Scholar 

  • Straznicky C, Gaze RM (1971) The growth of the retina in Xenopus laevis: an autoradiographic study. J Embryol Exp Morphol 26:67–69

    PubMed  CAS  Google Scholar 

  • Stuermer CAO, Raymond PA (1989) Developing retinotectal projection in larval goldfish. J Comp Neurol 281:630–660

    Article  PubMed  CAS  Google Scholar 

  • Sturrock RR (1987a) Changes in the number of axons in the human embryonic optic nerve from 8 to 18 weeks gestation. J Hirnforsch 28:649–652

    CAS  Google Scholar 

  • Sturrock RR (1987b) Age-related changes in the number of myelinated axons and glial cells in the anterior and posterior limbs of the mouse anterior commissure. J Anat (London) 150:111–127

    CAS  Google Scholar 

  • Takayama S, Yamamoto M, Hashimoto K, Itoh H (1991) Immunohistochemical study on the developing optic nerves in human embryos and fetuses. Brain Dev 13:307–312

    PubMed  CAS  Google Scholar 

  • Tapp RL (1973) The structure of the optic nerve of the teleost Eugerres plumieri. J Comp Neurol 150:239–252

    Article  PubMed  CAS  Google Scholar 

  • Tapp RL (1974) Axon number and distribution, myelin thickness and the reconstruction of the compound action potential of the optic nerve of the teleost Eugerres plumieri. J Comp Neurol 153:267–274

    Article  PubMed  CAS  Google Scholar 

  • Tay D, So KF, Lau KC (1986) The postnatal development of the optic nerve in hamsters: an electron microscopic study. Brain Res 395:268–273

    Article  PubMed  CAS  Google Scholar 

  • Tennekoon GI, Cohen SR, Price DL, McKhann GM (1977) Myelinogenesis in optic nerve: a morphological, autoradiographic and biochemical analysis. J Cell Biol 72:604–616

    Article  PubMed  CAS  Google Scholar 

  • Turner JE, Singer M (1974) Ultrastructure of regeneration in the severed newt optic nerve. J Exp Zool 190:249–268

    Article  PubMed  CAS  Google Scholar 

  • Vaughan JE (1969) An electron microscopic analysis of gliogenesis in rat optic nerves. Z Zellforsch 94:293–324

    Article  Google Scholar 

  • Walberg F (1964) Further electron microscopical investigations of the inferior olive of the cat. Progr Brain Res 6:59–75

    Article  Google Scholar 

  • Ward R, Repérant J, Rio JP, Peyrichoux J (1987) Etude quantitative du nerf optique chez la vipère aspic (Vipera aspis) C R Acad Sci Paris 304 sér III:331–336

    Google Scholar 

  • Ward R, Repérant J, Rio JP, Peyrichoux J, Lemire M (1989) The optic nerve of the viper, Vipera aspis. J Hirnforsch 30:565–576

    PubMed  CAS  Google Scholar 

  • Williams RW, Bastiani MJ, Barry LIA, Chalupa LM (1986) Growth cones, dying axons, and developmental fluctuations in the fiber population of the cat’s optic nerve. J Comp Neurol 246:32–69

    Article  PubMed  CAS  Google Scholar 

  • Wilson MA (1971) Optic nerve fibre counts and retinal ganglion cell counts during development of Xenopus laevis (Daudin). Q J Exp Physiol 56:83–91

    CAS  Google Scholar 

  • Woodbury PB, Ulinski PS (1986) Conduction velocity, size and distribution of optic nerve axons in the turtle Pseudemys scripta elegans. Anat Embryol (Berlin) 174:253–263

    Article  CAS  Google Scholar 

  • Yamada KM, Spooner BS, Wessells NK (1971) Ultrastructure and function of growth cones and axons of cultured nerve cells. J Cell Biol 49:614–635

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by an Accord de Cooperation Franco-Marocain, the CNRS (UMR 5166), MNHN (USM 0501), France, and by CRSNG/NSERC, Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Repérant.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bennis, M., Repérant, J., Ward, R. et al. The postnatal development of the optic nerve of a reptile (Vipera aspis): a quantitative ultrastructural study. Anat Embryol 211, 691–705 (2006). https://doi.org/10.1007/s00429-006-0135-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-006-0135-8

Keywords

Navigation