Skip to main content
Log in

Regeneration and remyelination ofXenopus tadpole optic nerve fibres following transection or crush

  • Published:
Journal of Neurocytology

Summary

Optic nerves of stage 54–56Xenopus laevis tadpoles were either transected or crushed, and subsequent Wallerian degeneration, regeneration, and remyelination were examined. After 4 days, normal myelinated fibres were no longer present in the distal stump, and only a few unmyelinated fibres remained. After 10–13 days, the distal nerve consisted mainly of a core of reactive astrocytes with enlarged processes and scattered oligodendrocytes which persisted throughout the degenerative period. Regenerating axons traversed the site of the lesion and extended into the distal stump within 13–15 days.

As regeneration progressed, astrocytic processes extended radially from the optic nerve's central cellular core and formed longitudinal compartments for regenerating axons. Between 15–19 days, a few regenerating fibres were remyelinated and by 35 days, more axons were surrounded either by thin collars of oligodendrocyte cytoplasm or by 1–3 spiral turns of myelin membrane. By 95 days, the number of myelinated fibres had increased to about 50% of those present in control nerves. Their myelin sheaths were normal in appearance and thickness relative to their respective axon diameters. The largest axons were surrounded by compact sheaths with 4–9 lamellae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allen, R. D., David, G. B. andNomarski, G. (1969) The Zeiss-Nomarski differential interference equipment for transmitted-light microscopy.Zeitschrift fur Wissenschaftliche Mikroskopie und Mikorskopische 69, 193–221.

    Google Scholar 

  • Attardi, D. G. andSperry, R. W. (1963) Preferential selection of central pathways by regenerating optic fibres.Experimental Neurology 7, 46–64.

    PubMed  Google Scholar 

  • Bernstein, J. J. andBernstein, M. E. (1971) Axonal regeneration and formation of synapses proximal to the site of lesion following hemisection of the rat spinal cord.Experimental Neurology 30, 336–351.

    PubMed  Google Scholar 

  • Bernstein, J. J. andBernstein, M. E. (1973) Neuroiial alteration and reinnervation following axonal regeneration and sprouting in mammalian spinal cord.Brain Behaviour and Evolution 8, 135–161.

    Google Scholar 

  • Blakemore, W. F. (1972) Observations on oligodendrocyte degeneration, the resolution of status spongiousus and remyelination in cuprizone intoxication in mice.Journal of Neurocytology I, 413–426.

    Google Scholar 

  • Blakemore, W. F. (1973) Remyelination of the superior cerebellar peduncle in the mouse following demyelination induced by feeding cuprizone.Journal of Neurological Sciences 20, 73–83.

    Google Scholar 

  • Bornstein, M. B. andAppel, S. H. (1961) The application of tissue culture to the study of experimental ‘allergic’ encephalomyelitis. I. Patterns of demyelination.Journal of Neuropathology and Experimental Neurology 20, 141–157.

    Google Scholar 

  • Bunge, R. B. (1968) Glial cells and the central myelin sheath.Physiological Review 48, 197–251.

    Google Scholar 

  • Bunge, M. B., Bunge, R. P. andRis, H. (1961) Ultrastructural study of remyelination in an experimental lesion in adult cat spinal cord.Journal of Biophysical and Biochemical Cytology 10, 67–94.

    PubMed  Google Scholar 

  • Clemente, C. D. (1964) Regeneration in the vetrebrate central nervous system.International Review of Neurobiology 6, 257–301.

    Google Scholar 

  • Clemente, C. D. andWindle, W. F. (1954) Regeneration of severed nerve fibres in the spinal cord of the adult cat.Journal of Comparative Neurology 101, 691–731.

    PubMed  Google Scholar 

  • Cook, R. D. andWiśniewski, H. M. (1973) The role of oligodendroglia and astroglia in Wallerian degeneration of the optic nerve.Brain Research 61, 191–206.

    PubMed  Google Scholar 

  • Crevel, H. Van andVerhaart, W. J. C. (1963) The rate of secondary degeneration in the central nervous system. II. The optic nerve of the cat.Journal of Anatomy (London) 97, 451–464.

    Google Scholar 

  • Egar, M., Simpson, S. B. andSinger, M. (1970) The growth and differentiation of the regenerating spinal cord of the lizard,Anolis carolinensis.Journal of Morphology 131, 131–152.

    PubMed  Google Scholar 

  • Egar, M. andSinger, M. (1972) The role of ependyma in spinal cord regeneration in the urodele,Triturus.Experimental Neurology 37, 422–430.

    PubMed  Google Scholar 

  • Estable-Puig, J. (1973) cited inGuth, L. andWindle, W. F. (1973) Physiological, molecular and genetic aspects of central nervous system regeneration.Experimental Neurology 39, iii-xvi.

    Google Scholar 

  • Gaze, R. M. (1959) Regeneration of the optic nerve inXenopus laevis.Quarterly Journal of Experimental Physiology 44, 290–308.

    Google Scholar 

  • Gaze, R. M. (1960) Regeneration of the optic nerve in Amphibia.International Review of Neurobiology 2, 1–40.

    PubMed  Google Scholar 

  • Gaze, R. M. (1970)The Formation of Nerve Connections. New York: Academic Press.

    Google Scholar 

  • Gaze, R. M. andPeters, A. (1961) The development, structure and composition of the optic nerve ofXenopus laevis (Daudin).Quarterly Journal of Experimental Physiology 46, 299–309.

    Google Scholar 

  • Gledhill, R. F., Harrison, B. M. andMcdonald, W. I. (1973a) Demyelination and remyelination following acute spinal cord compression.Experimental Neurology 38, 472–487.

    PubMed  Google Scholar 

  • Gledhill, R. F., Harrison, B. M. andMcdonald, W. I. (1973b) Pattern of remyelination in the CNS.Nature 244, 443–444.

    PubMed  Google Scholar 

  • Hirano, A., Levine, S. andZimmerman, H. M. (1968) Remyelination in the central nervous system after cyanide intoxication.Journal of Neuropathology and Experimental Neurology 27, 234–245.

    PubMed  Google Scholar 

  • Jacobs, J. M. (1967) Experimental diphtheritic neuropathy in the rat.British Journal of Experimental Pathology 48, 204–216.

    PubMed  Google Scholar 

  • Jacobs, J. M. andCavanagh, J. B. (1969) Species differences in internode formation following two types of peripheral nerve injury.Journal of Anatomy (London) 105, 295–306.

    Google Scholar 

  • Jacobson, M. (1970)Developmental Neurobiology. New York: Holt.

    Google Scholar 

  • Karnovsky, M. J. (1971) Use of ferrocyanide-reduced osmium tetroxide in electron microscopy. Abstracts,Eleventh Annual Meeting, American Society for Cell Biology, p. 146.

  • Kruger, L. andMaxwell, D. S. (1969) Wallerian degeneration in the optic nerve of a reptile: An electron microscopic study.American Journal of Anatomy 125, 247–270.

    PubMed  Google Scholar 

  • Lampert, P. andCressman, M. (1964) Axonal regeneration in the dorsal columns of the spinal cord in adult rats — an electron microscopic study.Laboratory Investigation 13, 825–839.

    PubMed  Google Scholar 

  • Lampert, P. W. andCressman, M. (1966) Fine structural changes in myelin sheaths after axonal degeneration in the spinal cord of rats.American Journal of Pathology 49, 1139–1155.

    PubMed  Google Scholar 

  • Liu, C. N. andScott, D., Jr. (1958) Regeneration in the dorsal spinocerebellar tracts of the cat.Journal of Comparative Neurology 109, 153–167.

    PubMed  Google Scholar 

  • Maturana, H. R. (1958) Efferent fibres in the optic nerve of the toad (Bufo bufo).Journal of Anatomy (London) 92, 21–27.

    Google Scholar 

  • Maturana, H. (1960) The fine anatomy of the optic nerve of anurans — an electron microscopic study.Journal of Biophysical and Biochemical Cytology 7, 107–120.

    PubMed  Google Scholar 

  • Mcmurray, V. M. (1954) The development of the optic lobes inXenopus laevis. The effect of repeated crushing of the optic nerve.Journal of Experimental Zoology 125, 247–263.

    Google Scholar 

  • Nathaniel, E. J. H. andNathaniel, D. R. (1973) Regeneration of dorsal root fibers into the adult rat spinal cord.Experimental Neurology 40, 333–350.

    PubMed  Google Scholar 

  • Nieuwkoop, P. S. andFaber, J. (1967)Normal table of Xenopus Laevis (Daudin). A systematical and chronological survey of the development from the fertilized egg till the end of metamorphosis. Amsterdam: North-Holland Publishing Co.

    Google Scholar 

  • Peters, A. (1960a) The structure of myelin sheaths in the central nervous system ofXenopus laevis (Daudin).Journal of Biophysical and Biochemical Cytology 7, 121–126.

    PubMed  Google Scholar 

  • Peters, A. (1960b) The formation and structure of myelin sheaths in the central nervous system.Journal of Biophysical and Biochemical Cytology 8, 431–446.

    PubMed  Google Scholar 

  • Peters, A., Palay, S. L. andWebster, H. Def. (1970)The fine structure of the nervous system: The cells and their processes. New York: Harper and Row.

    Google Scholar 

  • Prineas, J., Raine, C. S. andWisniewski, H. (1969) An ultrastructural study of experimental demyelination and remyelination. III. Chronic experimental allergic encephalomyelitis in the central nervous system.Laboratory Investigation 21, 472–483.

    PubMed  Google Scholar 

  • Raine, C. S. andBornstein, M. B. (1970) Experimental allergic encephalomyelitis: A light and electron microscopic study of remyelination and ‘sclerosis’in vitro.Journal of Neuropathology and Experimental Neurology 29, 552–574.

    PubMed  Google Scholar 

  • Raine, C. S., Wiśniewski, H. andPrineas, J. (1969) An ultrastructural study of experimental demyelination and remyelination. II. Chronic experimental allergic encephalomyelitis in the peripheral nervous system.Laboratory Investigation 21, 316–327.

    PubMed  Google Scholar 

  • Reier, P. J. andWebster, H. Def. (1974) Remyelination in the regenerating optic nerves ofXenopus tadpoles.Anatomical Record 178, 446.

    Google Scholar 

  • Rugh, R. (1962)Experimental embryology. Techniques and procedures, (3rd edition). Minneapolis: Burgess Publishing Co.

    Google Scholar 

  • Schröder, J. M. (1972) Altered ratio between axon diameter and myelin sheath thickness in regenerated nerve fibers.Brain Research 45, 49–65.

    PubMed  Google Scholar 

  • Simpson, S. B., Jr. (1968) Morphology of the regenerated spinal cord in the lizard,Anolis carolinensis.Journal of Comparative Neurology 134, 193–210.

    PubMed  Google Scholar 

  • Sperry, R. W. (1944) Optic nerve regeneration with return of vision in anurans.Journal of Neurophysiology 7, 57–69.

    Google Scholar 

  • Turner, J. andSinger, M. (1974a) An ultrastructural study of the newt,Triturus viridescens, optic nerve.Journal of Comparative Neurology 156, 1–18.

    PubMed  Google Scholar 

  • Turner, J. andSinger, M. (1974b) The ultrastructure of Wallerian degeneration in the severed newt optic nerve. Submitted toAnatomical Record.

  • Turner, J. andSinger, M. (1974c) The ultrastructure of regeneration in the newt optic nerve. In Preparation.

  • Vaughn, J. E. (1969) An electron microscopic analysis of gliogenesis in rat optic nerves.Zeitschrift fur Zellforschung und Mikroskopische Anatomie 94, 293–324.

    PubMed  Google Scholar 

  • Vaughn, J. E., Hinds, P. L. andSkoff, R. P. (1970) Electron microscopic studies of Wallerian degeneration in rat optic nerves. I. The multipotential glia.Journal of Comparative Neurology 140, 175–206.

    PubMed  Google Scholar 

  • Vaughn, J. E. andPease, D. C. (1970) Electron microscopic studies of Wallerian degeneration in rat optic nerves. II. Astrocytes, oligodendrocytes and adventitial cells.Journal of Comparative Neurology 140, 207–226.

    PubMed  Google Scholar 

  • Vaughn, J. E. andPeters, A. (1967) Electron microscopy of the early postnatal development of fibrous astrocytes.American Journal of Anatomy 121, 131–152.

    PubMed  Google Scholar 

  • Vaughn, J. E. andPeters, A. (1968) A third neuroglial cell type. An electron microscopic study.Journal of Comparative Neurology 133, 269–288.

    PubMed  Google Scholar 

  • Webster, H. Def. (1962) Transient, focal accumulation of axonal mitochondria during the early stages of Wallerian degeneration.Journal of Cell Biology 12, 361–383.

    PubMed  Google Scholar 

  • Webster, H. Def. (1971) The geometry of peripheral myelin sheaths during their formation and growth in rat sciatic nerves.Journal of Cell Biology 48, 348–367.

    Google Scholar 

  • Webster, H. Def., Reier, P. J., Kies, M. W. andO'connell, M. F. (1974b) A simple method for quantitative morphological studies of CNS demyelination: Whole mounts of tadpole optic nerves examined by differential-interference microscopy.Brain Research 79, 132–138.

    PubMed  Google Scholar 

  • Webster, H. Def., Ulsamer, A. G. andO'connell, M. F. (1974a) Hexachlorophene induced myelin lesions in the developing nervous system ofXenopus tadpoles: Morphological and biochemical observations.Journal of Neuropathology and Experimental Neurology 33, 144–163.

    PubMed  Google Scholar 

  • Wilson, M. A. (1971) Optic nerve fibre counts and retinal ganglion cell counts during development ofXenopus laevis (Daudin).Quarterly Journal of Experimental Physiology 56, 83–91.

    Google Scholar 

  • Windle, W. F. (editor) (1955)Regeneration in the Central Nervous System. Springfield, Illinois: Thomas.

    Google Scholar 

  • Windle, W. F. andChambers, W. W. (1950) Spinal cord regeneration associated with a cellular reaction induced by administration of a purified bacterial pyrogen.Fifth International Anat. Congress (Oxford) p. 196.

  • Wiśniewski, H. andRaine, C. S. (1971) An ultrastructural study of experimental demyelination and remyelination. V. Central and peripheral nervous system lesion caused by diptheria toxin.Laboratory Investigation 25, 73–80.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reier, P.J., de Webster, H.F. Regeneration and remyelination ofXenopus tadpole optic nerve fibres following transection or crush. J Neurocytol 3, 591–618 (1974). https://doi.org/10.1007/BF01097626

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01097626

Keywords

Navigation